1. Let $A=\left[\begin{array}{llll}A_{1} & A_{2} & \cdots & A_{n}\end{array}\right]$ and $B=\left[\begin{array}{c}B_{1} \\ B_{2} \\ \vdots \\ B_{n}\end{array}\right]$, where A_{i} and B_{i} are used to denote the columns and rows of the matrices A and B respectively. Use the fact that the columns of C are linear combinations of columns of A to show that the product $C=A B$ can be written as the sum of outer products as follows.

$$
C=\sum_{i=1}^{n} A_{i} B_{i}
$$

2. Using the fact that the columns of $A B$ are linear combination of columns of A, show

$$
(A B)^{T}=B^{T} A^{T}
$$

3. Without partial pivoting, find the LU decomposition for the following matrix A

$$
A=\left[\begin{array}{ccc}
2 & 2 & 2 \\
4 & 7 & 7 \\
6 & 18 & 22
\end{array}\right]
$$

4. For an LU decomposition with partial pivoting, find all the permutation and lower triangular matrices for the following matrix.

$$
A=\left[\begin{array}{cccc}
1 & 2 & -3 & 4 \\
4 & 8 & 12 & -8 \\
2 & 3 & 2 & 1 \\
-3 & -1 & 1 & -4
\end{array}\right]
$$

5. (a) Consider two vector spaces \mathcal{V}_{1} and \mathcal{V}_{2}. Write a proof if the statement is True otherwise provide a counter example.
6. $\mathcal{V}_{1} \cap \mathcal{V}_{2}$ is a vector space
7. $\mathcal{V}_{1} \cup \mathcal{V}_{2}$ is a vector space
(b) Are the following sets vector spaces?
8. $\left\{\left[\begin{array}{l}x \\ y\end{array}\right]: x=y, x \in \mathbb{R}, y \in \mathbb{R}\right\}$
9. $\left\{\left[\begin{array}{l}x \\ y\end{array}\right]: x^{2}=y^{2}, x \in \mathbb{R}, y \in \mathbb{R}\right\}$
10. $\left\{\left[\begin{array}{l}x \\ y\end{array}\right]: x^{2}+y^{2}>0, x \in \mathbb{R}, y \in \mathbb{R}\right\}$
11. $\left\{\underline{\boldsymbol{u}}: u_{i} \geq 0 \forall i, \underline{\boldsymbol{u}} \in \mathbb{R}^{n}\right\}$
12. For the following systems $A x=b$, transform it to $R x=\hat{b}$ where R is the RREF. Find solution(s) if they exist.
a.

$$
\begin{aligned}
& x+2 y+3 z=4 \\
& 3 x+4 y+z=5 \\
& 2 x+y+3 z=6
\end{aligned}
$$

b.

$$
\begin{gathered}
x+2 y+3 z=4 \\
2 x+y=2 \\
x+5 y+8 z=10
\end{gathered}
$$

c.

$$
\begin{gathered}
x-2 y+z=1 \\
2 x-5 y+3 z=4 \\
2 x-3 y+z=0
\end{gathered}
$$

