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Abstract—The basic Boolean primitive in quantum cellular au-
tomata (QCA) is the majority gate. In this paper, a method for
reducing the number of majority gates required for computing
three-variable Boolean functions is developed to facilitate the con-
version of sum-of-products expression into QCA majority logic.
Thirteen standard functions are introduced to represent all three-
variable Boolean functions and the simplified majority expressions
corresponding to these standard functions are presented. We de-
scribe a novel method for using these standard functions to con-
vert the sum-of-products expression to majority logic. By applying
this method, the hardware requirements for a QCA design can be
reduced. As an example, a 1-bit QCA adder is constructed with
only three majority gates and two inverters. The adder is designed
and simulated using QCADesigner, a design and simulation tool for
QCA. We will show that the proposed method is very efficient and
fast in deriving the simplified majority expressions in QCA design.

Index Terms—Boolean function, majority expression, majority
reduction, quantum cellular automata (QCA) adders, three cube.

I. INTRODUCTION

QUANTUM cellular automata (QCA) is a nanotechnology
that has recently been recognized as one of the top six
emerging technologies with potential applications in

future computers [1]–[6]. Several studies have reported that
QCA can be used to design general-purpose computational
and memory circuits [7]–[10]. First proposed in 1993 by Lent
et al., and experimentally verified in 1997, QCA is expected to
achieve high device density, extremely low power consumption,
and very high switching speed.

The fundamental QCA logic primitives are the three-input
majority gate, wire, and inverter. Each of these can be consid-
ered as a separate QCA locally interconnected structure, where
QCA digital architectures are combinations of these cellular
automata structures. Traditional logic reduction methods
[11]–[14], such as Karnaugh maps (K-maps), always produce
simplified expressions in the two standard forms: sum of
products (SOP) or product of sums (POS). However, we will
encounter difficulties in converting these two forms into ma-
jority expressions due to the complexity of multilevel majority
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gates. In CMOS/silicon design, the logic circuits are usually
implemented using AND and OR gates based on SOP or POS
formats. However, since QCA logic is based on a majority gate
primitive, it is critical that an efficient technique be established
for designing with this primitive.

In this paper, we develop a Boolean algebra based on a ge-
ometrical interpretation of three-variable Boolean functions to
facilitate the conversion of sum-of-products expressions into
reduced majority logic. Thirteen standard functions are intro-
duced, which represent all possible three-variable Boolean func-
tions. For each of these standard functions, we present the re-
duced majority expression. As an example of this technique, we
present a QCA adder design, and show that the proposed method
is able to reduce the total hardware, as compared to previously
published designs.

This paper is organized as follows. In Section II, we pro-
vide a brief background to QCA technology. In Section III, we
develop a Boolean algebra based on a geometrical interpreta-
tion of three-variable Boolean functions to facilitate the con-
version of sum-of-products expressions into reduced majority
logic. Thirteen standard functions are introduced to represent
all three-variable Boolean functions and the simplified majority
expressions corresponding to these standard functions are given.
A procedure to convert a generic three-variable Boolean func-
tion into majority gates is also developed. In Section IV, as an
example, we introduce a 1-bit QCA adder constructed with only
three majority gates and two inverters. We conclude this paper
in Section V.

II. BACKGROUND MATERIAL

A. QCA Basics

QCA technology is based on the interaction of bi-stable QCA
cells constructed from four quantum dots. The cell is charged
with two free electrons, which are able to tunnel between ad-
jacent dots. These electrons tend to occupy antipodal sites as a
result of their mutual electrostatic repulsion. Thus, there exists
two equivalent energetically minimal arrangements of the two
electrons in the QCA cell, as shown in Fig. 1. These two arrange-
ments are denoted as cell polarization and .
By using cell polarization to represent logic “1” and

to represent logic “0,” binary information is encoded
in the charge configuration of the QCA cell.

B. QCA Logic Devices

The fundamental QCA logic primitives include a QCA wire,
QCA inverter, and QCA majority gate [15]–[18], as described
below.
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Fig. 1. QCA cells showing how binary information is encoded in the two fully
polarized diagonals of the cell.

Fig. 2. QCA wire (90�).

Fig. 3. QCA inverter.

Fig. 4. QCA majority gate.

QCA Wire: In a QCA wire, the binary signal propagates from
input to output because of the electrostatic interactions between
cells. The propagation in a 90 QCA wire is shown in Fig. 2.
Other than the 90 QCA wire, a 45 QCA wire can also be used.
In this case, the propagation of the binary signal alternates be-
tween the two polarizations.

QCA Inverter: A QCA layout of an inverter circuit is shown
in Fig. 3. Cells oriented at 45 to each other take on opposing
polarization. This orientation is exploited here to create the in-
verter shown in this figure.

QCA Majority Gate: The QCA majority gate performs a
three-input logic function. Assuming the inputs are and

, the logic function of the majority gate is

(1)

A layout of a QCA majority gate is shown in Fig. 4. The
tendency of the majority device cell to move to a ground state
ensures that it takes on the polarization of the majority of its
neighbors. The device cell will tend to follow the majority po-
larization because it represents the lowest energy state.

By fixing the polarization of one input to the QCA majority
gate as logic “1” or logic “0,” an AND gate or OR gate will be
obtained, respectively, as follows:

(2a)

(2b)

Thus, we can base all QCA logic circuits on three-input ma-
jority gates. In order to achieve efficient QCA design, majority
gate-based design techniques are required. In the literature, the
study of majority gates mainly focuses on the implementations
of the -input majority function [19], [20] using threshold logic.
An -input majority gate produces a logic “1” output if the ma-
jority of its inputs are logic “1”; two out of three in the case of a
three-input majority function. If is even, inputs must
be at logic “1” to produce an output of logic “1.” The three-input
QCA majority gate is a special case of the -input majority
function. Currently, there is evidence from the latest fabrica-
tion technology that feed-forward networks, constructed with
threshold gates, are becoming a promising solution for com-
puter arithmetic [19], [20]. However, there does not appear to
be any published study on the implementation of logic functions
using minimal numbers of three-input majority gates. Although
the K-maps method provides a simple and straightforward pro-
cedure for minimizing Boolean functions, the simplified ex-
pressions produced by K-maps do not guarantee a simplified
majority expression. For example, a full-adder carry function
requires three AND and two OR gates, but can be created with
just one three-input majority gate. It is expected that Boolean
algebra based on majority gates will be significantly important
for future QCA design techniques.

III. BOOLEAN ALGEBRA BASED ON MAJORITY GATES

Here, we develop a Boolean algebra of three variables to fa-
cilitate the conversion of a sum-of-products expression to min-
imized majority logic. We first apply a geometric interpretation
of the Boolean function, namely the three-cube method [21],
[22] to find 13 standard functions to represent all three-variable
Boolean functions. We then propose simplified majority expres-
sions for each of these 13 functions along with a procedure to
obtain the efficient majority expression for any given three-vari-
able Boolean function amenable to QCA implementation.

A. Three-Cube Representation of Three-Variable
Boolean Function

According to [21], [22], a Boolean function of variables can
be represented by a binary cube; i.e., an -dimensional binary
hyper-cube. Each literal is represented by one of the dimensions
of the hyper-cube with coordinates of “0” or “1.” Here, we apply
the method [21], [22] for three-variable Boolean functions in
the three-cube domain. For Boolean functions of three binary
variables, i.e., and , one can obtain 2 distinct minterms:

and each corresponding to
a vertex (point) of the three cube. For example, has the co-
ordinates . A three-variable function is represented in
a three-dimensional space. This function space is defined by a
set of points, called the on-set points, for which the function
evaluates to “1.” The set of points corresponding to the function
evaluating to “0” is called the off-set.

There are several ways to write a given Boolean function as a
SOP. Each representation is called a cover because it covers all
the points in the function’s on-set. Each member of the cover is
a subspace of the function space, which is written algebraically
as a product (or cube). A function has many covers, some of
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Fig. 5. Three-cube structure of three-variable Boolean functions.
(a) Three-cube structure. (b) Edge. (c) Face.

which have more literals than others. The minimum cover of a
function is a cover with both fewest cubes and fewest literals.

Example 1: The three-cube structure for the function
is given in Fig. 5(a). Between the two

covers of Fig. 5(a), and ,
the cover is the minimum cover.

We use the following example to show the procedure to obtain
the minimum cover by using the geometrical characteristics of
the three cube.

Example 2: In Fig. 5(b), the vertices of form a
one-dimensional subspace of the function, described by an edge

. Furthermore, in Fig. 5(c), the two edges
and can be further simplified in a two-dimensional subspace,
described by a face . Using such strategies, we can
obtain the minimum cover, i.e., the simplest sum-of-products
expression.

K-maps can also achieve the same simplification. The advan-
tage of using the graphical representation of a Boolean func-
tion in the three-cube structure is that it clearly shows the pos-
sible distribution of the sum of any minterms. Thus, we can
easily use the three-cube method to find standard functions for
all three-variable Boolean functions.

B. Proposed 13 Standard Three-Variable
Boolean Functions

Three binary variables and can only produce eight
unique minterms. Any three-variable Boolean function can
be represented by the combinations of up to eight of these
minterms. Since each minterm corresponds to a vertex (point)
of the three cube, the three-variable Boolean function can be
represented as points on the three cube. If we are only con-
cerned with the relationships associated with these points, we
can obtain 13 possible structures and corresponding functions
for the cases of one to four points on a three cube, as shown in
Table I.

We use the case of two points as an example to illustrate
how to obtain the structures and functions in Table I. The pos-
sible relationships between the two points are: 1) two adjacent
points (one edge); 2) two nonadjacent points, but in one face;
and 3) two nonadjacent points, and not in one face. The three
structures correspond to , and

, respectively. It is noted that the Boolean
variables and can be mapped to any one of
and . Thus, these three functions can represent all the two
points cases; in other words, all three-variable Boolean func-
tions of two minterms. Following a similar approach, we find

13 standard structures and functions for all the cases from one
to four points on a three cube.

The three-variable Boolean function of 5–7 minterms (points)
can be represented using the complement form of 3–1 minterms.
Based on DeMorgan’s theorem, a Boolean function, expressed
as the sum of several minterms, can also be expressed as the
complement of the sum of the remaining minterms. For ex-
ample, the function

(3)

Furthermore, a three-variable Boolean function of eight
minterms (points on a three cube) is always “1.” Thus, we
have the following mappings for 5–7 minterms, based on the
results from 3–1 minterms, along with the special case for eight
minterms:

Five minterms: Three minterms

Six minterms: Two minterms

Seven minterms: One minterm

Eight minterms:

Clearly, the cases representing 5–8 minterms can be mapped
back to our 13 standard functions.

Since the 13 standard functions are obtained by using the
above exhaustive search method, we can conclude that any
three-variable Boolean function can be converted into one
of these 13 standard functions. Consider, as an example, the
following Boolean function.

Example 3:

5 minterms

simplified

3 minterms

Let

Function 5 in Table I.

It is shown in [23] and [24] that there are 256 Boolean
functions for three variables, but that they can be mapped
to only 80 equivalence classes by permuting their inputs to
produce the same functionality. The 13 standard functions, as
discussed above, can be considered as a further simplification
of the methods of [23]and [24] with the added functionality of
efficiently converting three-variable Boolean functions to their
majority gate equivalences.

C. Proposed Majority Gate Representation of 13 Standard
Functions

The simplified majority expressions for 13 standard functions
are given in Table II.

1) Functions 1, 2, 4, 6, 8, 10, and 12 are obtained directly
by converting the sum-of-products expressions using (2a)
and (2b).
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TABLE I
13 STANDARD FUNCTIONS

2) For functions 5 and 11, we use the following distributive
law to reduce the number of majority gates involved:

(4)

Function 5: the direct conversion will require three ma-
jority gates and is now reduced to two majority gates

(5a)

Function 11: the direct conversion will require six ma-
jority gates and is now reduced to five majority gates

(5b)

3) For Functions 3, 7, 9, and 13, majority gate reduction
techniques are used to reduce the number of majority
gates required.



ZHANG et al.: METHOD OF MAJORITY LOGIC REDUCTION FOR QCA 447

TABLE II
MAJORITY EXPRESSION OF 13 STANDARD FUNCTIONS

Function 3: the direct conversion will require five ma-
jority gates and is now reduced to three majority gates

(5c)

Function 7: the direct conversion will require eight ma-
jority gates and is now reduced to four majority gates

(5d)
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Function 9: the direct conversion will require five ma-
jority gates and is now reduced to one majority gate

(5e)

Function 13: the direct conversion will require 11 ma-
jority gates and is now reduced to three majority gates

(5f)

Tables I and II will enable us to convert any Boolean function
of three variables into a simplified majority gate expression.

D. Proposed Procedure to Build Majority Expressions

Here, we propose a procedure to build simplified majority
expressions for a given Boolean function using Tables I and II.
The procedure uses the following algorithm to generate a ma-
jority gate expression of the three-variable Boolean function .

Algorithm 1

1) Map onto on-set points in the three-cube structure.

For five or more minterms, use the complement ,

which is to employ the complement of the function

, which is plotted as off-set points.

2) Locate the corresponding format in the 13 stan-

dard functions for or .

3) Using Tables I and II, look up the simplified majority

expression for the function .

4) Reduce, if possible, the number of inverter gates by

using the following relationships:

We illustrate the application of the procedure using the fol-
lowing example.

Example 4: Derive the simplified majority expression for the
function .

On-set points (black points) and off-set points (grey points) of
function , mapped to a three cube, are shown in Fig. 6 as five
minterms. In Fig. 6, represents three minterms (grey points)
consisting of two edges, which share one common point and
corresponds to function 5 in Tables I and II as follows:

Using function 5

Let

IV. QCA ADDERS

Here, we will apply the proposed majority reduction method
to design QCA adders. We will show that the proposed method

Fig. 6. Three-cube structure of the function in Example 4.

is very efficient and fast in deriving simplified majority expres-
sions for QCA design.

A. QCA Addition Algorithm

A 1-bit full adder is defined as follows.
Inputs: Operand bits and and carry-in .
Outputs: Sum bit and carry-out .

(6a)

(6b)

Proposition 1: By using (1) and function 13 in Tables I and
II, we obtain the simplified QCA addition majority gate expres-
sions as follows:

(7a)

(7b)

(7c)

Proof: By using (1) and (6b), we obtain

We find that (6a) will be four nonadjacent points (four
minterms) when plotted on a three cube, which matches
function 13 in Tables I and II. Thus, (6a) can be rewritten as

Let

Using (7b).

It is noteworthy that, using a similar procedure, we can obtain
two other equations to compute as follows:

Let

(8a)

Let

(8b)

Equation (8a) is just a variant of (7c) by switching the signals
and , while (8b) switches with . These two equations

are the same as (7c) in terms of designing the QCA adder.
Based on Proposition 1, the 1-bit QCA adder is shown in

Fig. 7. The calculation of involves one majority gate and
the calculation of involves two majority gates and two in-
version operations and . Thus, the adder only requires
three majority gates and two inverters. In contrast, in the orig-
inal QCA addition algorithm [25], the calculation of also
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Fig. 7. 1-bit QCA full adder (three majority gates and two inverters).

TABLE III
COMPARISON OF QCA ADDERS

requires only one majority gate, but the computation of is con-
siderably more complex. The calculation of is based on

(9)

This requires four majority gates and three inversion opera-
tions and . In contrast, the original 1-bit adder design
requires five majority gates and three inverters. We note that
a bit-serial adder [26] proposed by Fijany et al. in 2003 also
only uses three majority gates, but our three-gate design does
not have the bit-serial restriction.

B. QCA Adder Design

This 1-bit QCA adder consists of three majority gates and two
inverters, as shown in Fig. 7. As noted above, this represents
a considerable reduction in hardware compared to the original
design [25] and retains the simple clocking scheme.

The performance data of the QCA adder and of those consid-
ered in [25] are given in Table III.

C. Simulation Results

The QCA adders were designed and simulated using
QCADesigner, a layout and simulation tool for QCA logic,
developed at the University of Calgary, Calgary, AB, Canada
[27], [28]. The design and simulation procedure is as follows.
We first generate the layout of the 1-bit QCA adder, and then
we setup the circuit clocking. Finally, we set up the vector table
simulation to simulate the adder.

1-bit Adder Design and Simulation: The layout of the 1-bit
QCA adder is shown in Fig. 8.

Performance Comparison: To maintain consistency with
size measurements in [25], we assume that the QCA cells are
made of 2-nm quantum dots. The cells are separated by 10 nm.

This design requires only 36% of the area used by the original
adder design [25], while maintaining the same clocking perfor-
mance, as shown in Table IV. The decrease in area requirement
is consistent with our theoretical predictions, which we have
proven with a complete QCA layout of the adder, as shown in
Fig. 8. A comparison between this design and the bit-serial

Fig. 8. Layout of the 1-bit QCA adder.

TABLE IV
SIMULATION RESULTS OF QCA ADDERS

adder [26] has not been carried out since implementation data
is not available for the bit-serial design.

V. CONCLUSION

In this paper, we have introduced a new strategy for simpli-
fying Boolean functions based on majority gate logic. The study
has had a direct application to the design of logic functions in
QCA where the logic primitive is a three-input majority gate.
Thirteen standard functions have been developed to represent all
three-variable Boolean functions and the simplified majority ex-
pressions corresponding to these standard functions have been
proposed. Furthermore, a procedure has been introduced to map
a given three-variable Boolean function to efficient QCA ma-
jority logic design. As a case study, the proposed technique
is used to develop a 1-bit QCA adder that is constructed with
only three majority gates and two inverters. The QCA adder
has been designed and simulated using the standard QCA com-
puter-aided (CAD) tool QCADesigner. It is expected that the
reduction method presented in this paper will produce signifi-
cant hardware savings for many future QCA architectures.
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