Algebraic reconstruction techniques for inverse
imaging

K. Yaswanth*

Abstract — Inverse microwave imaging has the po-
tential to provide low cost solutions for medical
imaging applications, such as in breast cancer de-
tection. The mathematical challenges in the solu-
tion of inverse problems, namely non-linearity, ill-
posedness and non-uniqueness, are well known and
cause optimization algorithms to get stuck at lo-
cal minima(s). In this regard, the initial guess is
very crucial in guiding the inversion algorithm to
an acceptable solution. We investigate the role of
algebraic reconstruction techniques along with box
constraints in providing a good initial guess. We
propose an inversion algorithm that combines these
techniques with a regularization that maximises en-
tropy (using a Gaussian a priori law) and show good
reconstructions for contrasts up to 2.

1 Introduction

In implementing a quantitative method for solv-
ing the inverse electromagnetic scattering problem,
one considers the electric field integral equation
(EFIE)[1]. Here, we encounter non-linear equations
with two sets of unknowns inside the scattering ob-
ject: the permittivity of the object, and the inter-
nal electric field. To solve this, we can either search
for both sets of unknowns simultaneously or we can
search for one set, by taking the other set to be con-
stant and vice-versa. If we use the latter approach,
i.e. of solving for the sets of unknowns alternatively,
we can approximately linearize our equations and
use standard convex optimization techniques.

It is here that we find that an appropriate choice
of an initial guess for these unknowns plays a cru-
cial role in how well the rest of the algorithm con-
verges, subject to the strength of the dielectric con-
trast. Algebraic reconstruction techniques (ART)
were proposed for electron and X-ray tomography
in the 1970s [2], and we employ them here to pro-
vide an initial guess for the permittivity of the ob-
ject after using the Born approximation to initialize
the internal fields. We find this form of initializa-
tion to be more effective than some other methods
used in the literature.

Beyond the initial guess, the ill-posedness of the
problem necessitates suitable regularization tech-
niques in order for the reconstruction algorithms
to converge to meaningful solutions. Any available
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Figure 1: Inverse Problem Setup: The object of
interest (OI) is illuminated by a set of receivers and
the scattered field for each illumination is measured
at each transmitter in order to solve the inverse
problem within the domain D.

priori information can easily be added as further
constraints to the optimization algorithm. Some of
the commonly used regularization terms used are
Li-norm [3], Lo-norm [4], total variation [5], en-
tropy maximization [6], etc.

The paper is organized as follows. Section II for-
mally describes the problem setup. Section IIT ex-
plains the inversion techniques used to solve the
inverse problem, where we discuss the ART, its ex-
tension for higher contrasts, and the maximum en-
tropy technique of regularization. Results are dis-
cussed in Section IV, followed by the conclusion in
Section V.

2 Problem Setup
In the inverse scattering problem setup shown in
Fig. 1, the EFIE for a two dimentional (2D) scat-

terer, enclosed in a region D, which is surrounded
by a contour S, is given as follows [7]:

Bi(r) — B\(r) = 1} / / Glr — ' )x() By () &
D
(1)
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where Ei(r), ky, x(r') = €.(r") — 1, and G are the
incident electric field, propagation constant in the
background medium, contrast (with €, (r’) denoting
the relative permittivity at r'), and the 2D Green’s
function, respectively. The scattered field is de-
noted as E5(r) = E;(r) — Ej(r), with j denoting
the j* transmitter. The number of transmitters is
chosen based on the spatially bandlimited nature
of the scattered electric field [8].

After discretizing the domain and assuming
piece-wise constant approximations for the contrast
and field, Equation (1) takes the following form:

r€ S, € D: Data eqn.
r € D, r’ € D: Object eqn.

(2a)
(2b)

gs = GSX)
gp = GDX7

where lower and upper case letters g, G denote the
discretization of the left-hand and right-hand side,
respectively, of Equation (1). Note that Gg and
G p are functions of the internal electric fields. The
inverse problem is to determine y, given measure-
ments of the scattered fields at all receivers for var-
ious transmitters, and knowledge of the incident
field.

3 Inversion Techniques

The algorithm we propose to solve the inverse prob-
lem is based on the Born iterative method (BIM)[7].
As mentioned earlier, two sets of unknowns, the
contrast and the internal fields are involved in solv-
ing the inverse problem. We update the contrast
and internal electric fields alternatively by keeping
one constant during the other’s update; the pseu-
docode for the algorithm is outlined in Figure 2.
Different to the BIM, we update the internal fields
based on the previous guess of the contrast by solv-
ing the forward electromagnetic scattering problem
in step 6.

1: procedure INVERSION ALGORITHM >
Algorithm to find the object contrast
Initialize u < u;,. > Born approximation
Initialize Gs,9s,Gp,9p
Estimate x > Initial guess
while Convergence not achieved do
Find u > Solve forward problem
Update Gs,9s5,Gp,gp
Estimate x > Contrast update
9: end while
10: end procedure

IS LA

Figure 2: Pseudocode for inversion algorithm

The two key steps of this algorithm are steps 4
and 8, corresponding to the initial guess and the

contrast-update steps, respectively. In Table 1 we
outline the different choices that are utilized de-
pending on the range of the contrast. The details
of these methods are discussed in the following sub-
sections.

Contrast | Initial guess Contrast update
Medium ART ART
High ARTGT ARTGT or Entropy

Table 1: Inversion Techniques

3.1 Algebraic Reconstruction Technique
(ART)

Algebraic reconstruction technique [2] iteratively
solves a system of linear equations Ggx = gg,
equivalent to minimizing a cost function of the form
|Gsx — gsl|3 by projecting the past estimate of y
onto the next equation as follows.

by — (ai, x*)__

k+1 _ _k
oo laa> "

(3)
where i = kmodm + 1, a; and b; are the i*" row of
G and i" element of vector gg respectively. Gg is
a matrix of size m X n, x is a vector of size n, and
gs is a vector of size n, where m is the number of
measurements and n is the number of pixels in the
domain D.

The update begins with xy = 0, and after each up-
date, we apply box constraint on Y, i.e. project the
value of x into a range of acceptable values defined
as [Xrmins Xrmax), a0d [Ximin, Ximax] corresponding
to projections of the real and imaginary parts of y,
respectively. These ‘acceptable’ values are derived
from a priori knowledge of the problem; for exam-
ple, from known [9] lower and upper bounds on the
permittivity of breast constituents.

3.2 Algebraic Reconstruction Technique
with Generalized Tikhonov (ARTGT)

A related technique is to add a ‘generalized’
Tikhonov type term to the cost function. This is
useful if for instance, it is expected that the solu-
tion be close to some guess x (derived from a priori
knowledge). The optimization problem becomes of
the following form:
. 2 2 2
arg min ¢ Gox — gsl3 + I = xol® (@)
where p is a constant that needs to be deter-
mined/specified, and controls the relative impor-
tance of measurements versus a priori knowledge.
This problem can be cast in the form of a single
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linear equation by making the substitution v =
plgs — Gsx) and z = x — xo [10], leading to the
following system of equations that can be solved
using the ART technique described in the previous
sub-section:

(I pGs][u 2]" ()
The update begins with u(®) = 0 and 2(©) = yq,

and the box constraints are applied as before. We

denote this method by the acronym ARTGT.

=plgs — Gsxol -

3.3 Maximum Entropy using Gaussian a
priori law

In this sub-section, we explore a different kind of
regularization based on entropy considerations. By
using Bayes’ rule, we maximize the probability dis-
tribution of the a posteriori probability of object
contrasts given the measurements [6]. The princi-
ple of maximum (Shannon) entropy applied to the
a priori probability along with some form of a prior
knowledge (based on past iterations of the inversion
algorithm in our case) gives the following problem:

(1
arg min {Ug(Gsx —95)"(Gsx — gs)

X
+)\ZX12+MZXi}»

where the paramters A,y are defined as A\ = % and
pu = —=r and m,v are the mean and variance of x,
respectively, as determined from the x estimate of
the previous iteration. We solve the above equation
by using the method of steepest descent and apply

box constraints on the contrast at each update.

(6)

4 Results

We now present the results of our inversion algo-
rithm based on the following specifications and fig-
ure of merit:

Box constraints: Based on the following exper-
imental values of relative permittivity at 3 GHz:
[9] malignant tissue : 54-14.5i, fat : 5-0i, fibrocon-
nective tissues : 36-5.641 and matching fluid : 18-
0.06i, we get the following box constraints for the
contrast: [—0.73,2] (real part), and [—0.8, 0] (imag-
inary part).

Simulation details: We consider a domain size of
1.2Ax 1.2\ and take equi-angularly spaced measure-
ments on a circle of radius 3A. There are 27 mea-
surements per incidence angle, and as many number
of incidence angles. Synthetic data is generated on
a uniform grid of side length A\/32, and to avoid
the inverse crime, the inverse problem is solved on
a grid of side A/16.

Reconstruction Error: The following metric de-
fines the reconstruction error (¢) as follows [11]:

Z

est

| true

_ Xest|
i

x 100%
|1+ t7ue| 0

(7)

where x!"“¢, ¢! represent the true and estimated

contrast vectors, respectively.

4.1 Choice of initial guess

Some popular choices for initial guesses of contrast
that are used in the literature are: the pseudo in-
verse (GHGg) 1GHgs [11], or simply GHgs [4].
We show comparisons of ART and G¥gg in Fig-
ure 3, where a quantitative difference can be seen
between the two methods.
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Figure 3: Top row: real parts, bottom row: imagi-
nary parts (of contrast). (a),(d) show the actual ob-
ject; (b),(e) demonstrates initial guess using G¥ gg;
and (c),(f) demonstrates initial guess using ART.

It is to be noted that the ART-based initial guess
of the real part is quite good, both in terms of the
magnitude estimated as well as the shape fidelity,
where as G gg is demonstrably poor. The imag-
inary part shows some artifacts, but we find that
they vanish later in the inversion algorithm.

The above strategy works for ‘weak’ values of
contrast, and as contrasts begin to increase beyond
0.8 (‘medium’ range), ART starts to become unsta-
ble. To increase stability, we find that artificially
adding sparsity in the pixel basis by increasing the
domain size leads to the improvement in reconstruc-
tion. For instance, on increasing the domain side
from 1\ to 3, the reconstruction error for an object
such as Figure 3(a,d) with contrast 1.3 decreased
from 35% to 10%.

4.2 Choice of contrast update algorithm

For higher contrasts (> 0.8), adding sparsity does
not help, and instead the use of the ARTGT helps
to give a stable choice of the initial guess. Presently,
we set the initial xyo = 0 and p = 2 in ARTGT. The
entropy maximization procedure has the advantage
of not having any free parameters (such as p), and
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it the method of choice for the ‘contrast update’
stage (step 8) of our algorithm.

In Figure (4) we show the results of our algorithm
for ARTGT and the entropy based optimization,
starting with an initial guess via ARTGT. We also
assume a priori knowledge of the object boundaries.
We see that the two methods give comparable re-

sults.
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Figure 4: Top row: real parts, bottom row: imagi-
nary parts (of contrast). (a),(d) show the actual ob-
ject. (b),(e); (c),(f) demonstrates reconstruction us-
ing ARTGT and maximum entropy technique, with
the priori knowledge of object boundaries giving re-
construction errors of 21% and 22% respectively.

5 Conclusion

ART acts as an good initial guess and reconstruc-
tion technique at low contrast. At higher contrasts,
ARTGT can be used for both initial guess and for
reconstruction. ARTGT works as a very good ini-
tial guess for the maximum entropy technique. A
priori information can be used to further improve
the inversion algorithm.
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