On the Computation of Criticality in Statistical Timing Analysis

S. Ramprasath
Department of Electrical Engineering
Indian Institute of Technology Madras
ee10s056@ee.iitm.ac.in

V. Vasudevan
Department of Electrical Engineering
Indian Institute of Technology Madras
vinita@ee.iitm.ac.in

Abstract—Due to the statistical nature of gate delays in current day technologies, measures such as path criticality and node/edge criticality are required for timing optimization. Node criticalities are usually computed using the complementary path delay. In order to speed up computations, it has been recently proposed that the circuit delay be used instead. In this paper, we show that there is a monotonic relationship between the node criticalities computed using the circuit delay and the complementary delay. They are not equal, but they can be used interchangeably. We discuss the sources of error in this computation and propose methods for more accurate computations. We also introduce a measure that is very easy to compute and is an approximate indicator of criticality. Since it is easy to compute, it can also be used effectively for pruning the number of edges involved in criticality computations thus improving the speed of criticality computations. The speedup obtained can be as large as an order of magnitude for some of larger circuits in the ISCAS benchmarks.

Index Terms—Statistical timing, Criticality, Statistical distance

I. INTRODUCTION

With the advent of the deep sub-micron technologies, increasing process parameter variations have changed the fundamental requirements of timing analysis tools. Path delays are statistical and are better described by a probability density function (PDF). As a result, one of several paths could potentially become critical on a particular die thereby making it difficult to optimise a circuit for better timing yield. Measures that are used for optimization of the circuit are path criticality [1], [4], [13]–[15] and node/edge criticality [1]–[4], [7]. The path criticality is the probability that a path is a critical path. Node/edge criticality is the probability that the node/edge belongs to at least one dominant critical path. Node/edges with large criticality values are candidates for optimization. In this paper, we focus on the computation of node/edge criticality.

Node/edge criticality computations are performed after a forward and reverse traversal of the timing graph to obtain the arrival time (AT) and required time (RT) at each node/edge. Typically, the method used is the cutset based method [2], [5], in which the first step is to identify all the cutsets of the timing graph. Node/edge criticality is computed by finding the probability that the path delay (sum of AT and RT) associated with a particular node/edge is greater than the statistical maximum of the path delays associated with all the other edges of a cutset (complementary path delay). This is done for each cutset. The algorithm for computation of criticality has linear time complexity with respect to the number of edges in the timing graph [2], [3]. However, a straightforward implementation results in significant inaccuracies. Some pruning of nodes/edges in a cutset and possibly a localised Monte-Carlo analysis is required before the evaluation of the criticalities [3]. To reduce the time required to compute the node/edge criticality as well as path criticality, the circuit delay has been used instead of the complementary path delay in [6], [7], [15].

In this paper, we look at the issue of computing node/edge criticalities. We make two contributions. First, we take a relook at the method for criticality computation proposed in [6]. We show that if Clark’s formula is used, the node criticality computed using the identity relationship cannot have the same value as the node criticality computed using the conventional definition. However, there is a monotonic relationship between the criticalities computed using the two definitions and they can be used interchangeably. We also discuss the sources of error in this computation and methods to improve the accuracy of the method.

Our second contribution is to explore the use of a statistical distance measure as an indicator of node criticality. Ideally, we would like a measure that varies monotonically with the conventional definition of criticality, but is easily computable. We propose a measure that is based on the Kullback-Leibler (KL) divergence for Gaussian PDFs. It is only approximately monotonic, but it is a good indicator of criticality and is very easy to compute. As a result, it can be used very effectively as a preliminary step to prune the number of edges in each cutset, thus improving the speed of criticality computations.

The paper is organized as follows. Section II contains background details and definitions. Section III explores the computation of node criticality using the circuit delay and the results of this computation. In Section IV we derive a measure that easily computable and show that it can be used as an approximate indicator of criticality and can be used for pruning. It also contains the results obtained using this measure. Section V concludes the paper.

II. BACKGROUND

This section contains the background details and defines the terms used in criticality computations.

The Timing graph is a directed acyclic graph G(V,E) comprising of nodes (V) and edges (E). The nodes represent the gate terminals. They are connected using edges that have an associated delay. This delay is a random variable with an associated PDF. The timing graph is augmented with a virtual source and sink node. The virtual source node is connected to all the primary inputs and all the outputs are connected to the virtual sink node.

A Cutset Σ divides the timing graph into two disjoint sets. Each cutset is a set of nodes/edges such that every path from the source
to the sink is associated with exactly one member of each cutset.

A forward and reverse SSTA performed on the timing graph gives the arrival time (AT) and the required time (RT) at a particular node. As the name suggests, AT (RT) is the latest time at which a signal transition at the input (output) reaches the current node. AT at every node is the maximum of the arrival times at its incoming edges. RT at every node is computed using the maximum of the required times at the outgoing edges. The path delay e_i associated with a node/edge is given by

$$e_i = AT_i + RT_i \quad (1)$$

It represents the statistical maximum of the delays of all the paths between the virtual source and sink nodes passing through the node. The complementary path delay ($e_{i'}$) of a node or edge within a cutset is defined as follows

$$e_{i'} = MAX(e_j, \forall e_j : e_j \in \Sigma, e_j \neq e_i)$$

Process parameter variations are typically correlated and the quad-tree model is used to model this [8]. All edge delays, ATs and RTs are represented in the canonical form [1] using the principal components (PC) p_j and are written as

$$e_i = \mu_i + \sum_{j=1}^{k} a_{ij}p_j + \xi_iq_i$$

Here, the weight a_{ij} is the sensitivity of e_i with respect to p_j and k is the total number of PCs. The mean of the distribution is μ_i, q_i is uncorrelated with all the other principal components and represents an independent process variation with sensitivity ξ_i.

SSTA involves a SUM and MAX operation at every step. The SUM is a linear operation and the sum of two Gaussian random variables is Gaussian. However, MAX is a nonlinear operator and Clark’s formula [10] is used to approximate the result of a MAX operation as a Gaussian random variable. If x and y are two Gaussian random variables, the approximation z to $MAX(x, y)$ is obtained by matching the moments. The mean, standard deviation and the correlation with another random variable w is given as follows

$$x = N(\mu_x, \sigma_x); y = N(\mu_y, \sigma_y); \rho_{xy} = \rho$$
$$z = N(\mu_z, \sigma_z) = MAX(x, y)$$
$$a = \sqrt{\sigma_x^2 + \sigma_y^2 - 2\rho\sigma_x\sigma_y} \quad (2)$$
$$\alpha = \frac{\mu_x - \mu_y}{a} \quad (3)$$
$$\mu_z = \mu_x\Phi(\alpha) + \mu_y\Phi(-\alpha) + a\phi(\alpha) \quad (4)$$
$$\sigma_z^2 = (\mu_x^2 + \sigma_x^2)\Phi(\alpha) + (\mu_y^2 + \sigma_y^2)\Phi(-\alpha)$$
$$+ (\mu_x + \mu_y)a\phi(\alpha) - \mu_z^2$$
$$\rho_{xz} = \frac{\sigma_x\rho_{xy}\Phi(\alpha) + \sigma_y\rho_{xy}\Phi(-\alpha)}{\sigma_z} \quad (5)$$
$$\Phi(-\alpha) = 1 - \Phi(\alpha) \quad (6)$$

Here, ϕ is the normalized Gaussian PDF $N(0,1)$ and Φ is the cumulative distribution function (CDF) of ϕ. Clark’s formula can be adapted to use the principal components.

The local criticality or the tightness probability of a node e_i with respect to e_j is defined as

$$\Phi(\alpha_{local(i,j)}) = P(e_i \geq e_j) \quad (7)$$

The global criticality of a node e_i is defined as

$$\Phi(\alpha_{global(i)}) = P(e_i \geq e_{i'}) \quad (8)$$

The appropriate values of the mean, standard deviation and correlation coefficient are used to evaluate α_{ij} and α, according to (3). The definition of criticality is thus based on the Gaussian approximation, since it uses the CDF $\Phi(\alpha)$ to determine the required probability.

III. Criticality obtained from the Circuit Delay

To reduce the time required for criticality computations, [6] proposes using the following identity.

$$P(A \geq B) = P(A \geq A \& A \geq B) = P(A \geq MAX(A, B)) \quad (9)$$

where A and B are two random variables with arbitrary distributions. If this identity is used, it is possible to use the circuit delay instead of the complementary path delay to compute the criticality, thus reducing the time required for the computation.

Equation (9) is valid as long as the MAX operation used is ideal. However, the MAX operation used in SSTA is an approximation using the Clark’s formulation. In this case equation (9) does not hold, as explained below.

Using the same notations as in the previous section, if $z = MAX(x, y)$, we have

$$\mu_z \leq \mu_z \quad (10)$$

A simple argument shows that equation (10) must be true. Let us generate two random variates X and Y with the distributions of x and y respectively. Since $Z = MAX(X, Y)$, $Z \geq X$ and $Z \geq Y$. Therefore, $E[Z] \geq E[X]$ i.e., $\mu_z \leq \mu_z$. This inequality also holds when Clark’s formula is used, as shown in the Appendix A.

Since all the random variables are normal,

$$P(x \geq y) = \Phi \left(\frac{\mu_x - \mu_y}{\sqrt{\sigma_x^2 + \sigma_y^2 - 2\rho\sigma_x\sigma_y}} \right) = \Phi(\alpha) \quad (11)$$

With $z = MAX(x, y)$, the probability that $x \geq z$ is given by

$$P(x \geq z) = \Phi \left(\frac{\mu_x - \mu_z}{\sqrt{\sigma_x^2 + \sigma_z^2 - 2\rho_{xz}\sigma_x\sigma_z}} \right) = \Phi(\beta) \quad (12)$$

From equations (10) and (12)

$$P(x \geq z) \leq \Phi(0) \implies P(x \geq z) \leq 0.5 \quad (13)$$

Therefore $P(A \geq B)$ is given by $\Phi(\alpha)$, which has a range between 0 and 1. But the $P(A \geq MAX(A, B))$ or $\Phi(\beta)$ has a range between 0 and 0.5. This is why the second method proposed in [6] requires a reconstruction formula.

The inequality (13) is valid at all points except when $z = x$ i.e., when the two have identical means and standard deviations and the correlation is one. This anyway cannot be handled by Clark’s formulation. In this case, however, x is clearly the dominant random variable and its criticality can be assigned. If the correlation is even slightly less than one, the probability will be close to 0.5. To have continuity, it makes sense to assign the value of 0.5 when the correlation is one.

A. Closed form expression and Monotonicity

Using the definitions of α and β in equations (11) and (12), after some manipulations of Clark’s formula, it can be shown that

$$\beta = \frac{\alpha\Phi(-\alpha) - \phi(\alpha)}{\sqrt{\Phi(-\alpha) + (\alpha\Phi(\alpha) + \phi(\alpha))(\alpha\Phi(-\alpha) - \phi(\alpha))}} \quad (14)$$
Instead of solving this equation to get $\Phi(\alpha)$ from $\Phi(\beta)$, we show that there is a one-to-one relationship between the two and they can be used interchangeably. We prove it by showing that β is a strictly increasing function of α.

Proof: Let t_1 be the numerator and t_2 be the denominator in equation (14). For $F(\alpha)$ as defined in Appendix A, $t_1 = -F(\alpha)$. Therefore,

$$\frac{dt_1}{d\alpha} = \Phi(-\alpha) > 0 \quad (15)$$

Since Φ is the CDF of Gaussian distribution, it is strictly greater than zero for all $\alpha < \infty$. Therefore, the numerator is a strictly increasing function of α.

Substituting for $\Phi(\alpha)$ in terms of $\Phi(-\alpha)$ and using the definition of t_1, t_2 can be written as

$$t_2^2 = \Phi(-\alpha) + t_1(\alpha - t_1)$$

The derivative of t_2^2 with respect to α is given by

$$\frac{dt_2^2}{d\alpha} = 2\Phi(\alpha)t_1 \quad (16)$$

Now, from (4) and Appendix A we get

$$\mu_x - \mu_z = at_1 \quad (17)$$

Since $a > 0$, from Appendix A, we get

$$t_1 < 0$$

From equation (16), the denominator decreases with increasing values of α. Therefore, the ratio of the two is a strictly increasing function of α. Thus the map is a one-to-one map.

This error is significant, unless $\Phi(\beta)$ is defined in each cutset relative to the maximum of that particular cutset. If this is done, the speedup obtained is not as large. But there is still a reduction in the number of MAX operations. Assuming that evaluation of the tightness probability and the MAX operation take almost the same time, if linear-time bookkeeping [3] is used, a total of $(4n - 2) MAX$ operations are required to compute global criticality using complementary path delay. Here n is the number of nodes in a cutset. If $\Phi(\beta)$ is computed using the cutset maximum, $(2n - 1) MAX$ operations are required. Getting back $\Phi(\alpha)$ from $\Phi(\beta)$ involves a lookup operation in a sorted array, which is a constant overhead. Therefore, overall, there is still some savings in time possible.

C. Results

Fig. 1 shows $\Phi(\beta)$ obtained using the cutset maximum for a carry select adder. It can be seen to match the analytical curve very closely. Similar plots are shown for the other circuits. Tables I & II show the error in global criticality ($\Phi(\alpha_{global})$) obtained from $\Phi(\beta)$ computed using the cutset maximum. The circuits were synthesized using the 180nm UMC libraries. The K-center pruning algorithm proposed in [3] was used to improve the accuracy of the computations. The following two quad-tree structures QT1 and QT2 for V_T, L and W of gates were used.

QT1: 5 layer quad-tree with 90% of the variation in V_T, L and W of the gates is assigned to the bottom most layer and 2.5% each to the rest of the layers, so that the correlation is largely due to the circuit topology.

QT2: Each of the five quad-tree layers get 20% of the variation in the three parameters.

A 10% variation from the nominal value was considered for each of the parameters for the simulations. The lookup table for obtaining $\Phi(\alpha_{global})$ from $\Phi(\beta)$ had 10000 values and was generated off-line using the equation (14).

From the tables it is clear that we can get up to 30% reduction in run-time on using $\Phi(\beta)$ (with respect to cutset max) without significant loss in accuracy. The run-times include both pruning and then finding global criticality for the un-pruned nodes. The low speedup obtained in some of the circuits is due to the small number of nodes remaining after pruning.

The accuracy of the computation is comparable to what has been reported in [3], [15]. In some of the benchmarks (c6288,s38584 for example), the maximum error is a little large in all three cases. This is also seen in the results of [3], [15]. Monte Carlo sampling was used in [3] to reduce the error. We have found that error can be reduced by changing the order in which the MAX operations are performed. We have implemented the Cluster Max Binary tree (CMBT) technique proposed in [11]. Table III shows that there is a considerable improvement on using CMBT to find the cutset maximum. The drawback of using CMBT is its run-time of $O(n^2\log(n))$. The run time costs of using CMBT algorithm for criticality computation using complementary path delays is prohibitive, but it could possibly be used to accurately find the cutset maximum.

IV. Statistical distance

In this section, we arrive at an easily computable measure that can be used as an approximate indicator of criticality. To do this we start with the Kullback-Leibler (KL) divergence between the path delay associated with each node and the circuit delay. Intuitively, if this divergence is small, the PDF of the path delay associated with a node
is more nearly equal to the PDF of the circuit delay implying that the node has a larger criticality. Similarly, a large divergence would mean a low criticality. For Gaussian PDFs, there is an analytical formula for the KL divergence, which makes it easily computable. If $\mathcal{N}(\mu_i, \sigma_i)$ is the PDF of the path delay associated with the ith node/edge and the PDF of the circuit delay is $\mathcal{N}(\mu_c, \sigma_c)$, the KL divergence between node i and circuit delay is given by

$$D_{KL} = \frac{(\mu_c - \mu_i)^2}{2\sigma_c^2} + \frac{\sigma_i^2 - \sigma_c^2}{2\sigma_c^2} + \frac{1}{2} \log \left(\frac{\sigma_c^2}{\sigma_i^2} \right)$$ \hspace{1cm} (18)$$

One drawback is that the KL divergence has a very large dynamic range, at times, over four orders of magnitude. The range also varies significantly as the correlation structure of the parameters changes. However, it is possible to make some simplifications and come up with a measure that is a function of the approximate KL divergence and has a range between zero and one.

From Appendices A and B, $\mu_c > \max(\mu_i, \mu_i')$ and $\sigma_c < \max(\sigma_i, \sigma_i')$, where the subscript i' denotes the mean and the standard deviation of the complementary path delay. Based on these results, we can show that the ratio $\frac{\sigma_i^2}{\sigma_c^2}$ has an upper bound which is the maximum value of $\frac{2\sigma_c}{\sigma_D}$ over all gates in the circuit, where σ_D and μ_c represent the standard deviation and the mean delay of a gate. From the results of appendices C and D, both the SUM and MAX operations result in a PDF that has a $\frac{\sigma_i}{\sigma}$ that is bounded by the maximum $\frac{\sigma_i}{\sigma}$ of their arguments. Therefore, for each gate, the SUM
and MAX operator result in a $\frac{\sigma}{\rho}$ that is bounded by $\max\left\{ \frac{\sigma}{\rho} \right\}$, with the index j running over the inputs to the gate and the delay from each input to the output. Starting from the source node, if we look at the bound at each level, it is clear that the ratio has an upper bound which is the maximum value of $\frac{\sigma}{\rho}$ over all gates in the circuit.

For current day technologies, the standard deviation of the gate delay is a very small fraction of the delay itself. The upper bound therefore is quite small. If we assume a 10% variation in the threshold voltage, lengths and widths, $\frac{\sigma}{\rho} \approx 0.17$ (for a simplified model in which the sensitivity to each source of variation is proportional to the delay). In the discussions that follow, we do not require the actual value of this ratio. However we assume that it is much smaller than one.

From the above arguments, $\frac{\sigma}{\sigma_c} > \frac{\sigma}{\sigma_c} > \frac{\sigma}{\sigma_c}$. The second term in equation (18) is therefore much smaller than the first term and can be neglected. The third term in D_{KL} is significant only if σ_i is significantly different from σ_c. In this case μ_i will also be significantly different from μ_c and the criticality will consequently be quite low. Assuming that we do not require the exact values of D_{KL} for low criticality nodes, D_{KL} can be simplified to

$$D_{KL} \approx \frac{(\mu_c - \mu_i)^2}{2\sigma_i^2}$$

Fig. 2 shows the approximate D_{KL} as a function of the full expression for D_{KL} for two different quad-trees. QT3 has 90% of the variation in the topmost layer of the quad-tree which implies the parameter variations are highly correlated. QT1 and QT3 captures the behaviour in the two extreme cases. It is clear that a deviation occurs only at larger values of D_{KL}, for which the criticality is low. Independent of the quad-tree, we find that $D_{KL} < 1$ if $\Phi(\alpha_{global}) > 0.1$.

As σ_c is constant for a given circuit, it is simply a scaling factor. The qualitative behaviour will not change if σ_c is replaced by μ_c and the factor of 2 is lost, so that the range of this “distance” is [0, 1]. As $(\mu_c - \mu_i)$ (from Appendix A) is always non-negative,

$$D = \frac{(\mu_c - \mu_i)}{\mu_c}$$

(19)

can be used in place of D_{KL}.

At first sight, it seems as though σ_c and the correlation with other nodes are ignored entirely in this measure. However, both σ and ρ are required for computation of μ_c. Hence they are taken into account implicitly. But it is not possible to get the same resolution in criticality that can be obtained using the complementary path delay or the circuit delay. The following section discusses this.

A. D as an indicator of criticality

Let $N(\mu_i, \sigma_i)$ be the path delay through node i and $N(\mu_{i'}, \sigma_{i'})$ be the complementary path delay for node i. From equation (4) and Appendix A,

$$\mu_c - \mu_i = a \Phi(\alpha)$$

where $a = \sqrt{\sigma_{i'}^2 + \sigma_i^2 - 2\rho_{i'i}\sigma_i\sigma_{i'}}$ and $\alpha = \frac{\mu_{i'} - \mu_i}{\sigma_i}$. The maximum value of α occurs when $\mu_{i'} = -1$, when $a = \sigma_i + \sigma_{i'}$. From Appendices C and D and earlier arguments, $\frac{\sigma}{\mu} < k$, where $k = \max \left\{ \frac{\rho}{\rho_D} \right\} << 1$. Therefore

$$\frac{\mu_c - \mu_i}{\mu_c} \leq 2kF(\alpha)$$

(20)

$F(\alpha)$ decreases monotonically with α and therefore decreases monotonically with $\Phi(\alpha)$. Hence the distance measure D has an upper bound which is monotonic with $\Phi(\alpha)$.

But D itself is not monotonic with respect to $\Phi(\alpha)$. More than one path can have the same μ but different σ and different correlation with circuit delay. Fig. 3 shows an example plot of $\Phi(\alpha_{global})$ vs D for all nodes of c499 and the carry-bypass adder with quad-tree QT1. $\Phi(\alpha_{global})$ was found using complementary path delay after

![Fig. 3. D vs $\Phi(\alpha_{global})$ for all nodes in c499 benchmark and the carry bypass adder for quad-tree QT1](image-url)

the nodes were pruned using K-center clustering. The range of D in c499 is [0.1, 0.02] and is about two orders of magnitude for the carry bypass adder. The figure also shows the upper bound. It is a conservative estimate, as expected.

Although non-monotonic, it is clear that D can be used as an approximate indicator of criticality. One problem however is that nodes that have similar criticalities have different values of D in different circuits, making it difficult to map a fixed range of values of D to a particular value of $\Phi(\alpha)$. However, although termed “global criticality”, node criticality as a measure is only relevant within a cutset. If we use the same rationale for D, the ratio D/D_{min}, where D_{min} is the minimum value of D in the cutset, should be a reasonable indicator of relative criticality within the cutset. This is shown in the table below for a few cutsets in c499 and the carry bypass adder. The least critical nodes are easily identifiable by their relatively large values of D/D_{min} and can be used for pruning. The most critical node in a cutset will have $D/D_{min} \approx 1$. (Resolving $\Phi(\alpha)$ when the difference in D/D_{min} between two nodes is less than two is not possible.) But its relative criticality within the cutset can be inferred based on the maximum value of D/D_{min} within the cutset. However some non-monotonicities are present as seen in \sum_{i} of the carry bypass adder. Hence D is an approximate indicator of criticality.
Based on these discussions, we have a two level pruning algorithm that prunes out most of the nodes that have low criticality. The remaining nodes can be pruned using K-center pruning, if required.

B. Pruning

Pruning using D is a two step procedure. Firstly the least critical nodes in the circuit (nodes that have $\mu << \mu_c$) are pruned. This step is independent of the correlation structure or the circuit. The second step involves pruning of nodes that are non-dominant within the cutset to which they belong.

Algorithm 1 describes the first level of pruning. We can get an approximate value for D_{thresh} using the threshold value of local criticality which is an upper bound for the global criticality used in K-center pruning. The value recommended in [3] is 0.05. Using the corresponding value of α and $k = 0.17$ (for 10% variation in V_T, L and W), we get a pruning threshold of $D_{thresh} = 0.53$. Nodes were pruned using different values of D_{thresh} with the quad-tree QT1. This quad-tree was chosen since the correlations in the circuit will be mostly due to circuit topology rather than the technology. The ISCAS85 benchmark contains circuits that capture a wide variety of circuit topologies. Therefore a pruning strategy derived using QT1 and the ISCAS85 benchmark circuits should be applicable when used with other quad-trees and circuits.

The resulting error in $\Phi(\alpha_{global})$ averaged over all circuits in the ISCAS85 benchmarks is plotted in Fig. 4. The figure shows that a much smaller value of $D_{thresh} = 0.15$ is sufficient. It will be seen from the results that this threshold can be used independent of the quad-tree and the circuit. The same threshold for example, could be used for the tree QT2 and circuits in ISCAS89 benchmarks.

Algorithm 1 Pruning using D

1: for cutset Σ_i in $\{\Sigma_1, \Sigma_2...\Sigma_n\}$ do
2: for node j in Σ_i do
3: if $D_j > D_{thresh}$ then
4: mark node j as pruned
5: end if
6: end for
7: end for

Algorithm 2 describes the second level of pruning within a cutset. In this case, the difference in the normalised distance between two nodes of a cutset is compared. Following a similar procedure as the first level of pruning, Fig. 5 shows the maximum error in $\Phi(\alpha_{global})$ averaged over all ISCAS85 benchmarks. In this case, the threshold ΔD_{thresh} was empirically found to be 14.

Algorithm 2 Pruning using ΔD_{thresh}

1: for cutset Σ_i in $\{\Sigma_1, \Sigma_2...\Sigma_n\}$ do
2: for node j in Σ_i & j do
3: for node k in Σ_i, $k \neq j$ do
4: if $\left(\frac{D_j-D_k}{D_{min,j}}\right) > \Delta D_{thresh}$ then
5: mark node j as pruned
6: else if $\left(\frac{D_k-D_j}{D_{min,k}}\right) > \Delta D_{thresh}$ then
7: mark node k as pruned
8: end if
9: end if
10: end for
11: end for

Table IV shows the average of max error in $\Phi(\alpha_{global})$ of nodes from cutsets Σ_i of C499 and carry-bypass adder benchmarks.

C. Results

Tables V and VI show the error in $\Phi(\alpha_{global})$ and the possible speedup for the following cases:

1. Cutsets are pruned using K-center clustering and $\Phi(\alpha_{global})$ is computed using complementary path delay.
2. Cutsets are pruned using Algorithms 1 and 2. This is followed by K-center clustering and pruning on the remaining nodes. $\Phi(\alpha_{global})$ is computed using the complementary path delay.
3. Cutsets are pruned using Algorithms 1 and 2. This is followed by K-center clustering and pruning on the remaining nodes. $\Phi(\alpha_{global})$ is computed from $\Phi(\beta_{cutset})$.

Fig. 4. D_{thresh} vs max error in $\Phi(\alpha_{global})$ averaged over all ISCAS85 benchmarks for quad-tree QT1

Fig. 5. ΔD_{thresh} vs max error in $\Phi(\alpha_{global})$ averaged over all ISCAS85 benchmarks for quad-tree QT1
The error is with respect to $\Phi(\alpha_{\text{global}})$ computed using Monte Carlo analysis. In order to check that the threshold for pruning is applicable to other circuits, we have also used the algorithm for ISCAS89 benchmarks. It is seen that the error obtained using K-center pruning and our algorithms are comparable for both the benchmark circuits and for both quad-trees. Once again, if CBMT is used to find the maximum of each cutset, the error in case 3 can be reduced.

It is seen that a considerable speedup, sometimes about two orders of magnitude, can be obtained when $\Phi(\alpha)$ is computed from $\Phi(\beta_{\text{cutset}})$. The lowest speedup is about 35%, which occurs when most cutsets have a large number of nodes that are near critical.

V. Conclusion

In this paper, we have looked at two measures for criticality that can be used instead of the conventional measure obtained using the complementary path delay. There is a clear one-to-one map between the first measure and the conventional measure. So the two can be used interchangeably with approximately a 30% speedup in computation time. The second is more empirical and could require some characterization. But it is very easy to compute. Dominant high criticality nodes and majority of the low criticality nodes can easily be identified. Therefore it can be used quite effectively for pruning and considerable speedup can be obtained especially for some of the larger benchmark circuits.

Typically statistical distance measures use only the mean and the standard deviation. There will always be some ambiguity since the correlation is not used. Ideally therefore, the measure that we seek should use the correlation and should be easy to compute. However as the number of sources of variation increase, the time required for computing the correlation itself becomes significant even if sparse arrays are used. Of course, most of the computations are easily parallelizable and it should be possible to get a good speedup by running it on multiple cores.

APPENDIX A

For $z = \text{MAX}(x, y)$, we show that $\mu_z = \text{max}(\mu_x, \mu_y)$. Without loss of generality, assume that $\mu_x > \mu_y$, which means α is positive. Using (4),

$$\mu_z - \mu_x = a(-\alpha \Phi(-\alpha) + \phi(\alpha)) = a \Phi(\alpha)$$

(21)
It can be easily shown that
\[
\frac{dF}{d\alpha} = -\Phi(-\alpha) < 0
\]
Therefore \(F(\alpha)\) is a monotonically decreasing function of \(\alpha\). Since \(\alpha\) is positive, the upper bound for \(F(\alpha)\) is \(\phi(0) = 0\). From (4), as \(\alpha \to \infty\), \(\mu_x \to \mu_z\), which means that the lower bound for \(F(\alpha)\) is zero. Since \(\alpha > 0\), this implies \(\mu_z - \mu_x > 0\). Therefore, \(\mu_z > \max(\mu_x, \mu_y)\).

APPENDIX B

Clark’s formulation satisfies both shifting and scaling properties of \(MAX\) operation. So without loss of generality assuming \(\mu_y = 0\) and \(\mu_z \geq \mu_y\),
\[
\begin{align*}
\alpha &= \frac{\mu_x}{\alpha} \\
\mu_z &= \mu_x \Phi(\alpha) + a\phi(\alpha) \\
\sigma_z^2 &= (\mu_z^2 + \sigma_x^2)\Phi(\alpha) + \sigma_x^2(\Phi(-\alpha) + \mu_x a\phi(\alpha) - \mu_z^2) \\
\sigma_z^2 &= \sigma_x^2(\Phi(\alpha) + \sigma_x^2(\Phi(-\alpha) + \mu_x \mu_y(\Phi(\alpha) + a\phi(\alpha)) - \mu_z^2) \\
&= \sigma_x^2(\Phi(\alpha) + \mu_x (\mu_x - \mu_z))
\end{align*}
\]

If \(\sigma_y \geq \sigma_z\),
\[
\sigma_x^2 - \sigma_y^2 = (\sigma_x^2 - \sigma_y^2)\Phi(-\alpha) + \mu_x (\mu_x - \mu_z) \leq 0
\]
as \(\mu_x \leq \mu_z\) (from Appendix A) & \(\sigma_y \leq \sigma_x\)

Similarly if \(\sigma_y \geq \sigma_x\),
\[
\sigma_x^2 - \sigma_y^2 = (\sigma_x^2 - \sigma_y^2)\Phi(\alpha) + \mu_x (\mu_x - \mu_z) \leq 0
\]

Hence \(\sigma_z\) is always less than the maximum of the two \(\sigma\)'s.

APPENDIX C

If \(w = x + y = N(\mu_w, \sigma_w)\), \(\frac{\sigma_w}{\mu_w} \leq \max\left(\frac{\sigma_x}{\mu_x}, \frac{\sigma_y}{\mu_y}\right)\).

Proof: \(\mu_w\) and \(\sigma_w\) are given by
\[
\begin{align*}
\mu_w &= \mu_x + \mu_y \\
\sigma_w &= \sqrt{\sigma_x^2 + \sigma_y^2 + 2\rho_{xy}\sigma_x\sigma_y}
\end{align*}
\]
The maximum value of \(\sigma_w = (\sigma_x + \sigma_y)\). If \(\frac{\sigma_x}{\mu_x} \geq \frac{\sigma_y}{\mu_y}\),
\[
\begin{align*}
\Rightarrow \sigma_x \mu_y &\geq \sigma_y \mu_x \\
\sigma_x \mu_y + \sigma_x \mu_z &\geq \sigma_y \mu_x + \sigma_x \mu_z \\
\Rightarrow \sigma_x &\geq \frac{\sigma_x + \sigma_y}{\mu_x} \mu_y
\end{align*}
\]
The same argument is valid if \(\frac{\sigma_x}{\mu_x} \geq \frac{\sigma_y}{\mu_y}\). Which implies,
\[
\frac{\sigma_w}{\mu_w} \leq \frac{\sigma_x + \sigma_y}{\mu_x + \mu_y} \leq \max\left(\frac{\sigma_x}{\mu_x}, \frac{\sigma_y}{\mu_y}\right)
\]

APPENDIX D

If \(z = \text{MAX}(x, y) = N(\mu_z, \sigma_z)\), \(\frac{\sigma_z}{\mu_z} \leq \max\left(\frac{\sigma_x}{\mu_x}, \frac{\sigma_y}{\mu_y}\right)\).

Proof: Let \(z = \text{MAX}(x, y) = N(\mu_z, \sigma_z)\). From Appendices A and B, \(\mu_z \geq \mu_x, \mu_z \geq \mu_y\) and \(\sigma_z \leq \max(\sigma_x, \sigma_y)\). Let \(\mu_x > \mu_y\), which results in three possible scenarios:

1.) \(\sigma_z \geq \sigma_y\) and \(\frac{\sigma_x}{\mu_x} \geq \frac{\sigma_y}{\mu_y}\):\[
\begin{align*}
\Rightarrow \sigma_z &\geq \sigma_y \\
\frac{\sigma_z}{\mu_z} &\geq \frac{\sigma_y}{\mu_z} \Rightarrow \frac{\sigma_x}{\mu_x} \geq \frac{\sigma_y}{\mu_y}
\end{align*}
\]

REFERENCES

