The above statement is known as "Tellegen's Theorem" and valid in both domains \(t \) and \(s \).

If we have a network consist of only \(R,L,C \) (i.e. bilateral element) then the contribution of all internal branches is zero. If the network has \(L \) and \(C \) also, it is more useful to apply it in the \(s \) domain.

Let \(k = 1 \) represents the branch at port 1 and \(k = b \) represents the branch at port 2. All other branches represents the internal branches. So we have

\[
\sum_{k=1}^{b} (\hat{v}_k i_k - v_k \hat{i}_k) = 0
\]

We Have

\[
\sum_{k=2}^{b-1} (\hat{v}_k i_k - v_k \hat{i}_k) = 0
\]

From now onwards we will represent subscript 1 for port one and subscript 2 for port two and we will apply Tellegen's theorem in the \(s \) domain.

\[
\hat{V}_2(s) I_2(s) = V_1(s) \hat{I}_1(s)
\]

\[
\frac{\hat{I}_1(s)}{\hat{V}_2(s)} = Y_{12}(s) = \frac{I_2(s)}{V_1(s)} = Y_{21}(s)
\]
This is the condition for reciprocal networks.

The resistor is a bilateral element

\[i(t) \]
\[v(t) \]

\[i(t) \]
\[v(t) \]

Another example of reciprocity.

Using Tellegen’s theorem we have

\[\frac{I_2}{V_1} = \frac{I_1}{V_2} \]

i.e., if we change the position of the voltage source, the “transfer functions” remain the same.