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Abstract—We propose stochastic solutions to the scattering
of electromagnetic waves from penetrable randomly rough sur-
faces using the vector based finite element method (FEM). The
random nature of the surface requires the computation to be
performed on multiple surface instances. We propose a mesh
deformation scheme which allows the use of a single FEM mesh
for computing ensemble averaged quantities. This scheme is used
to perform Monte Carlo (MC) iterations, which is much faster
than conventional techniques where a different mesh is utilized
for each surface instance. This scheme also allows for MC-free
formulations of the problem; in the first kind, we expand the
solution in a stochastic basis using the concept of generalized
Polynomial chaos obtain ensemble averaged quantities. This
results in a larger set of equations that need to be solved just
once. In the second kind —the stochastic collocation method—
we run the deterministic solver at certain specified points in the
random domain corresponding to the rough surface description.
We compare these results with those obtained by MC iterations,
outline the computational costs and convergence behavior. We
find that stochastic methods are ideal for surfaces with large
correlation lengths. For other parameters, the Monte Carlo
approach is preferable.

Keywords: Electromagnetic scattering by rough surfaces;
finite element methods; monte carlo methods; uncertainty

I. INTRODUCTION

Motivation: The problem of computing the scattering of
electromagnetic waves from randomly rough surfaces is of
paramount interest in microwave remote sensing of natural
surfaces such as land and ocean. Remote sensing missions
such as the Soil Moisture Active Passive (SMAP) mission
[1] (and many others) attempt to recover quantities of interest
(QoI) such as soil moisture, ocean salinity, freeze/thaw soil
states, etc. through the measurement of scattered radar waves.
However, it is very difficult to separate the impact on the
radar cross-section (RCS) of these QoI, from the impact due
to surface roughness.

In the study of rough surface scattering (see [2] for a review)
it is the case that the surface is modelled as a stochastic pro-
cess, and many degrees of freedom are required to characterize
it. As a result, any QoI such as those indicated above, end up
living inside a high dimensional parameter space. Thus, the
inverse problem – that of computing the QoI directly from
remotely sensed data – becomes extremely challenging. As an
alternative, the forward problem – finding the scattered field
for a given geometry – is pre-computed for various plausible
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geometries and the results subsequently compared with mea-
sured data [3] to infer the QoI. Apart from the motivation
from remote sensing, the problem of electromagnetic rough
surface scattering (and the closely related acoustic version)
in a computationally efficient manner is a challenging and
interesting research problem in its own right. In this paper,
we report recent advances in addressing this challenge via the
finite element method (FEM) in a two-dimensional setting.
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Fig. 1: Schematic of computational domain for the FEM. CD
is the (flat) interface between two half-spaces; vacuum above
and a heterogeneous substrate below. An incident field Ei falls
on this interface; the contour Γ is used for evaluating the radar
cross-section; the shaded regions (of height ht, hb) represent
the regions within which the mesh is deformed in response
to a rough surface; a possible heterogeneity in the substrate
is indicated in the lower half of the substrate, and the inset
(bottom right) shows a typical tessellation of the domain into
finite elements. In this paper, AP = PC = CE/2 = 0.5λ,
ht = 0.4λ, and hb = 0.5λ.

Problem description: In particular, we detail a stochastic
solution approach that is free from Monte Carlo iterations.
This is accomplished by expanding the rough surface in a
stochastic basis, and then embedding this expansion into the
FEM itself. This is made possible by means of a smooth
mesh deformation scheme, where a subset of the nodes of
a finite element tessellation are moved in response to the
coordinates describing a rough surface. We use the FEM
primarily because of the versatility of this tool, since hetero-
geneity in the substrate is easily modelled with the FEM. This
heterogeneity could arise, for instance, due to a buried object,
depth-dependent soil moisture, etc. (see the schematic in Fig. 1
for an illustration of a typical scattering geometry). Over
the last couple of decades, integral equation based methods
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have greatly matured in terms of their compute times [4]. We
remark that the solution strategy proposed in this paper, that
of using a mesh deformation technique and stochastic basis-
functions/collocation-methods, can easily be incorporated into
integral equation methods.

Related work: The use of a coordinate transformation tech-
nique in order to enable single-mesh Monte Carlo iterations
has been recently proposed in our earlier work [5] and in
[6], [7]. The probabilistic framework that we use is in light
of that proposed for the solution of fluid transport in tubes
with rough walls [8]. This framework utilises an analytical
mapping of a deterministic differential equation defined on
a random domain to a stochastic differential equation de-
fined on a deterministic domain. Subsequently, the solution
is obtained by means of a generalized Polynomial Chaos
(gPC) expansion of the stochastic variables of interest and
the Galerkin method (also see [9]). Similarly, in [10] the
problem of wave scattering from a bounded, impenetrable
object with randomly rough boundaries has been studied by
suitable mapping of the Helmholtz equation to a stochastic
partial differential equation. The use of a node-based FEM
within the stochastic framework was originally proposed in the
context of quantifying uncertainty in the mechanical responses
in structures due to randomness in material properties [11]. In
an electrostatics setup, a similar problem has been formulated
in the case of assessing the sensitivity of electrocardiography
to organ conductivity [12]. In these approaches, a stochastic
character is given to a material property (corresponding to
certain coefficients in the FEM equations) (also see [13] for
a review). The problem that we consider is more challenging
because while the material properties remain the same, the
computational domain undergoes stochastic deformations. In
contrast to other formulations, we use an edge-based formu-
lation of the FEM, building on our earlier model that was
recently developed for the purpose of estimating wave scatter-
ing from rough surfaces with heterogeneous soil moisture [14].
Finally, stochastic collocation methods [15], [16] have been
proposed that sample intelligently from the random domain
characterizing the problem, while only requiring the use of
an existing deterministic solver (used in the Monte Carlo
method). Depending on the dimensionality of the random
domain, such methods can offer more efficient solutions than
other methods, and we highlight this aspect subsequently in
the text.

Outline: In Section II, we describe the mesh deformation
scheme. It is readily incorporated in a Monte Carlo (MC) tech-
nique for computing ensemble averaged rough surface scatter-
ing, and we validate it against the small perturbation method.
In Section III, we present the Monte Carlo-free stochastic
solution to rough surface scattering; first, we review certain
concepts of stochastic expansions of randomly rough surfaces,
which we incorporate into the mesh deformation scheme.
Next, we use the concept of gPC to construct a multivariate
stochastic basis for the scattered field and perform Galerkin
testing, resulting in a large system of equations. In Section IV
we highlight stochastic collocation (SC) techniques; specif-
ically, sparse grid (SG) and Stroud-3 (S3) integration rules
for solving the rough surface scattering problem. Section V

deals with the important issues that arise in the computation
of the system of equations so obtained. Finally, in Section VI
we present numerical comparisons between the Monte Carlo
and stochastic approaches. After interpreting these results, we
identify key implementation issues and highlight open issues.

Notation & assumptions: In this manuscript, scalars (real or
complex) are denoted by lower case letters, vectors by boldface
lower case letters or by symbols with an overhead arrow,
and matrices by upper-case letters. In all numerical results
presented, we consider transverse electric polarization, where
the electric field is transverse to the computational domain.

II. MESH DEFORMATION SCHEME AND ITS VALIDATION

We propose the following smooth mesh deformation tech-
nique. Consider the schematic as shown in Fig. 1, and in
particular, the shaded regions. The latter defines a ‘sandwich’
region which includes the interface (at y = 0), defined as
−hb < y < ht. Next, we deform the mesh near the interface
by moving all nodes within this sandwich vertically by an
amount ∆y in relation to the local height of the (zero mean)
rough surface instance, s(x), as follows:

∆y =

s(x)
(
ht−y
ht

)
, 0 < y < ht

s(x)
(
y+hb

hb

)
, −hb < y < 0

(1)

where ht is the maximum ordinate up to which mesh is
being deformed (just below the RCS contour), and −hb
is the minimum ordinate for the deformation. It is evident
from Eq. (1) that mesh nodes along the smooth air-dielectric
interface (i.e. y = 0) take the shape of the rough surface,
whereas nodes outside the sandwich and on either the top or
bottom-most boundary (i.e. y = ht,−hb) do not move.

We make an important remark here, that the above scheme
provides a fast way of performing traditional Monte Carlo
simulations of rough surface scattering, while also enabling
a framework for Monte Carlo-free stochastic computations of
the same problem, which we develop in Sec. III.

A. Review of the finite element method

By using first order Whitney basis functions, an edge-
based formulation of the FEM equations, first order absorbing
boundary conditions (along the path A − B − F − E − A
in Fig. (1)), and the Galerkin method [17], we arrive at a
sparse, well determined system of equations in the unknown
coefficients of the basis functions, u, of the form;

Au = b, A ∈ Cm×m,u,b ∈ Cm, with, (2a)
Apq = Σ

e
αe,pq(~re) + δpq νp(~rp), (2b)

bp = τp(~rp), (2c)

where m is the number of edges in the domain tessellation,
~re denotes a six-tuple of the form, (xi, xj , xk, yi, yj , yk), for
the eth element composed of nodes (i, j, k), ~rp denotes a four-
tuple of the form (xi, xj , yi, yj) for the pth edge composed
of nodes (i, j), αe,pq is a function that describes the coupling
between the pth and qth basis functions over the eth element, δpq
is the discrete delta function, and νp, τp are boundary integral
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functions over the pth edge (if it belongs to the boundary).
The explicit forms of the functions α, ν, τ can be inferred
by inspection of the vector FEM equation [14, Eq. 2] and
the expression of the magnetic field, ~H , in the the Whitney
basis as: ~H(~r) =

∑3
i=1 ui

~Wi(~r), where ui is an unknown
(complex) scalar to be determined, ~Wi, is a Whitney basis
function (also see Appendix A).

B. Validation with the small perturbation method

There are at least two known strategies for computing Monte
Carlo averages of rough surface scattering using the FEM, and
a third strategy is proposed here. In the standard approach
[14], a different mesh is created for each instance of a surface
realization and the above matrix equation Eq. (2) is solved
each time. A more efficient technique involves using a single
‘master’ mesh, which is reconfigured for each instance by local
modifications only in the vicinity of air-dielectric interface (see
[5], or [6], [7] for related approaches).

Instead, by using the proposed mesh deformation scheme,
we gain two computational advantages in comparison with
the earlier schemes, in particular over [5]: (a) There is no
requirement to search for the mesh nodes nearest to the
interface, which leads to a significant reduction in compute
time, and (b) since all nodes are nudged in a smooth fashion,
no mesh element becomes skew, a phenomena which was
observed to happen on rare occasion in [5].

After solving Eq. (2) for a particular instance and computing
the quantities of interest, all mesh nodes are moved back to
the original unperturbed positions, and the process repeated for
further rough surface instances until satisfactory convergence
of the Monte Carlo average is achieved.

The core FEM solver has previously been validated with
analytical solutions for smooth dielectric cylinder scattering
in earlier work [18]. Since the main innovation presented here
pertains to the effect of rough surface scattering, we compare
our results with a semi-analytical approach called the small
perturbation method (SPM) which gives analytical expressions
for ensemble averaged bi-static radar cross-sections [19] and is
accurate for low levels of surface roughness and surface slope
(a similar validation was performed in our earlier work on
rough surface scattering [14]). The results of this validation are
shown in Fig. (2); 100 Monte Carlo iterations took 12m45s on
a 3.1GHz Intel Xeon processor consuming 400MB of RAM.
There is a slight over-estimation by the SPM as compared to
the FEM; this is because the standard formulation of the SPM
uses plane wave excitation, whereas to prevent edge diffraction
in the FEM, we use a “tapered” incident field [20].

III. STOCHASTIC GPC APPROACH FOR ROUGH SURFACE
SCATTERING

In this section we present a stochastic solution using gPC
and Galerkin testing to the rough surface scattering problem
by utilizing the mesh deformation scheme detailed earlier. We
begin by reviewing some essential stochastic theory.
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Fig. 2: Validation of rough surface scattering computed via
FEM with the SPM. Note that we display first order incoherent
scattering results, due to which the (coherent) peak in the
specular direction is missing in comparison with the FEM. The
surface length is a = 60λ, the correlation length is l = 0.5λ,
and the root mean square surface roughness, h, is given by
kh = 0.1, where k = 2π/λ. The substrate has a homogeneous
relative permittivity: 4 − 1j, with tapered wave incidence at
40◦ from the normal. The other dimensions are as per the
caption of Fig. (1).

A. Review of Stochastic expansions and basis functions

Stochastic Expansion: A stochastic process, such as one
describing a random interface, s̃(x, θ), can be represented
by the Kosambi–Karhunen–Loève theorem (KKL) [21], [22]
as an expansion in terms of the eigenfunctions fi(x) (with
eigenvalue ηi) of a covariance function C(x1, x2), and further
approximated by a truncation of the expansion to d terms, as:

(3)

s̃(x, θ) = s0(x) +
∞∑
i=1

√
ηi zi(θ) fi(x)

≈ s0(x) +

d∑
i=1

√
ηi zi(θ) fi(x),

where s0(x) is the mean height of the surface (the x-
dependence can capture a tilted ground for example), {zi(θ)}
are zero mean, mutually uncorrelated random variables, and θ
denotes random inputs in a properly defined probability space.
It is known that the number of significant eigenvalues ηi in
Eq. (3) decrease with an increase in the correlation length,
l, and thus the truncation error decreases as the correlation
length increases [23]. An exponential covariance function,
C(x1, x2) = exp (|x1 − x2|/l), is chosen for two reasons;
(a) many natural rough surfaces display such a covariance
function [24], and (b) such a function admits to analytically
expressible eigenfunctions and values [23]. The latter is only
a technical convenience since eigenfunctions and values can
be evaluated numerically for other covariance functions.

Stochastic basis functions: In order to find a stochastic
solution to the problem of rough surface scattering, we use
the concept of generalized polynomial chaos (gPC) basis
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functions [25]. Univariate gPC basis functions are orthogonal
polynomial functions that satisfy the following conditions;

E[ψp(zi)ψq(zi)] =

∫
ψp(θ)ψq(θ)ρ(θ)dθ = ψ̃pδpq, (4)

where {p, q} ∈ N , ψ̃p is a normalization factor, and zi
is a random variable with finite moments and a probability
distribution function (PDF), ρ(θ). Based on the above, we
construct a linear space of polynomials of degree at most
n, given by Pn(zi), and a set of polynomials that live in
this space, {ψk(zi)}nk=0 ∈ Pn(zi), to characterize univariate
gPC basis functions in zi. Since the rough surface expansion
as per Eq. (3) consists of d random variables, we employ a
multivariate gPC expansion to derive a stochastic solution to
the scattering problem. Specifically, we construct d-variate nth-
degree gPC functions, belonging to a space Pdn of dimension
w = ( n+d

n ), which are the products of the univariate polyno-
mials mentioned above, i.e.

Ψi(z) = ψi1(z1) . . . ψid(zd), 0 ≤ |i|=
d∑
j=1

ij ≤ n, (5)

where ~z = (z1, . . . , zd) is a d-dimensional random vector and
i = (i1, . . . , id) is a multi-index notation for a d-tuple. We
choose Legendre polynomials as our gPC basis functions in
Eq. (4) for reasons of technical convenience. With zi being a
uniform random variable in [−1, 1], the PDF ρ(θ) in Eq. (4)
becomes constant and equal to 1

2 .

B. Approximations in the FEM matrix elements

To proceed towards a stochastic solution, we re-examine the
matrix elements that arise for scattering from a deterministic
rough surface, i.e. in Eq. (2). A particular matrix element, Apq ,
captures the coupling between the two basis functions ~Wp and
~Wq over all the elements in common between them. This is a
function of the coordinates of the three nodes of each element
[17].

Next, we implement the mesh deformation on each node
as per Eq. (1); since there is no x−shift in the nodes, the
shift for each node can be expressed as ∆~r = (∆y)ŷ, where
∆y = s(x)(1− |y|/h) as per Eq. (1) and h = ht (for y > 0)
or h = hb (for y < 0) (with both ht, hb > 0). Accordingly,
the perturbed matrix elements, Ãpq , and b̃p can be expressed
in terms of an order-expansion in s(x) as follows:

Ãpq ≈ Σ
e
αe,pq(~ri + ∆~ri, ~rj + ∆~rj , ~rk + ∆~rk)

+ δpqνp(~rc + ∆~rc, ~rd + ∆~rd)

= Σ
e
{α(0)

e,pq(~re) + α
(1)
ei,pq(~re)s(xi) + α

(1)
ej,pq(~re)s(xj)

+ α
(1)
ek,pq(~re)s(xk) + α

(2)
eij,pq(~re)s(xi)s(xj)

+ α
(2)
ejk,pq(~re)s(xj)s(xk) + α

(2)
eki,pq(~re)s(xk)s(xi)

+ α
(2)
eii,pq(~re)s

2(xi) + α
(2)
ejj,pq(~re)s

2(xj)

+ α
(2)
ekk,pq(~re)s

2(xk)}

+ δpq{ν(0)
p (~rp) + ν

(1)
p,i (~rp)s(xi) + ν

(1)
p,j (~rp)s(xj)}

(6a)
(6b)b̃p = τ (0)

p (~rp) + τ
(1)
p,i (~rp)s(xi) + τ

(1)
p,j (~rp)s(xj),

where the notation is borrowed from Eq. (2), and the super-
script (j) on any function denotes the order of the accompa-
nying surface function, s(x). Making the connection between
the surface function and its stochastic expansion leads us to a
system of equations, as demonstrated next.

C. Stochastic Galerkin method

With the spatial and stochastic basis functions fully defined,
in Sec. II-A and Eq. (5), respectively, we implement an
overall spatial and stochastic Galerkin procedure by expanding
the unknown field, ~H(~r, ~z), in composite basis functions,
~Φl,k(~r, ~z), of the form:

~Φl,k(~r, ~z) = ~Wl(~r) Ψk(~z), 1 ≤ l ≤ m, 1 ≤ k ≤ w, (7a)
~H(~r, ~z) =

∑
l,k

~Φl,k(~r, ~z) vl,k (7b)

where the multi-index, i, from Eq. (5) has been converted
to a single index, k, and the scalars vl,k are the object of
computation.

Further, we replace the deterministic rough surface, s(x), in
the matrix Eq. (6) by the stochastic counterpart, s̃(x, θ), from
Eq. (3) and re-write Eq. (6) in a more convenient manner, as:

Ãpq = βpq +

d∑
i=1

β(i)
pq zi +

d∑
i,j=1

β(i,j)
pq zizj , (8a)

b̃p = ζp +
d∑
i=1

ζ(i)
p zi (8b)

where the βpq’s and ηp’s, which are functions of space, can be
inferred by inspection of Eqs. (6) and (8). Also note that by
choosing first order Whitney basis functions, the unperturbed
matrix elements βpq have analytical expressions [17] and thus
are very fast to compute (see Appendix A).

We now perform Galerkin testing along the same set of basis
functions as Eq. (7a) (as we did in Section II), and arrive at
a large, sparse, and well determined set of equations of the
following form:

F v = g, F ∈ Cmw×mw, v,g ∈ Cmw, (9)

where the vector v, which is composed of the scalars from
(7b), is solved for.

In order to visualize the matrix structure in Eq. (9), we
conceptually break up F into w×w blocks. Further, we write
v,g in the form: v = [ṽ1, . . . , ṽw]T , g = [g̃1, . . . , g̃w]T ,
where ṽk, g̃k ∈ Cm, and denote the corresponding w × w
blocks of F as F̃ab, where F̃ab ∈ Cm×m. Connecting Eqs. (8)
and (7a) with (9) gives:

F̃ab = REab +
d∑
i=1

R(i)E
(i)
ab +

d∑
i,j=1

R(i,j)E
(i,j)
ab , (10a)

g̃a = r ea +
d∑
i=1

r(i) e(i)
a , (10b)

where 1 ≤ a, b ≤ w, and :
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• the E’s and e’s are stochastic inner products defined
as: Eab = 〈Ψa(~z)Ψb(~z)〉, E(i)

ab = 〈Ψa(~z)ziΨb(~z)〉,
E

(i,j)
ab = 〈Ψa(~z) zi zj Ψb(~z)〉, ea = 〈Ψa(~z)〉, and e

(i)
a =

〈Ψa(~z) zi〉. Due to the orthogonal nature of the polyno-
mials ψk, many of these inner products are zero.

• the R’s are matrices in Cm×m, specifically, the (p, q)

elements of R, R(i), R(i,j) are βpq, β
(i)
pq , β

(i,j)
pq , respec-

tively (as per Eq. (8a)); and the r’s are vectors in Cm,
specifically, the p-th elements of r, r(i) are ζp, ζ

(i)
p ,

respectively (as per Eq. (8b)).
The evaluation of the above defined inner products is detailed
in [26]. It is important to note that the R’s and r’s do not
depend on the block indices {a, b} of F̃ab, or {a} of g̃a,
and hence need to be computed only once, irrespective of the
degree of gPC expansion (n in Eq. (5)).

D. Computation of Radar Cross-Section
In electromagnetic scattering problems, the bi-static radar

cross-section (RCS) is a primary quantity of interest. Due
to the stochastic nature of the rough surface, an ensemble
averaged RCS comes closer to simulating the observations of
a radar than just the scattered field from a single instance
of a surface, and thus the quantity of interest becomes:
〈σHH〉 = 2π lim

r→∞
r〈|Ef (~r|2〉/|Ei|2, where Ef (~r), Ei rep-

resent the z−component of the far-field and incident field,
respectively. Note that since our problem is in two dimensions,
the above definition reports a RCS-per-length quantity, also
referred to as the radar echo width (REW) in the literature.
By making certain assumptions (detailed in Appendix B), we
express the far field as a linear combination of the field com-
ponents of the edges on and neighbouring the RCS integration
contour (Γ in Fig. 1):

Ef (~r) =
∑
l∈Γe

γl ul, (11)

where ul is the field component along the lth edge, Γe is the
set of all edges that belong to elements with an edge on the
contour Γ, and γl is a geometry-dependent factor.

Having solved the large set of equations in Eq. (9), we
proceed to compute the ensemble averaged RCS by taking the
expectation value of the field intensity, |Ef (~r)|2. As discussed
previously in Sec. III-C, the field associated with the lth edge
is replaced by the stochastic counterpart via Eq. (7b). Thus,
ul in Eq. (11) is replaced by

∑
k Ψk(~z)vl,k where 1 ≤ k ≤ w.

Further, we choose to perform the deformation outlined in
Sec. II such that the maximum ordinate, ht in Eq. (1), is just
short of the contour Γ (also see Fig. 1). As a result, this contour
remains horizontal in all (physical or stochastic) meshes.
Inspection of the explicit form of γl from Eq. (18) (See
Appendix B) reveals that this choice of ht greatly simplifies
the algebra, as γl has no stochastic dependence. The stochastic
far field becomes: Ef (~r, ~z) =

∑
l∈Γe

∑
k γlΨk(~z) vl,k, which

leads to the following expression for the ensemble averaged
intensity in terms of the stochastic inner products defined in
Sec. III-C, Eq. (10)

〈|Ef (~r, ~z)|2〉 =
∑
a,b∈Γe

w∑
p,q=1

(γ∗aγb) (v∗a,pvb,q)Epq. (12)

where the stochastic inner product, Epq , is as introduced in
Eq. (10).

IV. STOCHASTIC COLLOCATION APPROACHES FOR ROUGH
SURFACE SCATTERING

Let us say that σ(~r, ~z) represents the solution to the rough
surface scattering problem evaluated at a spatial location ~r
by a random rough surface characterized by a d−dimensional
random vector, ~z, as given by the KKL expansion in Eq. (3).
The MC approach for finding the expectation value of σ is to
simply average over many instances of the rough surface, i.e.

〈σ〉 =

nmc∑
i=1

σ(~r, ~zi)/nmc, (13)

where nmc is the number of MC iterations and ~zi generates
the ith instance of the rough surface.

The stochastic collocation (SC) method starts by construct-
ing a multivariate pdf of the d−independent random variables
as w(~z) =

∏d
j=1 wj(zj) over the tensor product domain

Dd of the individual random variable domains, and express-
ing the expected value as 〈σ〉 =

∫
Dd σ(~r, ~z)w(~z)d~z, where

wj(zj) is the pdf of the jth random variable. Next, σ(~x, ~z)
is expressed in terms of a basis of multivariate polynomials,
{P (i)(~z)}di=1, constructed from nsc evaluations of σ(~r, ~z) as:
σ(~r, ~z) =

∑nsc

i=1 σ(~r, ~zi)P
(i)(~z), where, for instance, P (i)

could be (but not limited to) a tensor product of univariate
Lagrange interpolating polynomials. Thus, the expectation
value of σ is:

〈σ〉 =

nsc∑
i=1

σ(~r, ~zi)αi, (14)

where αi =
∫
Dd w(~z)P (i)(~z)d~z. Noting the similarity in form

between Equations (13) and (14), we remark that the same
deterministic solver that is used for the MC method can be
used in SC approaches.

Various numerical cubature rules are used to evaluate the
coefficients αi, which depend on the form of w(~z) and P (i)(~z).
These range from full tensor product rules (TP) [27], to sparse
grids (SG) [28], or Stroud-2/Stroud-3 (S2/S3) [29] integration
rules. Each of these rules is characterized by a number nsc,
the set of weights αi, and a set of specified quadrature points,
~zi, that can be used in Eq. (14) (see [30] for a review). In
the subsequent sections, we detail the results obtained for
the rough surface scattering problem when the SG or S3
integration rules are applied.

V. COMPUTATIONAL CONSIDERATIONS

A. On the stochastic gPC approach

The single, large, sparse matrix equation in Eq. (9) needs
to be solved only once, thereby avoiding a Monte Carlo
procedure. The trade off, of course, is that the resulting set
of equations in Eq. (9) is larger (by a factor of w) than that
encountered for a single Monte Carlo iteration as per equation
Eq. (2) (of size m). Whereas a direct solution (using a LU
decomposition via the open source software, MUMPS [31])
suffices for the Monte Carlo case, the same strategy fails for
reasonable values of w in the case of solving the stochastic
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equations (i.e. Eq. (9)) because of computational issues in
storing and solving the larger system of equations.

We overcome the above computational challenge by adopt-
ing two techniques:

1) Speed improvement: we implement (using an open-
source C++ library for linear algebra, Seldon [32]) an
iterative solver based on the pre-conditioned biconju-
gate gradient stabilized (BiCgStab) algorithm. For the
purpose of pre-conditioning — after considering the
discussion on closely related problems in [33] — we
implement a block-diagonal, mean-based preconditioner
[34] of the form P = diag{R, . . . , R} where R is
the matrix corresponding to a flat surface and whose
elements are βpq from Eq. (8a).

2) Memory improvement: the above solver is implemented
in a “matrix free” form (using Seldon [32]), since the
matrix F never needs to be stored in memory and only
matrix-vector products need to be computed. Although
we don’t store the entire F matrix, all the R matrices
(1 + d+ d2 in total) and r vectors (1 + d in total) (see
Eq. (10) need to be stored, which is a considerable
increase in memory load as compared to the Monte
Carlo case.

Parameter selection: We now discuss the physical param-
eters that govern m,w, and hence the computational costs
incurred in solving this system of equations. Recall that m
is the number of edges in the finite element tessellation of the
domain and w is the size of the stochastic space.
• Determining m: In the horizontal direction, it is necessary

for the surface to be at least several times the correlation
length in order to faithfully capture the statistical proper-
ties of the surface; for exponentially correlated surfaces,
this number is a = {12 − 25}l (see Appendix C for
details). With a choice of l = λ as the correlation length,
we fix the horizontal extent of our mesh to be a = 20λ.
In the vertical direction, we have maintained a 1λ sep-
aration between the surface and the upper boundary to
allow effective implementation of the radiation boundary
condition [14]. The extent from the surface to the bottom
boundary is determined by the depth of inhomogeneities
in the domain that need to be incorporated; for the
purpose of this paper, we fix this to λ. The horizontal and
vertical extents having been fixed, m gets determined by
well known considerations of numerical convergence of
FEM equations.

• Determining w: The parameter w is directly determined
by the choice of number of basis functions d, and their
order n (both defined in Eq. (5)) with w = ( n+d

n ). The
number of basis functions, in turn, depends inversely on
the correlation length of the surface (l), and directly on
the length of the surface (a) [23]. In the results that we
present in the following section, we fix d by allowing
all eigenvalues with magnitudes greater than 1

10 of the
maximum eigenvalue (also see [35] and [25] for related
discussions). As an illustration, some typical values based
on this criteria are shown in Table I.

Thus, starting from the electrical size of the problem, and

the nature of the rough surface, we arrive at the dimensionality
of the overall problem in a way that can be generally applied
to most electromagnetic scattering problems.

TABLE I: Number of basis functions, d, as determined by the
surface length, a, and the correlation length, l. For meshes with
l = {15, 30}, we have m = {114603, 229103} respectively.
All lengths are in terms of the wavelength.

↓ l \ a→ 15 30
1 15 29

0.5 29 58

B. On the stochastic collocation approach

The SG integration rule needs the specification of a “level”
parameter, k, [15] in order to implement Eq. (14). This
parameter regulates the total degree of the multivariate poly-
nomials, P (i)(~z), allowed in the computation of Eq. (14). As
an example, k = 0 corresponds to implementing a 1−point
quadrature rule in all random dimensions, and higher values
of k lead to more accurate quadrature rules (Gauss-Hermite
quadrature rules in this case due to the normal distribution
of the random variables in the KKL expansion), but at in-
creased computational costs. For large values of d (a case that
well describes our problem), the following expression [15]
gives the number of deterministic-solver evaluations required:
nsg ≈ 2k d

k

k! . Evidently, this number can grow very quickly
with k, and soon exceed the number of evaluations required
in the MC method.

The S3 integration rule is accurate if the function of interest,
σ(~r, ~z) in this case, can be represented by (up to) a third
polynomial in ~z. Here, the number of evaluations [29] required
is given as ns3 = 2d.

Thus, the computational complexity of SC methods is
established in terms of the dimensionality of the random space,
d, and additionally in the case of SG, by the level parameter,
k. The elegance of the SC methods is that there is no need to
derive a set of coupled equations as in the case of the stochastic
gPC approach, and so an existing deterministic solver can be
used for solving the problem at hand.

VI. RESULTS & DISCUSSION

In this Section, we present numerical results and compar-
isons between the stochastic and Monte Carlo approaches
discussed in this paper.

A. Comparing stochastic gPC and Monte Carlo methods

Numerical results: Due to the large memory requirements
of the stochastic gPC method, we keep the surface length at
20λ. As per the computational considerations of eigenvalue
decay mentioned in Section V, we set d = 15 and n = 1.
We found that setting n = 2 made almost no difference to the
results, but greatly increased the computational costs. In most
results, the iterative (BiCGStab) solver takes between 10-28
iterations and solves the problem with a residue that is less
than 10−10. As for the Monte Carlo method, we find the results
to have converged after 100 instances, and use this number
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in our comparisons. On an Intel Xeon 3.1GHz processor, the
Monte Carlo method took ≈ 950s, while the gPC method took
between 1200s (10 iterations) and 2400s (28 iterations). While
the memory consumption in the Monte Carlo method stayed
low (≈ 100 − 200 MB), the stochastic method took close to
10 GB of RAM.

In Fig. (3) we show the comparison between the two
methods by plotting the bi-static radar cross-section for a fixed
incidence angle (40◦ from the normal), i.e. the behaviour of
the scattered power as a function of the scattering angle. We
vary the levels of surface roughness, thus covering the three
regimes of interest (with k = 2π/λ and h being the root mean
square (rms) roughness): a good match (with kh = 0.05), the
(approximate) point of deviation (with kh = 0.1), and the case
when the results don’t compare well (with kh = 0.2). We find
that for kh < 0.1, there is a quantitative agreement between
the two methods.

There are two possible causes for a lack of agreement at
higher values of surface roughness.

• The first concerns the order of expansion of the perturbed
matrix/vector elements (see Eq. (6)), where we adopted
a second order expansion for the matrix elements, Ãpq
and first order for the vector elements b̃p (as reflected
in Eq. (8)). As the r.m.s. roughness increases, higher
order terms would be required to retain accuracy of
the order expansion. This of course, comes with a high
computational cost; for instance, if we went upto the third
order for the matrix elements, an additional d3 (sparse)
m×m matrices would need to be stored.

• The second cause is to do with the order, n, of the gPC
basis functions employed being insufficient for higher
values of surface roughness. Unfortunately, the relation
between w, d, n is such that for a fixed value of d, going
to higher values of n leads to a steep increase in w; for
instance, for d = 15, n = 1, we have w = 16, whereas
for d = 15, n = 3, we have w = 816 – nearly two
orders of magnitude higher. In both the above possible
causes, Monte Carlo based approaches would appear
more favorable when faced with such high computational
costs.

Finally, we would like to emphasize that one of the pri-
mary objectives of this paper is a proof of concept of the
Monte Carlo and stochastic–solution approaches, and our
implementation of the gPC is far from being optimal. The
memory requirements can be greatly reduced by implementing
the stochastic solver with support for sparse vectors. Fur-
ther, since both the approaches fall under the category of
“embarrassingly parallel” algorithms, the processor time can
similarly be reduced by parallelizing the code. For instance,
in Eqn. (10), the component matrices that make up Fab,
i.e. Eab, E

(i)
ab , E

(i,j)
ab , R(i), R(i,j) can all be evaluated indepen-

dently on separate processors due to their independence. Fur-
ther, in implementing the solution to the system of equations in
Eqn. (9), the matrix-vector product that requires computation
is composed of the multiplication of a w×w block matrix by
a w × 1 block vector. Each of these blocks can be computed
on a separate processor in order to speed up the overall

computation. These, and other computational optimizations are
part of ongoing work.

The curse of dimensionality: The above discussion natu-
rally leads to a more general discussion of the applicability
of the stochastic gPC method. In the endeavor to cast a
deterministic set of scattering equations into a stochastic form,
the key step was the KKL expansion of the surface as an
eigen expansion. We plot the eigenvalues in Fig. (4) for a
series of surfaces with different correlation lengths. This figure
uncovers an important limitation of the stochastic method;
since the eigenvalues decay gradually for smaller correlation
lengths, we would require higher and higher number of eigen
functions in the KKL expansion to represent the surface
accurately (i.e. d), thus increasing the computational load to a
point where MC methods win over (also see Table I). On the
other hand, the stochastic method wins over for surfaces with
long correlation lengths since the convergence of MC methods
typically goes as O( 1√

N
) (N is the number of iterations. While

the computational cost of stochastic gPC methods becomes
prohibitive as d increases, stochastic collocation techniques
offer an interesting alternative to MC methods depending on
the problem parameters and we discuss these next.

B. Comparing stochastic collocation and Monte Carlo meth-
ods

It is found by taking several examples that the range for d
in order to accurately represent rough surfaces is 15 − 100,
for the range of surface correlation lengths considered in this
text. In the SG method, for k = 1, 2 we get nsg ≈ 2d, 2d2,
respectively, while we have ns3 = 2d for the S3 method. On
the other hand, the number of evaluations required in the MC
method is independent of d, and we find that nmc ≈ 100 eval-
uations are sufficient for convergence. Thus, for all practical
cases, k = 1 is the only SG level that can be competitive to
the MC method.

We compared the results of SG and S3 with those obtained
by the MC method for an extensive range of parameters of
surface rms roughness and correlation length, and show a
subset of the results in Fig. (5) We find that;
• At low levels of surface roughness, all four methods

(gPC,SG,S3,MC) agree. Within these surfaces, for those
with a higher correlation length, (SG/S3) require lesser
number of iterations as compared to MC and therefore are
optimal, because a lower d is sufficient to characterize the
surface.

• As the mean roughness of the surfaces increases, the
agreement of SG/S3 with MC only remains for those
with a higher correlation length. To make the agreement
better, the dimensionality of the random space (d) must
be increased, and this is seen in Fig. (5), where going
from d = 20 to d = 50 results in an excellent match
between SC and MC results. However, beyond a point,
this quickly leads to a higher number of iterations for SC
as compared to MC, thus negating the advantage gained.

• Rough surface scattering is often a problem characterized
by a large number of random variables (typically d > 50),
and for such cases MC is the preferred approach. For
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(a) kh = 0.05
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(b) kh = 0.1
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(c) kh = 0.2

Fig. 3: Comparison between stochastic gPC and Monte Carlo
results for various values of rms surface roughness, h. For all
figures, the surface length is 20λ, while the correlation length
is λ. The substrate has a homogeneous relative permittivity:
4− 1j, with wave incidence at 40◦ from the normal.
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Fig. 4: Decay of (normalized) eigenvalues from the KKL
expansion as a function of correlation length, l, for a surface
length, a = 20. All lengths normalized to wavelength.

those cases where a lower number of random variables are
accurate in characterizing the problem (typically d < 20
found for highly correlated surfaces), stochastic methods
will win over the Monte Carlo method.

In summary, we can say that in any scattering problem,
a careful study of the correlation length and r.m.s. rough-
ness of the stochastic process is key to choosing the right
solution approach. The earlier discussion on the ‘curse of
dimensionality’ with regards to the stochastic gPC method is
well appreciated in the literature [33]. The idea that the actual
quantity of interest (the RCS in our case) can be quantified by
a lower dimensional basis even though it is embedded inside
a much higher dimensional space has spawned recent work
relating to ‘dimensionality reduction’ [36]–[38]. In the case of
stochastic collocation methods, the use of adaptive sparse grids
[39], [40] is being seen as a way of out-performing Monte
Carlo methods. These and other methods are an active area of
research.

Role of incident field: Since the scattering object is a
half-space and therefore unbounded, care needs to be taken
in the choice of the incident field. Choosing a plane wave
has a characteristic feature of producing a sinc-like diffraction
pattern due to uniform illumination of a finite surface. A
common alternative is to use a “tapered” wave with a gaussian
amplitude profile [20], which is an approximate solution to
Maxwell’s equations. Although detailed studies on the deter-
mination of the optimal width of this taper have been done
[41], including such an incident field is beyond the scope of
the present paper. This is because computational load increases
due to the need for a longer surface (i.e. m increases), since it
is necessary to include several correlation lengths within the
beam width for numerical convergence of the results. Note that
this is not an issue in the case of Monte Carlo simulations [14],
where the memory requirements are on the order of a single
(sparse) m×m matrix, whereas in the stochastic case it is on
the order of 1 + d+ d2 (sparse) m×m matrices.

Postscript: We acknowledge a technical problem in com-
paring the results obtained by the two different approaches
outlined in the paper in Sections II and III, respectively. In
the stochastic gPC approach of Section III, we find that since
the underlying probability distribution function is not Gaussian
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(a) d = 20
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(b) d = 50

Fig. 5: Comparison between stochastic collocation and Monte
Carlo results for two values of random dimensionality, d. For
all figures, the surface length is 60λ, rms surface roughness,
kh = 0.2 while the correlation length is 5λ. The substrate has
a homogeneous relative permittivity: 4− 1j, with plane wave
incidence at 40◦ from the normal.

in the case of Lengendre polynomials, the prescription from
Eq. (4) leads to uncorrelation of the random variables, but this
does not imply independence. A Monte-Carlo based solution
to the rough surface scattering problem would entail imple-
menting Eq. (3) to generate an instance of a rough surface.
Now, pseudo-random number generators produce (nearly) in-
dependent random variables. However, as discussed, the choice
of Legendre polynomials in a stochastic gPC approach to the
same problem now leads to random variables {zi} that are
not independent. Thus, a comparison between the results of
these two approaches is not expected to exactly coincide. This
issue has been identified in the literature [25], [42], [43], and
continues to be an area of active research. Ascertaining the
exact contribution due to this effect alone is difficult, since
other factors such as those identified above (order of stochastic
expansion, r.m.s. roughness, etc.) simultaneously contribute to
the overall solution. At least from the study of scattering by
low roughness surfaces (e.g. Fig. (3a)), where the solution
matches the Monte Carlo results exactly, this effect does not

seem to have any appreciable impact. Further, we note that
this issue does not affect the stochastic collocation methods
since no expansion in the basis of orthogonal polynomials
w.r.t. some pdf is involved.
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APPENDIX A
FINITE ELEMENT MATRIX COEFFICIENTS

The unperturbed matrix and vector coefficients,
βpq(xi, xj , xk, yi, yj , yk) ≡ βpq and ζp, respectively, are
defined as [17]:

βpq =

(i,j,k)∑
e

lplq
∆

(
1

εr
+
k2

0µr
24

(x2
i − x2

j + x2
k − 3xixk + xixj

+xjxk + y2
i − y2

j + y2
k−3yiyk + yiyj + yjyk))− δpqlp

βpp =

(i,j,k)∑
e

l2p
∆

(
1

εr
− k2

0µr
24

(x2
i + x2

j + 3x2
k − 3xixk + xixj

− 3xjxk + y2
i + y2

j + 3y2
k − 3yiyk + yiyj − 3yjyk))

− jk0lp

ζp =

[
jk0Eiz +

1
√
εrµr

(nx
∂Eiz
∂x

+ ny
∂Eiz
∂y

)

]
lp
Z0

where ∆ = 1
2 (yi(xk−xj)+yj(xi−xk)+yk(xj−xi)), and edge

p (length lp) is composed of nodes {i, j} (i.e. edge i per our
convention), edge q (length lq) of nodes {j, k} (i.e. edge j),
n̂ = (nx, ny, 0) is the outward normal to outer-most contour
above the ground, and Eiz is the magnitude of the z−polarized
incident electric field.

In βpq , for a perturbation in the y’s as yi → yi + δi with
δi = s(xi)(1 − |yi|/h), and s(xi) =

∑d
a=1

√
ηafa(xi)za, we

get the following multi-variable Taylor expansion (upto order
two for βpq and order one for ζp):

βpq(y + δ) ≈ βpq +
∑
i,j,k

δi
∂βpq
∂yi

+
∑
{i,j}

δiδj
2

∂2βpq
∂yi∂yj

ζp(y + δ) ≈ ζp +
∑
i,j

δi
∂ζp
∂yi

For Eq. (8a), i.e. Ãpq = βpq +
∑d
a=1 β

(a)
pq za +∑d

a,b=1 β
(a,b)
pq zazb, and for Eq. (8b), i.e. ζ̃p = ζp +∑d

a=1 ζ
(a)
p za, we can simply the expressions as:
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β(a)
pq =

∑
e

∑
i,j,k

(
1− |yi|

h

)
√
ηafa(xi)

∂βpq
∂yi

β(a,b)
pq

=
∑
e

∑
{i,j}

1

2
(1− |yi|

h
)(1− |yj |

h
)
√
ηaηbfa(xi)fb(xj)

∂2βpq
∂yi∂yj

ζ(a)
p =

∑
i,j

(
1− |yi|

h

)
√
ηafa(xi)

∂ζp
∂yi

We choose to implement these partial derivatives numeri-
cally using a central difference scheme, though they can be
evaluated analytically in certain cases.

APPENDIX B
RADAR CROSS-SECTION COMPUTATION DETAILS

By making a piece-wise constant approximation for the in-
tegral that arises in Huygen’s principle for computation of the
scattered far field [44], and using the first order Whitney basis
functions for the magnetic field [17], we get the following
expression (for H-pol);

(16)Ef (~r) =

√
k0

8πr
exp[j(

π

4
− k0r)]

∑
l∈Γ

[sin(φl − θs)Ezl

− Z0µrHtl] exp[jk0r
′ cos(ψl − θs)]ll

where θs, φl are geometry dependent factors as denoted in
Fig. 6, and Htl, Ezl represent the tangential (in a counter
clockwise sense) and z-component of the magnetic and electric
field along the lth edge, respectively. The latter can be written
as an average over the elements (denoted by superscript e
below) on either side of Γ as

Ezl =
jZ0

2k0

2∑
e=1

1

∆eεer

3∑
l=1

lel u
e
l . (17)
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Fig. 6: Schematic for RCS computation. Part of the surface is
denoted by the line segments ABCD (corresponding to Γ).
The finite elements accompanying the edge BC are shown in
shaded-gray; the addition of the other edges of these elements,
such as BF,FC,CE,BE to the set Γ constitutes the set Γe.
The radar receiver is in the far-field at the point R with polar
angle θs, while the edge BC with length ll has a polar angle
φl.

Note that the above expression immediately links the lth

edge on Γ to four other edges that are not on Γ, thus motivating
the set of edges denoted as Γe, which includes such edges
in addition to those on Γ. The above can be substituted into

(16) to obtain Ef (~r) =
∑
γlul for l ∈ Γe, i.e. Eq. (11), and

γl = γ′l
√
k0/(8πr) exp[j(π4 − k0r)], where γ′l is given by

γ′l =



[
jZ0ll
4k0

sin(φl − θs)(
∑2
e=1

2
∆eεer

)− Z0µr

]
× if l ∈ Γ

ll exp[jk0r
′ cos(ψl − θs)],[

jZ0ll
2k0∆ sin(φk − θs)

(
1
εer

)]
× if l ∈ Γe, /∈ Γ

lk exp[jk0r
′ cos(ψk − θs)],

(18)
where k in the second case (when l ∈ Γe, /∈ Γ) refers to that
edge of the common element e, which is on Γ.

APPENDIX C
REQUIRED SURFACE LENGTH FOR A CORRELATED ROUGH

SURFACE

Consider a surface with a correlation function of the type
C(τ) = σ2 exp(−|τ/l|n), where l is the correlation length and
n = 1, 2 correspond to exponential and gaussian correlation
functions, respectively. In order to generate an instance of
a rough surface (see [20] for a scheme), we first compute
the Fourier transform of this auto correlation function, W (k).
We limit C(τ) by some parameter τ = τmax so that the
Nyquist sampling theorem can be used to evaluate W (k) with
a sampling rate 1/∆k ≥ 2τmax. Now, we choose τmax such
that C(τmax)/C(τ) = 1/γ � 1. Together with ∆k = 2π/a,
where a is the surface length, we get (after some algebra):
l/a = (4π/n) ln γ. Thus, for exponentially correlated surfaces
a choice for γ such as e < γ < e2 gives a suitable range for
l as 4π < l/a < 8π.
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