1. If P is an invertible matrix, prove that $\operatorname{rank}(P A)=\operatorname{rank}(A)$.
2. Let A be a $m \times n$ matrix. If $A B=0$, show that $\operatorname{rank}(A)+\operatorname{rank}(B) \leq n$.
3. Show that $A x=b$ has multiple solutions if and only if $b \in \operatorname{Col}(A)$ and the dimension of $\operatorname{Null}(A)$ is non-zero.
4. Find the basis for vector space $\{(x, y, z): 2 x+3 y+4 z=0\}$
5. For the following matrices, find the basis vectors for all four fundamental subspaces (column space, row space, null space and left null space)
a. $A=\left[\begin{array}{cccc}4 & 5 & 9 & -2 \\ 6 & 5 & 1 & 12 \\ 3 & 4 & 8 & -3\end{array}\right]$
b. $A=\left[\begin{array}{ccc}-3 & 2 & 3 \\ 9 & -6 & -9 \\ -2 & 4 & -2 \\ -7 & 8 & 2\end{array}\right]$
6. Consider the subspace of cubic polynomials, $p(x)$ such that $p(5)=p(7)=0$.
a. Show that it is a vector space.
b. Find the basis for the vector space.
7. Check if the following set of vectors are linearly independent.
a. $S=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 6\end{array}\right]\right\}$
b. $S=\left\{\left[\begin{array}{l}2 \\ 3 \\ 8\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 4\end{array}\right],\left[\begin{array}{l}13 \\ 12 \\ 28\end{array}\right]\right\}$
8. Let $\mathcal{A}=\left\{A_{1}, A_{2}, A_{3}\right\}$ and $\mathcal{B}=\left\{B_{1}, B_{2}, B_{3}\right\}$ be two sets of basis vectors for the vector space \mathcal{V}. Assume that $A_{1}=4 B_{1}-B_{2}, A_{2}=-B_{1}+B_{2}+B_{3}$ and $A_{3}=B_{2}-2 B_{3}$. If the co-ordinate vector of v with respect to \mathcal{A} is $\left[\begin{array}{l}3 \\ 4 \\ 1\end{array}\right]$, find the co-ordinate vector v with respect to \mathcal{B}.
9. State whether the following statements are True or False and give reasons.
(a) Let $S=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. If $\mathcal{V}=\operatorname{span}\{S\}, S$ is a basis for \mathcal{V}.
(b) If $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ are a set linearly independent vectors in \mathcal{V}, they form a basis for \mathcal{V}.
(c) Let $\left\{w_{1}, w_{2}, \cdots, w_{m}\right\}$ be linear combinations of the vectors $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$, with $m>n$. If the vectors $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ are linearly independent, then $\left\{w_{1}, w_{2}, \cdots, w_{m}\right\}$ are also linearly independent.
(d) If a matrix B is obtained from A by performing elementary row operations, $\operatorname{rank}(B)=$ $\operatorname{rank}(A)$.
