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Due to process variations, every path in the circuit is associated with a probability of being critical
and a measure of this probability is the criticality of the path. Identification of critical paths usually
proceeds in two steps, namely, generation of a candidate path set followed by computation of
path criticality. As criticality computation is expensive, the candidate path set is chosen using
simpler metrics. However, these metrics are not directly related to path criticality and often,the
set also contains low criticality paths that do not need to be tested. In this paper, we propose a
hierarchical technique which directly gives all paths above a global criticality threshold. The circuit
is divided into disjoint groups at various levels. We show that the criticality of a group at each level
of hierarchy can be computed using criticality of the parent group and the local complementary
delay within the group. Low criticality groups are pruned at every level, making the computation
efficient. This recursive partitioning and group criticality computation is continued until the group
criticality falls below a threshold. Beyond this, the path selection within the group is done using
branch-and-bound algorithm with global criticality as the metric. This is possible, since our method
for criticality computation is very efficient. Unlike other techniques, path selection and criticality
computation are integrated together so that when the path selection is complete, path criticality is
also obtained. The proposed algorithm is tested with ISCAS’85, ISCAS’89 and ITC’99 benchmark
circuits and the results are verified using Monte Carlo simulation. The experimental results suggest
that the proposed method gives better accuracy on average with around 90% reduction in run-time.
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1 INTRODUCTION

With increasing process variations, deterministic delay models have become inadequate for
identification of critical paths. Every path is associated with a probability of being critical in
some die and a measure of this probability is the criticality of the path. The path criticality
therefore is indicative of the percentage of dies in which the path has the maximum delay
and can be used as a measure for both timing optimization and selection of paths for delay
fault-testing. However, computation of path criticality is time-consuming and unless done
carefully, is also error prone. Typically a two step procedure is used, wherein a candidate set
of paths is chosen using a simpler metric. This is followed by computation of path criticality.

The simplest metric for path selection is the delay of the path obtained using deterministic
values, possibly at the process corners. Zhan et al. [18] use static timing analysis (STA)
to obtain paths with the largest delays. They propose the use of either statistical MAX
operation or Monte Carlo methods for the computation of path criticality. Monte Carlo
methods are accurate but expensive. The use of Clark’s approximation of the MAX operator
leads to significant errors in large circuits with many similar paths. The method proposed in
[8] uses a two step process for path selection. The first step is candidate path set generation
where the longest sensitizable paths with delay greater than a specified value is obtained
using STA. This is followed by path selection from the candidate set taking into account
the correlation among the paths. In this paper, the criticality of the selected paths is not
computed.

The other metric used for path selection is the test quality metric (TQM) which is defined
as the probability that a tested chip has no timing violation, given that the test paths pass
the at-speed test [20, 21]. Using this metric turns out to be equivalent to maximising the
probability that the statistical path slack of the set of paths is less than zero (referred to as
the process coverage metric). Zolotov et al. propose a branch-and-bound (BnB) technique
using TQM as the metric. Xiong et al. propose a path selection technique based on multi-
layer process coverage [11, 16]. They define the test quality metric in [20] to be a single
layer metric in the sense that any point in the process space will be covered if it is covered
by at least one of the paths and if the selected path is not sensitizable, there will be a
resulting loss of process space coverage. With multi-layer TQM (mTQM), a point in the
process space will be covered only if it is covered by at least 𝑚 paths so that even if some
paths are not sensitizable, it is likely to be covered by other paths. They use an 𝑚𝑡ℎ order
statistic for computing mTQM and a branch-and-bound algorithm along with this metric
for path selection. To account for the testability of the selected paths, Chung et al. proposed
a branch-and-bound path selection using testable path coverage metric (TCM) [5]. This
approach uses local criticality within a set a testable paths as the metric. Note that the local
criticality of a path is the criticality within a subset of paths and the global criticality is the
criticality with respect to all the paths in the circuit. The local criticality is an upper bound
on the global criticality and approaches the global criticality only asymptotically. Therefore,
the number of paths that are are inspected needs to be larger than the optimal solution.
Moreover, whenever a new path is obtained, the criticality within the path set needs to be
recomputed and paths are discarded based on the newly computed criticality.
In [2, 3], Chung et al. propose a recursive path selection which aims to select a set of

paths so that the fault detection probability is maximized. The fault detection probability
is also related to the statistical path slack and this approach attempts to select a set of
paths of fixed size so that the probability that the path set delay exceeds the clock period is
maximized. This approach assigns a budget of 𝑘 to the sink node where 𝑘 is the number of
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A Hierarchical Technique for Statistical Path Selection and Criticality Computation 0:3

paths to be selected. The graph is traversed from primary outputs to primary inputs and
budgets are assigned to the nodes in such a way that the detection probability is maximized.
The recursive traversal is continued until the budget drops to zero or the source node is
reached.
The global criticality of a path is a measure of the percentage of dies in which the path

has the maximum delay. It is an indicator of the timing yield in the following sense. If a
path has a global criticality of 0.9, a successful at-speed test of this path indicates that the
timing yield will most likely be greater than 90%. The slack based metric, defined in [20]
has positive values for all paths and the top 𝑁 paths are chosen for at-speed testing. This
has two issues. Firstly, it is not clear how to determine 𝑁 . Secondly, it is not clear how
many, among these 𝑁 paths need to be tested. Consider the following case. Assume there
are two paths, both of which have a large TQM. However, due to large correlation, one of
the paths dominates the other so that it has a much larger global criticality than the other.
Depending on the actual values of the global criticality and required timing yield, it may
not be necessary to do an at-speed test of both paths. For example if the global criticalities
are 0.95 and 0.05, testing of the dominant path alone could be sufficient. On the other hand,
if there are twenty uncorrelated paths with criticality 0.05, many more paths have to be
tested. TQM can also be extended to include correlation using joint path metric (JPM) as
in [20]. However, it is based on replacing each path in the current list with a new path and
recomputing the metric. Since it is not clear how many new paths need to be tested, the
method turns out to be expensive [20]. Also, even when all the paths selected are tested, the
issue of estimating the timing yield remains. The local criticality in [5] is a better metric, but
as discussed, it is not a good bound until the path set is large enough. On the other hand, if
we could directly obtain paths based on global criticality, we can stop looking for new paths
once the sum of the global criticalities of the selected paths are as close to one as desired. In
the rest of the paper, we use the terms criticality and global criticality interchangeably. Local
criticalities, when used, will be explicitly indicated.
The biggest problem with using criticality is that it is time-consuming to evaluate and

unless done carefully, the evaluation is error prone. Hence we need accurate and efficient
methods to evaluate criticality. In large circuits with many similar paths, the error in MAX
operation is significant leading to errors in both circuit delay and the criticality. With a
careful combination of pruning and ordering of MAX operations, the node/edge criticality
computations can be made reasonably accurate [9, 10]. Path criticality computation is
more challenging, since it is not possible to enumerate all paths in the circuit. This means
that pruning of highly correlated similar paths is possible only to a limited extent, leading
to errors. Experiments in [4] indicate that using the conditional probability method after
removing topological correlation gives a lower error. But this paper does not discuss how to
find the paths with the largest criticalities in the circuit.

Several techniques have been proposed which use global node and edge criticality for path
enumeration and criticality computation [14, 15]. The method proposed in [14] computes
node criticality and uses breadth first search along with node criticality for path enumeration.
The path criticality is evaluated as the product of the arrival tightness probabilities of the
edges along the path. But this method assumes independence between the edge delays,
which is not a good assumption. Wang et al. [15] propose a path criticality computation
method that uses conditional probability to take into account the correlations between the
delays. They use the node and edge criticality as a metric and propose a “branch and prune”
algorithm, where low criticality nodes and edges are pruned in backward traversal of the

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0. Publication date:

0000.



0:4 C. P. R. and V. Vasudevan

circuit graph. However, it requires a full criticality computation of the nodes and edges of
the graph. While this is efficient when there are dominant paths that have a large criticality,
it is very time consuming if there are a large number of parallel paths. Their paper does not
contain actual results of paths enumerated and the corresponding criticality, so the results
cannot be compared.
Ideally we would like a method in which the global criticality of the path is used as a

metric and the selection of paths is not decoupled from the criticality evaluation. In this
paper, we propose a hierarchical method to obtain all paths that have global criticality
above a specified threshold. At each level of the hierarchy, a group is partitioned into a set
of disjoint groups at the next level. This is followed by pruning and criticality evaluation
of the “next level” groups. We show that the criticality of each group can be computed
using criticality of the parent group and a conditional local criticality within the parent
group. The evaluation can be done using either a recursive technique or statistical MAX and
conditional probability or a combination of both. Only those groups that have criticality
above the threshold are further subdivided. Finally, when the criticality of the group drops
below a threshold, we use a branch-and-bound method for path selection using the global
criticality of a sub-path as the metric. As a result, the path selection and path criticality
evaluation proceed simultaneously. It is also efficient as the path selection works on a smaller
subset of nodes. At every level, we also place groups that have a large topological correlation
and nearly identical means and standard deviations into clusters. Only one of the groups is
then considered for further subdivision and criticality evaluation.
The rest of the paper is organised as follows. Section 2 explains the circuit model used.

Section 3 describes some of the existing path criticality computation approaches and their
drawbacks. Section 4 discusses the statistical path selection using BnB and its limitations.
The proposed hierarchical partitioning algorithm is explained in Section 5. Section 6 contains
implementation details and complexity analysis. Section 7 presents the results obtained for
various benchmarks and section 8 concludes the paper.

2 MODEL

In timing analysis, the digital circuit is transformed into a directed acyclic graph 𝐺(𝑉,𝐸)
where 𝑉 is the set of vertices and 𝐸 is the set of edges. Each net/signal in the design is
represented as a vertex and the gate delays represent the weights associated with the edges.
A virtual source node is connected to all the primary inputs and all the primary outputs are
connected to a virtual sink node. The gate delays and all the timing quantities are expressed
in canonical delay format. The general form of canonical delay model is,

𝑑 = 𝑑0 +

𝑛∑︁
𝑖=1

𝑎𝑖∆𝑋𝑖 + 𝑎𝑅∆𝑅

where 𝑑𝑜 is the nominal value, ∆𝑋𝑖 represents the 𝑖𝑡ℎ source of variation, 𝑎𝑖 represents the
corresponding sensitivity and 𝑎𝑅 represents the sensitivity to the random component (∆𝑅)
of parameter variation [1, 14].

i1

i2

oe1

e2

d1r,d1f

d2r,d2f

v1

v2

vo

Fig. 1. Gate model
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Figure 1 shows a gate with two edges 𝑒1 and 𝑒2. Each edge is associated with a rise
delay and fall delay. Both the rise and fall delays, 𝑑𝑖𝑟 and 𝑑𝑖𝑓 , corresponding to edge 𝑒𝑖
are expressed in the canonical form. The arrival time (AT) at any node denotes the latest
time at which the signal becomes stable at that node. A block based SSTA is used to find
AT at each node. The graph is traversed in topological sort order. At each level, the AT
distribution of rise and fall transitions at each node is computed using AT of its predecessors
and the delay of the edges incident at that node. The AT at gate output 𝑜 can be computed
as follows. If the gate is positive unate,

𝐴𝑇𝑜,𝑟(𝑝𝑢) = max{𝐴𝑇𝑣1,𝑟 + 𝑑1𝑟, 𝐴𝑇𝑣2,𝑟 + 𝑑2𝑟}
𝐴𝑇𝑜,𝑓 (𝑝𝑢) = max{𝐴𝑇𝑣1,𝑓 + 𝑑1𝑓 , 𝐴𝑇𝑣2,𝑓 + 𝑑2𝑓} (1)

If the gate is negative unate,

𝐴𝑇𝑜,𝑟(𝑛𝑢) = max{𝐴𝑇𝑣1,𝑓 + 𝑑1𝑟, 𝐴𝑇𝑣2,𝑓 + 𝑑2𝑟}
𝐴𝑇𝑜,𝑓 (𝑛𝑢) = max{𝐴𝑇𝑣1,𝑟 + 𝑑1𝑓 , 𝐴𝑇𝑣2,𝑟 + 𝑑2𝑓} (2)

If the gate is both positive unate and negative unate,

𝐴𝑇𝑜,𝑟 = max{𝐴𝑇𝑜,𝑟(𝑝𝑢), 𝐴𝑇𝑜,𝑟(𝑛𝑢)}
𝐴𝑇𝑜,𝑓 = max{𝐴𝑇𝑜,𝑓 (𝑝𝑢), 𝐴𝑇𝑜,𝑓 (𝑛𝑢)} (3)

The AT computation requires SUM and MAX operation to be performed on a set of
Gaussian random variables expressed in canonical form. The sum of a set of Gaussian
random variables is also a Gaussian random variable. But MAX is a non-linear operator
and Clark’s formula is used to approximate it as a linear operation [6]. The path delay is
obtained as the sum of its edge delays. Both the rise and fall transitions are propagated to
the sink node taking into account the unateness of the gate. The path delay distribution is
obtained as the statistical MAX of rise and fall delays at the sink node.

3 BACKGROUND: METHODS FOR PATH CRITICALITY COMPUTATION

Statistical criticality of a path is defined as the probability that the path in the circuit is
a critical path. Assume that there are 𝑁 paths in the design and let 𝐷𝑖 denote the delay
distribution of the 𝑖𝑡ℎ path. The criticality of this path, 𝑄𝑔,𝑖, can be written as

𝑄𝑔,𝑖 = 𝑃 (𝐷𝑖 > max
1≤𝑗≤𝑁

𝑗 ̸=𝑖

{𝐷𝑗})

= 𝑃 (𝐷𝑖 > 𝐶𝐷𝑔,𝑖) (4)

𝐶𝐷𝑔,𝑖 denotes the global complementary delay distribution of path 𝑖. Note that the circuit
delay 𝐷𝑐 = max{𝐷𝑖, 𝐶𝐷𝑔,𝑖}. If all the variations are assumed to be normally distributed,
then 𝑄𝑔,𝑖 is the tightness probability of path delay (PD) over complementary path delay
(CPD) [1]. The following techniques have been used to compute the path criticality.

3.1 Using Statistical Reversible MAX Operation or Circuit Delay

The reversible MAX (RMAX) operation attempts to reconstruct the CPD using the PD and
circuit delay distribution [12]. The PD and the CPD can then be used to compute the path
criticality. In the circuit delay technique, an alternate measure of criticality is computed
using the circuit delay [10]. A look up table is then used to obtain the conventional criticality
measure. The two techniques are related and suffer from common pitfalls. There are two
dominant sources of error namely,
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Fig. 2. Comparison of maximum error in criticality for various path criticality computation approaches in
ITC’99 benchmark circuits

(1) Error in the arrival times due to correlation errors arising from reconvergent fanouts.
The extended canonical form [19] is used to overcome this error.

(2) Errors due to very high correlation between the paths. This is referred to as the ‘abc
problem’ [9]. The effect of this error is reduced using pruning techniques [9, 10].

Figure 2 contains the maximum error in path criticality using RMAX and the circuit
delay method for various benchmarks. The BnB-SPM algorithm [20] was used to extract ten
paths that had the largest value of the process coverage metric. The BnB-SPM algorithm
uses TQM as the metric for path selection and this will be referred to as BnB-TQM in the
subsequent sections of the paper. The extended canonical model was used to represent the
ATs and pruning techniques were used to mitigate the effect of high correlation within the
path set. However, the maximum error continues to be as high as 0.6. One portion of this
error is due to the large number of statistical MAX operations that are needed when the
number of topological levels and/or output nets is large. The other source of error is because
pruning is only partially effective for path criticality computations.

3.2 Conditional probability method

Chung et al. [4] attempt to improve the accuracy of the path criticality computation
by reducing the effects of topological correlation and using a combination of MAX and
conditional operations. The circuit graph is partitioned into a set of 𝑡+ 1 disjoint groups
where (𝑡+ 1) is the number of nodes in the path whose criticality is to be determined. This
path is contained in group 𝐺0 and groups {𝐺1 · · ·𝐺𝑡} contain the paths that contribute to the
complementary path delay. The authors propose a recursive algorithm that has at each step,
a MAX operation involving a much smaller set of random variables and a transformation
into conditional random variables. Elaborating on this, let 𝑝 = < 𝑣0, · · · , 𝑣𝑡 > be the path
under consideration. The first group 𝐺0 contains the path 𝑝 itself. Group 𝐺1 contains all
the paths that contain nodes < 𝑣1, · · · , 𝑣𝑡 > excluding the path in 𝐺0. In general, group 𝐺𝑘

contains all the paths that have the nodes < 𝑣𝑘, 𝑣𝑘+1, · · · , 𝑣𝑡 >, other than the paths already
present in the groups 𝐺0 to 𝐺𝑘−1. Note that the groups 𝐺0 and 𝐺𝑘 have the sub-path
< 𝑣𝑘, 𝑣𝑘+1, · · · , 𝑣𝑡 > in common and hence their delays are topologically correlated.
The criticality computation is done after removing this topological correlation. If 𝐷𝑖 is

the delay associated with group 𝐺𝑖, i.e. the maximum of the delays of all paths contained in
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group 𝐺𝑖, then the path criticality 𝑄 can be written as

𝑄 = 𝑃 (𝐷0 ≥ max(𝐷1, · · ·𝐷𝑡)) = 𝑃 (

𝑡⋂︁
𝑘=1

𝐷0 ≥ 𝐷𝑘)

=

𝑡∏︁
𝑘=1

𝑃 (𝐴𝑘 ≥ 𝐵𝑘|𝑆𝑘−1) =

𝑡∏︁
𝑘=1

𝑃 (𝐴𝑐,𝑘 ≥ 𝐵𝑐,𝑘) (5)

where 𝐴𝑘 is the delay of the sub-path < 𝑣0, 𝑣1, ...𝑣𝑘 > in group 𝐺0, 𝐵𝑘 is the maximum of
delay of all paths in group 𝐺𝑘 up to node 𝑣𝑘, 𝑆𝑘−1 = 𝐴1 ≥ 𝐵1, 𝐴2 ≥ 𝐵2, ..., 𝐴𝑘−1 ≥ 𝐵𝑘−1.
𝐴𝑐,𝑘 and 𝐵𝑐,𝑘 are conditional random variables given by 𝐴𝑐,𝑘 = 𝐴𝑘|𝑆𝑘−1 and 𝐵𝑐,𝑘 = 𝐵𝑘|𝑆𝑘−1

respectively. This process of partitioning and criticality computation is repeated for each
path for which criticality is required.
In this method, the authors recommend removal of topological correlation due to the

common sub-path to improve the accuracy. However, if the model contains both rise and
fall time, removing the common sub-path gives rise to significant errors. Therefore, in our
implementation, we have propagated both rise and fall times to the sink node. Figure 2
contains the error in the path criticality. It is seen that there is a significant reduction in the
error when conditional probability is used to evaluate criticality, even though we have not
removed topological correlation.

4 BACKGROUND: METHODS USED FOR PATH SELECTION

The two methods used in the literature for path selection are (a) use the 𝐾 longest paths
identified using STA and (b) use a branch-and-bound algorithm along with a test quality
metric (TQM) or joint path metric (JPM) [20] and identify 𝐾 paths that have the largest
value of the metric. All methods, including using STA to find the longest path, work well
when the circuit has a dominant path with large criticality and several uncorrelated paths
with smaller criticality. The differences occur when there are many paths with significant
criticality and not one among them is dominant or when there are several highly correlated
paths that have similar means and variances. It then becomes difficult to fix a value for 𝐾
or even choose a threshold for the metric in the branch and bound algorithm. In order to
get all such paths, we need a 𝐾 value that is much larger than required.

Ckt
Σ𝑄𝑚𝑐

𝐾 = 10 𝐾 = 50
b17 0.6887 0.8710
b22 0.4511 0.7542

Table 1. Sum of Monte Carlo criticality(Σ𝑄𝑚𝑐) for top K paths in the design based on TQM

This is illustrated in the results contained in Table 1 for two benchmarks b17 and b22.
The table contains the results of top 10 and top 50 paths reported by the branch and bound
algorithm with TQM as the metric. The results show that there is a large increase in criticality
coverage when 𝐾 is increased from 10 to 50 for both the circuits. Upon investigation, it is
found that there is a path with criticality of 0.11 in b17 circuit and 0.21 in b22 circuit which
are not reported if we set the value of 𝐾 to ten. In both cases, the 10𝑡ℎ path reported has
zero criticality. For b17, TQM of the 10𝑡ℎ path is 0.48 whereas the TQM of the path with
criticality 0.11 is 0.47 and it is the 34𝑡ℎ path. Similarly for b22, the TQM of the 10𝑡ℎ path
is 0.28 whereas the path with criticality 0.21 has a TQM of 0.25 and it is the 42𝑛𝑑 path.
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0:8 C. P. R. and V. Vasudevan

5 HIERARCHICAL ALGORITHM

In this section, we propose a hierarchical technique to identify all the paths that have
criticality above a specified threshold. As mentioned, by criticality, we mean the global
criticality of the path or the group. Each level of hierarchy consists of partitioning of groups
into disjoint subgroups, K-centre pruning and clustering of similar groups, computation of
group criticalities and removal of groups that have criticality below the threshold. For each
level other than the first level, the partitioning into disjoint subgroups is a generalisation of
the method in [4]. Instead of finding a distinct disjoint partition of the circuit corresponding
to each path, we use the method to recursively divide each group into disjoint subgroups.
We also prove that the group criticality at every level can be computed using criticality of its
parent group and local complementary delay within the parent group. Since the computation
turns out to be efficient, we can directly use the criticality of a set of paths as the metric in
the branch and bound algorithm for path selection at the final level.

5.1 Group partitioning and criticality computation

𝑣0

· · ·

𝑣1 𝑣2

· · ·
𝑣𝑘−1 𝑣𝑘

· · ·
𝑣𝑡−2 𝑣𝑡−1 𝑣𝑡
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...
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1𝐺
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(a) Level 1 partitioning based on output net and level 2 partioning of 𝑚𝑡ℎ group into subgroups
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· · ·
𝑣𝑡−2 𝑣𝑡−1 𝑣𝑡

· · ·
𝑣𝑘′−2 𝑣𝑘′−1 ...

...

𝐺
(3)
0

𝐺
(3)
𝑘

𝐺
(3)
𝑘′−1𝐺

(3)
𝑘′−2

(b) Level 3 partitioning of 𝑘𝑡ℎ group into subgroups

Fig. 3. Hierarchical partitioning of circuit into disjoint subgroups
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A Hierarchical Technique for Statistical Path Selection and Criticality Computation 0:9

The partitioning technique is illustrated in Figure 3. Figure 3(a) shows how the first two
levels are obtained. Level 1 partitioning is done based on the output net. Each of the level 1
groups is subdivided further using the technique in [4]. Within the level 1 group, a path is
first identified (it can be any path, but we use the longest path within the group identified

using STA). This path is the first group at the next level (level 2) and is denoted as 𝐺
(2)
0 in

the figure. The other level 2 groups within the top level group are obtained based on this
path, as described in section III. If the path has 𝑡+ 1 nodes, 𝑡 level 2 groups are formed
within each level 1 group. The level 2 groups are similarly subdivided into level 3 groups as
shown in Figure 3(b). Since all the groups at each level are disjoint, the following property
holds for all groups at any level.
Property 1: The sum of the criticalities of the subgroups (groups at level (𝑖+ 1)) within a
parent group (at level 𝑖), is equal to the criticality of the parent group i.e.,

𝑁𝑠∑︁
𝑘=1

𝑄
(𝑖+1)
𝑔,𝑘 = 𝑄(𝑖)

𝑔 (6)

Here 𝑁𝑠 is the number of disjoint partitions of the 𝑖𝑡ℎ level group. Since criticality of
any group (and hence path) can never exceed the criticality of its parent group, further
subdivision is done only for groups with criticality above a threshold. The criticality is
computed as follows. Let

𝐷(𝑖) : Delay of a group at the 𝑖𝑡ℎ level

𝐶𝐷(𝑖) : Complementary delay of a group at the 𝑖𝑡ℎ level within the parent group

𝑄
(𝑖)
𝑙 : Local criticality (within the parent group) of the group at the 𝑖𝑡ℎ level

Therefore,

𝐷(𝑖) = max(𝐷(𝑖+1), 𝐶𝐷(𝑖+1))

𝐶𝐷(𝑖)
𝑔 = max(𝐶𝐷(𝑖), 𝐶𝐷(𝑖−1), · · · , 𝐶𝐷(1)) = max(𝐶𝐷(𝑖), 𝐶𝐷(𝑖−1)

𝑔 )

𝑄
(𝑖)
𝑙 = P(𝐷(𝑖) > 𝐶𝐷(𝑖))

𝑄(𝑖)
𝑔 = 𝑃 (𝐷(𝑖) > 𝐶𝐷(𝑖)

𝑔 )

Here, 𝐶𝐷
(𝑖)
𝑔 is the global complementary delay and 𝑄

(𝑖)
𝑔 is the global criticality of the group

at the 𝑖𝑡ℎ level. Based on this, the criticality of a group at the 𝑖𝑡ℎ level of hierarchy can be
written as

𝑄(𝑖)
𝑔 = 𝑃 (𝐷(𝑖) > 𝐶𝐷(𝑖)

𝑔 ) = 𝑃 (𝐷(𝑖) > 𝐶𝐷(𝑖)|𝐷(𝑖−1) > 𝐶𝐷(𝑖−1)
𝑔 )𝑄(𝑖−1)

𝑔 (7)

Proof. Let {𝐺(𝑖)
1 , · · · , 𝐺(𝑖)

𝑁𝑠
} be a disjoint partition of a group at level (𝑖− 1), i.e. no path

is a member of more than one group and the set contains all paths of the parent group. 𝑋

be the set of random variables {𝐷(𝑖)
1 , 𝐷

(𝑖)
2 , · · · , 𝐷(𝑖)

𝑁𝑠
, 𝐶𝐷

(𝑖−1)
𝑔 }. Here 𝐷

(𝑖)
𝑘 is the delay of the

group 𝐺
(𝑖)
𝑘 . Let 𝑅

(𝑖)
𝑘 denote the set where 𝐷

(𝑖)
𝑘 has the largest value among all the entries in

𝑋. Therefore, the global criticality of the group 𝐺
(𝑖)
𝑘 is given by

𝑄
(𝑖)
𝑔,𝑘 = 𝑃 (𝑅

(𝑖)
𝑘 ) (8)
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0:10 C. P. R. and V. Vasudevan

If 𝑅(𝑖−1) is the set where one of 𝐷
(𝑖)
1 to 𝐷

(𝑖)
𝑁𝑠

has the highest value among the entries in 𝑋,
the global criticality of the parent group can be written as,

𝑄(𝑖−1)
𝑔 = 𝑃 (𝑅(𝑖−1)) (9)

Now, if 𝑅
′(𝑖)
𝑘 is the set for which 𝐷

(𝑖)
𝑘 is larger than the other delays 𝐷

(𝑖)
𝑗 , the local criticality

of the group 𝐺𝑘 within the parent group is given by

𝑃 (𝑅
′(𝑖)
𝑘 ) = 𝑃

(︁
𝐷

(𝑖)
𝑘 > max

1≤𝑗≤𝑁𝑠
𝑗 ̸=𝑘

{𝐷(𝑖)
𝑗 }

)︁
= 𝑃 (𝐷

(𝑖)
𝑘 > 𝐶𝐷

(𝑖)
𝑘 )

Clearly,

𝑅
(𝑖)
𝑘 = 𝑅

′(𝑖)
𝑘 ∩𝑅(𝑖−1) (10)

Therefore,

𝑄
(𝑖)
𝑔,𝑘 = 𝑃 (𝑅

′(𝑖)
𝑘 ∩𝑅(𝑖−1))

= 𝑃 (𝑅
′(𝑖)
𝑘 |𝑅(𝑖−1))× 𝑃 (𝑅(𝑖−1))

= 𝑃 (𝐷
(𝑖)
𝑘 > 𝐶𝐷

(𝑖)
𝑘 |𝐷(𝑖−1) > 𝐶𝐷(𝑖−1)

𝑔 )𝑄(𝑖−1)
𝑔

�

An alternative version of this result can be written as follows.

𝑄(𝑖)
𝑔 = 𝑃

(︀ 𝑖⋂︁
𝑘=1

𝐷(𝑘) > 𝐶𝐷(𝑘)) (11)

Proof. By definition,

𝑄(𝑖)
𝑔 = 𝑃 (𝐷(𝑖) > max(𝐶𝐷(𝑖), 𝐶𝐷(𝑖−1), · · ·𝐶𝐷(1)))

= 𝑃 (𝐷(𝑖) > 𝐶𝐷(𝑖) & 𝐷(𝑖) > max(𝐶𝐷(𝑖−1), · · ·𝐶𝐷(1)))

Using the equivalent of equation (10), we get

𝑄(𝑖)
𝑔 = 𝑃 (𝐷(𝑖) > 𝐶𝐷(𝑖) & max(𝐷(𝑖), 𝐶𝐷(𝑖)) > max(𝐶𝐷(𝑖−1), · · ·𝐶𝐷(1)))

= 𝑃 (𝐷(𝑖) > 𝐶𝐷(𝑖) & 𝐷(𝑖−1) > max(𝐶𝐷(𝑖−1), · · ·𝐶𝐷(1)))

= 𝑃 (𝐷(𝑖) > 𝐶𝐷(𝑖) & 𝐷(𝑖−1) > 𝐶𝐷(𝑖−1) & max(𝐷(𝑖−1), 𝐶𝐷(𝑖−1)) > max(𝐶𝐷(𝑖−2), · · ·𝐶𝐷(1)))

This can be continued until we get

𝑄(𝑖)
𝑔 = 𝑃 (𝐷(𝑖) > 𝐶𝐷(𝑖) & · · · & 𝐷(1) > 𝐶𝐷(1))

= 𝑃
(︀ 𝑖⋂︁
𝑘=1

𝐷(𝑘) > 𝐶𝐷(𝑘))

�

The joint probability can be written in terms of conditional probability as follows

𝑄(𝑖)
𝑔 = 𝑃

(︀ 𝑖⋂︁
𝑘=1

𝐷(𝑘) > 𝐶𝐷(𝑘))

=

𝑖∏︁
𝑘=1

𝑃
(︀
𝐷(𝑘) > 𝐶𝐷(𝑘)|𝑆𝑘−1

)︀
(12)
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A Hierarchical Technique for Statistical Path Selection and Criticality Computation 0:11

where,

𝑆𝑘−1 = 𝐷(1) > 𝐶𝐷(1), 𝐷(2) > 𝐶𝐷(2) · · ·𝐷(𝑘−1) > 𝐶𝐷(𝑘−1)

Both formulations, equations (7) and (12), require the evaluation of conditional random
variables which can be done using the following result proved in [4].
Let 𝑋,𝑌, 𝑇 and 𝑈 be normally distributed random variables with mean values 𝜇1, 𝜇2, 𝜇3 and
𝜇4 respectively and with standard deviations 𝜎1, 𝜎2, 𝜎3 and 𝜎4 respectively. Let cov(X,Y)=𝜌,
cov(X,T) = 𝜌1, cov(Y,T) = 𝜌2, cov(X,U) = 𝜌3, cov(Y,U) = 𝜌4 and cov(U,T) = 𝜌5. Then

𝐸[𝑇 |𝑋 > 𝑌 ] = 𝜇3 + 𝛽(𝜌1 − 𝜌2)/𝑎

𝑐𝑜𝑣(𝑇,𝑈 |𝑋 > 𝑌 ) = 𝜌5 − (𝛽2 + 𝛼𝛽)(𝜌1 − 𝜌2)(𝜌3 − 𝜌4)/𝑎
2

where,

𝑎 =
√︁
𝜎2
1 + 𝜎2

2 − 2𝜌

𝛼 = (𝜇1 − 𝜇2)/𝑎

𝛽 =
𝜑(𝛼)

Φ(𝛼)

If the formulation in (7) is used, we explicitly evaluate all the group criticalities at various
levels of hierarchy. This involves one more MAX operation at every level of the hierarchy

to find 𝐶𝐷
(𝑖−1)
𝑔 and the evaluation of the tightness probability using conditional random

variables. The recursive method proposed in [4] can be used to compute the criticality
using (12). While the recursive algorithm is supposed to have a better accuracy than using
additional MAX operators, it is computationally not very efficient if the extended canonical
form is used. An alternative could be to find 𝐶𝐷𝑔 up to the 𝑘𝑡ℎ level and then use the
recursive formula as follows.

𝑄(𝑖)
𝑔 =

⎛⎝ 𝑖∏︁
𝑗=𝑘+1

𝑃
(︀
𝐷(𝑗) > 𝐶𝐷(𝑗)|𝑆𝑗−1

)︀⎞⎠×𝑄(𝑘)
𝑔 (13)

where,

𝑆𝑗−1 = 𝐷(𝑘) > 𝐶𝐷(𝑘)
𝑔 , 𝐷(𝑘+1) > 𝐶𝐷(𝑘+1) · · ·𝐷(𝑗−1) > 𝐶𝐷(𝑗−1)

5.2 Path selection and path criticality computation

As mentioned, the global criticality of the path is used as the metric for path selection. For
each currently traversed sub-path, the path criticality metric (𝑃𝐶𝑀) is computed as follows.
Let Π denote the set of paths having the sub-path in common. Assume that 𝐷Π is the delay
of this path set and 𝐶𝐷Π, its complementary delay within the parent group. Using equation
(7), it can be written as

𝑃𝐶𝑀Π = 𝑃 (𝐷Π > 𝐶𝐷Π|𝐷(𝑁−1) > 𝐶𝐷(𝑁−1)
𝑔 )×𝑄(𝑁−1)

𝑔 (14)

Here, 𝑁 stands for the number of levels of the hierarchy. Note that 𝑃𝐶𝑀Π is the global

criticality of the path set Π. In equation (14), 𝑄
(𝑁−1)
𝑔 , 𝐷(𝑁−1) and 𝐶𝐷

(𝑁−1)
𝑔 are known

and are the same for all paths within the group. Therefore, the evaluation of the metric
requires the evaluation of 𝐶𝐷Π, which is the local complementary delay within the parent
group. This is done as follows.
Assume that the path selection is done in group 𝐺𝑘 at level (𝑁 − 1). As explained

previously, this effectively means that nodes 𝑣𝑘 to 𝑣𝑡 will be common for all the paths
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𝑣0 𝑣𝑘 𝑣𝑘+1

· · ·
𝑣𝑡

𝑣1′

· · ·
𝑣𝑖′

· · ·
𝑣𝑘′−2 𝑣𝑘′−1

𝑐𝑑1

𝑐𝑑2

Fig. 4. An example to illustrate evaluation of the local complementary delay of a subpath within the
parent group 𝐺𝑘

in group 𝐺𝑘. We start a backward traversal from node 𝑣𝑘 (excluding 𝑣𝑘−1 which is not
a member of group 𝐺𝑘) and extend the sub-path. Corresponding to each sub-path, the
following example illustrates how 𝐶𝐷Π is computed. Consider the set of paths (Π) passing
through the sub-path < 𝑣𝑘′−2, 𝑣𝑘′−1, 𝑣𝑘, 𝑣𝑘+1, · · · , 𝑣𝑡 > (marked in red) in Figure 4. The
delay and local complementary delay of the path set is given by,

𝐷Π = 𝐴𝑇𝑣𝑘′−2
+ 𝑑(𝑣𝑘′−2→𝑣𝑡)

𝐶𝐷Π = max(𝑐𝑑1, 𝑐𝑑2) + 𝑑(𝑣𝑘→𝑣𝑡)

where,

𝑐𝑑1 = max
𝑝∈𝑝𝑟𝑒𝑑(𝑣𝑘)
𝑝 ̸=𝑣𝑘′−1

𝑝 𝑖𝑛 𝐺𝑟𝑜𝑢𝑝 𝐺𝑘

{𝐴𝑇𝑝 + 𝑑(𝑝, 𝑣𝑘)}

𝑐𝑑2 = max
𝑝∈𝑝𝑟𝑒𝑑(𝑣𝑘′−1)

𝑝 ̸=𝑣𝑘′−2

{𝐴𝑇𝑝 + 𝑑(𝑝→𝑣𝑘)}

Once the delay and local complementary delay is obtained, 𝑃𝐶𝑀Π is computed using
Eqn.(14). We use this metric in a branch-and-bound algorithm as follows. 𝑃𝐶𝑀Π is the
sum of criticality of all the paths having this sub-path in common. Therefore, if 𝑃𝐶𝑀Π

is less than a lower bound, the fan-in cone of that node is pruned. This is possible since
we are using global criticality of the paths as the metric. On the other hand, if the metric
exceeds the bound, then there is possibility of existence of critical paths and we continue
the backward traversal until all possible sub-paths are visited and pruned or source node is
reached.

𝑃𝐶𝑀Π is a good metric as it is easy to evaluate and is directly reflective of the global
criticality of the path set. The additional advantages we have in using this algorithm are (a)
by the time we reach the source node, we get both the path and its criticality and (b) the
branch and bound algorithm using TQM requires an initial set of paths for which we need
to go right up to the source node. This is not a requirement in our case.
The hierarchical method is efficient because we prune at multiple levels. If the group

criticality is itself low, no path search is required within this group. Within a group, the
path search can be terminated at any point without first having to get an initial set of paths
with the largest value of the metric. Theoretically, the algorithm is guaranteed to give all
paths that have global criticality above the lower bound. Practically, as will be seen in the
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A Hierarchical Technique for Statistical Path Selection and Criticality Computation 0:13

results, due to errors in criticality computation, a few paths that have criticality close to
this bound are not detected.

6 IMPLEMENTATION

There are two aspects to the implementation namely, (a) partitioning into groups, re-
moval of non-dominant groups using pruning techniques, clustering and computation of
group criticalities and (b) path selection and criticality computation. Algorithm 1 has the
steps involved in group partitioning. It is explained in more detail in the following subsections.

6.1 Group partitioning

104 79 41 5 24 36 34 38

23

49 105

52

Fig. 5. Level (1) cluster in b03 circuit where the same gate is driving multiple output nets

6.1.1 Clustering of similar groups. Very often circuits have a large number of groups/paths
that differ by one or two edges. As a result, their means and standard deviations are virtually
identical and they are highly correlated. An example from the benchmark b03 is shown
in Figure 5. Each of the three paths belong to a separate group since the output nodes
are different. However, their means and standard deviations are virtually identical and the
(topological) correlation between the groups is close to one.

The question in these cases is what is the criticality of the three groups. If we follow [17],
if the criticality of a set of 𝑛 groups with identical canonicals is 𝑐, the criticality of the
individual groups is given by 𝑐

𝑛 . However, it is not clear that this is correct in all cases. If
the groups are uncorrelated, the division by 𝑛 is logical, since each of these will be critical in
one in 𝑛

𝑐 dies. Moreover, the actual paths in each group will be entirely different. However,
if the correlation between the groups is close to one, all groups will either be critical or not
critical in one in 1

𝑐 dies. In this case, it does not make sense to divide the criticality between
groups. Rather, it seems more logical to regard the group as a whole as a cluster and choose
a representative group for further sub-division. Since the groups have a high topological
correlation, the final paths obtained from each group will differ in just one or two edges
(depending on the correlation). Therefore, the paths obtained from the representative group
are essentially reflective of the entire cluster and can be used for optimization/testing.
This idea of clustering and using a representative path has also been used to identify

aging related changes in critical paths by [7]. They use singular value decomposition to find
representative paths.
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0:14 C. P. R. and V. Vasudevan

In our algorithm, at every level of partitioning, a check is performed to see if there are
any similar groups that can be put in a cluster. Two groups are considered to be similar
if their means and standard deviations are identical to two decimal places (approximately
the error in mean and standard deviation of the arrival times) and the correlation between
them is high and exceeds a certain threshold. We have assumed that paths in a cluster can
have at most one node that is different and the threshold is fixed based on the independent
random component of the variation.

ALGORITHM 1: Recursive partitioning of groups

Input :𝐺
(𝑖)
𝑘 : Group at level 𝑖 containing paths with nodes < 𝑣𝑘, .., 𝑣𝑡 > in common

𝐿
(𝑖)
𝑘 : list of indices indicating hierarchy for group 𝐺

(𝑖)
𝑘 (last index is 𝑘)

𝐿𝑐 : list of critical paths

1: Select a path 𝑝 in group 𝐺
(𝑖)
𝑘 to get 𝐺

(𝑖+1)
𝑘,0

2: Form groups at level (𝑖+ 1) within 𝐺
(𝑖)
𝑘

3: Prune low criticality groups and form clusters of similar groups
4: 𝑁 ′

𝑔 ← Number of groups after removing non-dominant and similar groups

5: 𝑄0 ← criticality of 𝐺
(𝑖+1)
𝑘,0 using Eqn.(7)

6: if 𝑄0 ≥ 𝛽 then
7: Add path 𝑝 to 𝐿𝑐

8: end if
9: for j in range(1,𝑁 ′

𝑔) do

10: 𝑄𝑗 ← criticality of 𝐺
(𝑖+1)
𝑘,𝑗 using Eqn.(7)

11: if 𝑄𝑗 ≥ 𝛽 then

12: 𝐿
(𝑖+1)
𝑗 = [𝐿

(𝑖)
𝑘 , j]

13: if 𝑄𝑗 ≥ 𝛼 then

14: Recursive partitioning with inputs (𝐺
(𝑖+1)
𝑘,𝑗 , 𝐿

(𝑖+1)
𝑗 , 𝐿𝑐)

15: else
16: Path selection with inputs (𝐺

(𝑖+1)
𝑘,𝑗 , 𝐿

(𝑖+1)
𝑗 , 𝐿𝑐) [Algo. 2]

17: end if
18: end if
19: end for

6.1.2 Recursive partitioning and criticality computation. Partitioning and path selection is
controlled by two thresholds 𝛼 and 𝛽. Groups are recursively partitioned as long as their
criticality is greater than 𝛼. Once the criticality drops below 𝛼, we do a path selection within
the group based on branch-and-bound to identify all paths that have criticality above the
threshold 𝛽.
Level 1 groups are based on the output net and the group criticality is computed using

the conventional technique after K-center pruning and clustering of similar groups. This
is reasonably accurate, since the number of MAX operations is limited by the number of
dominant output nets, which is typically not very large. All groups that have a criticality
below 𝛽 are removed. A recursive algorithm is used for subsequent partitioning into disjoint
groups as detailed in Algorithm 1. We start with a path 𝑝 in the current group and partition
the paths into 𝑁𝑔 disjoint groups where 𝑁𝑔 is the length of the chosen path 𝑝 after removing
the common sub-path < 𝑣𝑘, .., 𝑣𝑡 >. Once again, non-dominant groups are removed using
K-center pruning and similar groups are put in a cluster. The global criticality of all the
remaining groups (𝛾𝑁𝑔) is computed using Eqn. (7) and groups for which the criticality is
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below 𝛽 are removed. The group 𝐺0 contains the path 𝑝 alone and if its criticality exceeds
the threshold (𝛽), the path is added to the list of critical paths. For all the other groups
with criticality above 𝛼, we do a recursive partitioning. Once the group criticality falls below
𝛼, the next stage is path selection within the group.

ALGORITHM 2: Path selection using Branch-and-Bound

Input :𝐺𝑘, 𝐿𝑘, 𝐿𝑐

1: Sub-path, 𝜋 ←< 𝑣𝑘, .., 𝑣𝑡 >
2: Queue, 𝑄← {𝜋}
3: while 𝑙𝑒𝑛(𝑄) > 0 do
4: 𝜋𝑐𝑢𝑟𝑟 ← 𝑄.𝑝𝑜𝑝()
5: for each 𝑣 ∈ 𝑝𝑟𝑒𝑑(𝜋𝑐𝑢𝑟𝑟[0]) in 𝐺𝑘 do
6: 𝜋 ← {𝑣, 𝜋𝑐𝑢𝑟𝑟}
7: Compute 𝑃𝐶𝑀𝜋 using Eqn.(14)
8: if 𝑃𝐶𝑀𝜋 ≥ 𝛽 then
9: if 𝑣 == 𝑠𝑜𝑢𝑟𝑐𝑒 then

10: Add 𝜋 to 𝐿𝑐

11: else
12: Push 𝜋 to 𝑄
13: end if
14: end if
15: end for
16: end while
17: return

6.2 Path selection

The critical paths contained in the group are identified using branch-and-bound (BnB)
technique with 𝑃𝐶𝑀 as a metric. Algorithm 2 describes the steps. We maintain a queue
where we store all the candidate partial paths with metric above the lower bound 𝛽. The
paths in current group 𝐺𝑘 have nodes 𝑣𝑘 to 𝑣𝑡 in common. Therefore, we start the path
selection with the partial path < 𝑣𝑘, .., 𝑣𝑡 >. At each point, we pop a partial path from the
queue and extend it using the predecessor nodes. We compute the metric for the newly
found partial path using Eqn.(14). If the metric exceeds 𝛽, the new sub-path is pushed back
into the queue. Otherwise, the currently traversed path is not useful and the fan-in cone of
the node is pruned. Once the source node is reached, we have a complete path and its global
criticality. It is added to the list of critical paths if the criticality exceeds 𝛽. This process is
continued until the queue is empty.

6.3 Complexity

In this analysis, we assume that a block-based SSTA is performed and all the arrival times are
known. This is a pre-requisite for all methods for path selection proposed in the literature.

The overall run time of our algorithm depends on the time required for partitioning and
path selection within the group. The presence of dominant groups in the circuit results in a
larger number of levels in the hierarchy and the time required for partitioning dominates
the total run time. On the other hand, if there are many groups with small criticalities, but
not one of them is dominant, then the time required for path selection will be more than
the time required for partitioning. Moreover, both partitioning and path selection are based
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Fig. 6. Scatter plot of run time as a function of 𝑁𝑜𝑢𝑡+𝑁𝑜𝑢𝑡𝑁𝑙+𝑁𝑜𝑢𝑡𝑁
2
𝑙 for various benchmark circuits

for two different cases of threshold

on the actual criticalities and the time taken is therefore heavily dependent on the circuit
topology. Unlike [5, 20], we only find paths that have global criticality above a threshold.
Therefore, the number of paths found is not dependent on the circuit size and it is entirely
possible that a large circuit will have only one or two paths above the threshold.
In our analysis we obtain the time complexity of the algorithms in terms of the number

of criticality computations and statistical MAX operations. In Algorithm 1, we first use
K-center pruning [9] to remove low criticality groups and form clusters of similar groups. It
is an 𝒪(𝐾𝑁𝑔) operation where 𝑁𝑔 is the number of groups and 𝐾 is the number of clusters.
The computation of group criticality can be done in linear time [9]. The number of groups at
level (1) depends on the number of output nets (𝑁𝑜𝑢𝑡). Let 𝛾 denote the fraction of unpruned
groups at any level. In the worst case, only 𝛾𝑁𝑜𝑢𝑡 groups need to be further partitioned.
The number of groups at levels above one is determined by the number of topological levels
(𝑁𝑙) in the circuit. The total number of groups at level two can be at most 𝛾𝑁𝑜𝑢𝑡𝑁𝑙 and the
total number of groups at level three can be at most 𝛾2𝑁𝑜𝑢𝑡𝑁

2
𝑙 and so on. As seen in Table

2, 𝛾 is typically small. As the number of hierarchical levels in most cases is three or four (as
seen in Fig. 7), the complexity of the partitioning process is 𝒪(𝑁𝑜𝑢𝑡 +𝑁𝑜𝑢𝑡𝑁𝑙 +𝑁𝑜𝑢𝑡𝑁

2
𝑙 ).

The path criticality metric computation in Algorithm 2 requires 𝒪(𝑁𝑙) time where 𝑁𝑙 is
the number of topological levels in the circuit. If there are 𝑁𝑜𝑢𝑡𝑁𝑙 groups that invoke path
selection, then the complexity of path selection is of the order of 𝑁𝑜𝑢𝑡𝑁

2
𝑙 . Thus the overall

time complexity of the hierarchical partitioning algorithm is 𝒪(𝑁𝑜𝑢𝑡 +𝑁𝑜𝑢𝑡𝑁𝑙 +𝑁𝑜𝑢𝑡𝑁
2
𝑙 ).

Figure 6 shows the run-time time for various benchmarks for two different thresholds as a
function of 𝑁𝑜𝑢𝑡 +𝑁𝑜𝑢𝑡𝑁𝑙 +𝑁𝑜𝑢𝑡𝑁

2
𝑙 . It is a (natural)log-log plot and the best fit line has

slope approximately equal to one (varies between 1 and 1.3 depending on the data set).
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Ckt
Level 1 Level i(𝑖 > 1)

𝑁𝑜𝑢𝑡 𝑁𝑔,𝑘 𝛾 𝑁𝑙 𝑀𝑎𝑥{𝑁𝑔,𝑘} 𝑀𝑎𝑥{𝛾}
b01 6 2 0.33 9 3 0.33
b02 5 4 0.80 7 2 0.29
b03 31 10 0.32 10 3 0.30
b04 67 1 0.01 19 5 0.26
b05 60 4 0.07 28 4 0.14
b06 10 6 0.60 8 2 0.25
b07 50 1 0.02 17 1 0.06
b08 22 3 0.14 14 5 0.36
b09 29 8 0.28 10 4 0.40
b10 18 2 0.11 14 3 0.21
b11 32 1 0.03 21 2 0.10
b12 122 6 0.05 19 4 0.21
b13 54 6 0.11 13 2 0.15
b14 246 2 0.01 75 5 0.07
b15 450 4 0.01 64 14 0.22
b17 1445 3 0.00 81 6 0.07
b18 3294 34 0.01 93 15 0.16
b19 6570 39 0.01 98 16 0.16
b20 513 11 0.02 69 3 0.04
b21 513 2 0.00 69 4 0.06
b22 726 8 0.01 95 8 0.08

𝑁𝑜𝑢𝑡 : Number of output nets, 𝑁𝑙 : Number of topological levels

𝑁𝑔,𝑘 : Number of dominant groups after pruning

𝛾 : Ratio of number of unpruned groups to 𝑁𝑜𝑢𝑡(level 1) or 𝑁𝑙 (levels > 1)

Table 2. Fraction of unpruned groups in ITC’99 benchmark circuits with 𝛼=0.08 and 𝛽=0.05

7 RESULTS

We have implemented the proposed algorithm in C++ and the experiments are performed for
ISCAS’85, ISCAS’89 and ITC’99 benchmark circuits. The benchmark circuits are synthesized
using 90 nm UMC library. The variations in three process parameters, 𝑉𝑇 , 𝐿 and 𝑊 are
taken into account and each parameter variation is assumed to have a 𝜎

𝜇 of 10%. To model the

spatial correlation between parameter variations, three level quad-tree model is used and the
parameter variations are equally distributed among the three layers. The random variation is
assumed to be 5% of the nominal value. Both cluster MBT [13] and pruning techniques [9, 10]
were used to improve the accuracy of the computation. The experiments were performed
for two different values of criticality threshold (𝛽 = 0.05 and 0.01) and the path criticality
results are verified by comparing against that of Monte Carlo simulation considering 10,000
samples. Experiments were carried out for all benchmarks in the ISCAS’85, ISCAS’89 and
ITC’99 sets. Table 3 contains the number of nodes and edges in the directed acyclic graph
of each of these benchmark circuits.
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ISCAS’85 ISCAS’89 ITC’99
Ckt | 𝑁 | ( | 𝐸 | ) Ckt | 𝑁 | ( | 𝐸 | ) Ckt | 𝑁 | ( | 𝐸 | ) Ckt | 𝑁 | ( | 𝐸 | )
c17 14 ( 25 ) s953 270 ( 690 ) b01 36 ( 82 ) b11 277 ( 770 )
c432 138 ( 347 ) s1196 302 ( 818 ) b02 19 ( 42 ) b12 732 ( 1860 )
c499 208 ( 461 ) s1238 317 ( 846 ) b03 106 ( 270 ) b13 219 ( 526 )
c880 226 ( 578 ) s1423 388 ( 889 ) b04 329 ( 863 ) b14 2786 ( 7981 )
c1355 223 ( 494 ) s1488 313 ( 908 ) b05 360 ( 907 ) b15 4060 ( 12032 )
c1908 220 ( 522 ) s1494 312 ( 906 ) b06 38 ( 93 ) b17 12959 ( 38816 )
c2670 602 ( 1374 ) s5378 837 ( 2006 ) b07 225 ( 625 ) b18 37926 ( 109711 )
c3540 541 ( 1480 ) s9234 630 ( 1558 ) b08 105 ( 275 ) b19 75258 ( 219683 )
c5315 876 ( 2316 ) s13207 1849 ( 4438 ) b09 108 ( 248 ) b20 5785 ( 16751 )
c6288 1538 ( 3948 ) s15850 2300 ( 5441 ) b10 131 ( 332 ) b21 5967 ( 17187 )
c7552 976 ( 2416 ) s35932 5839 ( 12786 ) - - b22 8682 ( 24952 )

- - s38417 5517 ( 14589 ) - - - -
- - s38584 6799 ( 17195 ) - - - -

Table 3. Number of nodes ( | 𝑁 | ) and edges ( | 𝐸 | ) in the directed acyclic graph of various ISCAS’85,
ISCAS’89 and ITC’99 benchmark circuits

5

10

15

Fig. 7. Maximum number of levels in hierarchical partitioning for ISCAS’85, ISCAS’89 and ITC’99
benchmark circuits for 𝛼 = 0.08

2
4
6
8
10

Fig. 8. Maximum number of groups (over all levels) after pruning in hierarchical partitioning for most of
the benchmarks circuits in ISCAS’85, ISCAS’89 and ITC’99 sets for 𝛽 = 0.05

Figure 7 shows the maximum number of levels in hierarchical partitioning for each
benchmark. The thresholds 𝛽 and 𝛼 were chosen to be 0.05 and 0.08 respectively. The results
indicate that the maximum number of levels is typically 3 or 4 and very rarely exceeds 5.
The maximum number of levels depends on the threshold 𝛼. When 𝛽 and 𝛼 were reduced to
0.01 and 0.05 respectively, the maximum number of levels did not increase by more than 1
or 2 in all the benchmark circuits.

Figure 8 contains the maximum number of groups (over all levels) remaining after pruning
for most of the benchmark circuits. As can be seen from the figure, the typical number of
groups ranges between two and five, indicating the presence of relatively high criticality
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Ckt
𝛽 = 0.05 𝛽 = 0.02 𝛽 = 0.01

Max{𝑁𝑑,𝑔} Max{𝑁𝑐,𝑔} Max{𝑁𝑑,𝑔} Max{𝑁𝑐,𝑔} Max{𝑁𝑑,𝑔} Max{𝑁𝑐,𝑔}
c499 18 14 18 18 18 18
c1355 18 16 24 21 27 24
c6288 17 1 20 1 20 1
s5378 33 6 37 13 40 16
s35932 80 8 97 40 109 54
s38417 47 40 53 52 53 52
s38584 18 3 29 18 35 33
b15 14 1 17 7 23 16
b18 34 4 48 4 57 6
b19 39 15 39 25 39 25
b20 11 5 17 14 18 6

Table 4. Maximum number of dominant groups and critical groups in hierarchical partitioning. 𝑁𝑑,𝑔 :
Number of dominant groups after pruning, 𝑁𝑐,𝑔 : Number of groups with criticality greater than 𝛽

Ckt
𝛽 = 0.05 𝛽 = 0.02 𝛽 = 0.01

#Clusters
#Groups

#Clusters
#Groups

#Clusters
#Groups

in clusters in clusters in clusters
c499 2 4 2 4 2 4
c5315 2 4 2 4 3 6
s5378 7 21 8 23 8 23
s35932 40 140 45 157 50 170
s38417 18 50 24 68 24 68
s38584 5 10 11 30 14 43
b03 2 5 2 5 2 5
b06 1 2 1 2 1 2
b09 1 4 1 4 1 4
b18 2 32 2 32 2 32
b19 6 20 6 20 6 20

Table 5. Number of clusters at level (1) in various benchmark circuits

paths. The benchmarks that have a higher number of groups after pruning are listed in Table
4. The table contains the maximum number of groups after pruning as well as groups that
have criticality above the threshold 𝛽, for three different values of 𝛽. As expected, smaller
values of 𝛽 result in a larger number of groups for which recursive partitioning and path
selection needs to be done.
Table 5 shows the number of clusters and the total number of groups within clusters for

some of the benchmark circuits. In each of these cases, only a representative group from
the cluster is selected for further partitioning. The number of clusters increases when the
threshold 𝛽 is lowered in some cases like c5315, s5378, s35932, s38417 and s38584. This is
because the total number of groups remaining after pruning increases when the threshold is
lowered. Therefore, larger number of similar groups are identified. As seen from the table, in
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Fig. 9. Number of paths reported by the hierarchical method for 𝛽 = 0.05 and 0.01
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Fig. 10. Comparison of maximum error in path criticality for various approaches : Hierarchical with 𝛽 =
0.05, Hierarchical with 𝛽 = 0.01 and BnB-TQM (top 20) + conditional probability

some cases, the number of groups in clusters is quite large. The idea of using a representative
group for each cluster also contributes to improving the run time.
Figure 9 contains the number of paths reported by the hierarchical method for two

different values of criticality threshold. The figure contains the results for those benchmarks
that do not have any dominant paths. For circuits with dominant paths, the number of
paths increases by 1 or 2 only when the criticality threshold is reduced. But when there are
many nearly critical paths, the number of paths reported can be high for smaller values of
threshold.

Figure 10 contains a comparison of maximum error in path criticality obtained using (a)
BnB-TQM (top 20) for path selection and conditional probability for criticality computation
and (b) hierarchical method with criticality thresholds of 0.05 and 0.01. The experimental
results indicate that the proposed algorithm is able to give accuracy comparable to the
conditional probability approach for most cases and better accuracy for benchmark circuits

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0. Publication date:

0000.



A Hierarchical Technique for Statistical Path Selection and Criticality Computation 0:21

𝑆𝑀𝐶 : Set of paths with Monte Carlo Criticality greater than 𝛽

𝑆ℎ𝑖𝑒𝑟 : Set of paths reported by hierarchical method with Monte Carlo Criticality

greater than 𝛽

|𝑆| : Number of paths in set 𝑆

𝑃 (𝑆) : Sum of Monte Carlo criticalities of the paths in set 𝑆
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Case 1 : 𝛽 = 0.05
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Case 2 : 𝛽 = 0.01
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Fig. 11. Comparison of the set of paths reported by hierarchical approach against the set of paths with
Monte Carlo criticality greater than 𝛽 (a) Number of paths with Monte Carlo criticality greater than 𝛽,
but not reported by hierarchical method and (b) The associated Monte Carlo criticality for the paths in
the difference set as a stacked plot

like b20, b21 and b22. This error is zero for 𝛽 = 0.05 for some of the benchmark circuits like
c499, b18 and b19, since they do not have any paths above the criticality threshold.
We then compared the paths obtained using the hierarchical and Monte Carlo methods.

For the Monte Carlo analysis top 𝐾 paths were enumerated using STA so that the sum of
Monte Carlo path criticalities exceeds (1-𝛽) where 𝛽 is the criticality threshold in hierarchical
partitioning. The maximum limit on 𝐾 was set to be 1000. The aim is to see if the hierarchical
method reports all paths above the criticality threshold. We tried using two thresholds; 𝛽 =
0.05 and 0.01. The figure shows that the hierarchical method captures most paths in all the
benchmark circuits. Benchmarks that contained paths that the hierarchical method was not
able to identify are shown in Figure 11(a). Figure 11(b) shows the criticality of these paths
obtained using Monte Carlo analysis. It is a stacked plot containing the criticality of each of
the unidentified paths. It indicates that in some of the cases, there are paths with criticality
close to 0.1, that are not identified by the hierarchical analysis. However, if the threshold is
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𝑆ℎ𝑖𝑒𝑟 : Set of paths reported by hierarchical method

𝑆𝑐𝑜𝑛𝑑 : Set of paths reported by BnB-TQM (top 20) +conditional probability method

|𝑆| : Number of paths in set 𝑆

𝑃 (𝑆) : Sum of Monte Carlo criticalities of the paths in set 𝑆
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Fig. 12. Comparison of the set of paths reported by hierarchical(𝛽=0.05) and BnB-TQM (top 20) +
conditional probability approaches for ISCAS’85, ISCAS’89 and ITC’99 benchmark circuits (a) Difference
in the number of paths reported by both approaches and (b) The associated Monte Carlo criticality for
the paths in the difference set as a stacked plot

reduced to 0.01, most of these paths are identified. All these paths have a criticality above
the threshold, but within the error band. When the threshold is reduced, these paths are
identified, but a few other paths close to, but above the lower value of the threshold are not.
Overall, we have found that we need to keep the threshold around 0.02-0.04 below the value
that we actually need, to make sure we get all the paths.

Figure 12 contains the set of paths and criticality of each of the paths that are (i) reported
by the hierarchical method, but not contained in the top 20 paths of the BnB-TQM method
and (ii) the paths in the BnB-TQM method that are not reported by the hierarchical
method. We see from the figure that most paths not reported by the hierarchical method
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Fig. 13. Speed up obtained in using hierarchical method against BnB-TQM + conditional probability
method for various benchmark circuits. The results for 𝛽 = 0.05 are compared against the top 20 paths
using BnB-TQM and the results for 𝛽 = 0.01 are compared against BnB-TQM with top 100 paths

have a criticality below the threshold. There are a few paths above the threshold of 0.05, not
reported by the hierarchical method (these paths are also contained in the comparison with
Monte-Carlo analysis). This is primarily due to the error in criticality computation. As seen
from Figure 11, these paths are reported once the threshold is decreased. The BnB-TQM
+ conditional method fails to report paths with criticality greater than 0.1 in circuits like
s15850, b12, b17, b20, b21 and b22. It turns out that these are paths that have higher
criticality, but a lower value of the metric (lower than the metrics of top 20 paths). This is
expected since the metric used is not directly related to the criticality.
The comparison of run time using hierarchical approach with 𝛽 = 0.05 and BnB-TQM

(top 20) + conditional probability is shown in Figure 13. For this case, 𝛼 was fixed at 0.08.
The results indicate that hierarchical method is able to give an average speed up of about
90% when compared to conditional method for all the benchmark circuits. The reason for
this speed up can be explained as follows. In BnB-TQM method, before we decide whether to
continue the traversal or to discard the current sub-path, we need an initial set of complete
paths, against which the metric of the sub-paths can be compared. This requires traversal
right up to the source node and is time-consuming for large circuits. As mentioned previously,
it is not clear how large this initial set needs to be. As a guess, we choose an initial set
of twenty (hundred) paths for 𝛽 equal to 0.05 (0.01), since that is the maximum number
of paths possible with that criticality. However, for 𝛽 equal to 0.05, we get a speed up of
nearly 87%, even when the initial path set is limited to 10. In the hierarchical approach,
most of the non-critical paths are pruned at the initial levels of hierarchy when the group
criticality falls below the threshold. Hence the path selection is done only within a smaller
group compared to the entire set of paths. Even for path selection within a group, we do not
need any initial set of paths. Whether to continue a traversal or to discard a path is decided
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based on the criticality alone and hence most of the non-critical paths will be pruned at the
earlier stages itself thereby reducing the run-time.

8 CONCLUSION

In this paper, we propose a hierarchical partitioning algorithm for statistical path selection
and criticality computation. Unlike other approaches where path selection is followed by
criticality computation, both proceed simultaneously in our approach and finally reports all
paths with global criticality above a threshold. The circuit is partitioned into disjoint groups
at every level and the criticality of the group, as a whole, is computed. We show that the
group criticality can be computed efficiently using the criticality of the parent group and
conditional local criticality within the parent group. The low criticality groups are identified
and pruned at every level, thereby reducing the search space for critical paths. We also
place groups with similar means and standard deviations and high correlation into clusters
and consider only a representative group for further partitioning. The recursive partitioning
is done until the group criticality falls below a threshold, beyond which the critical paths
within the group are identified using a branch-and-bound technique. Since our method for
criticality computation is efficient, path criticality is used as the metric in branch-and-bound
algorithm and hence once the path is identified, criticality is also obtained.
The experimental results suggest that the number of groups remaining after pruning is

typically low compared to the total number of groups and hence partitioning and path
selection is done only for a smaller subset of groups. The comparison with Monte Carlo
analysis shows that the hierarchical method is able to identify the paths with criticality above
the threshold in almost all the cases. The maximum error in path criticality is comparable
to the path selection by BnB-TQM and criticality computation using conditional probability
approach with around 90% reduction in run time.
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