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Abstract—Most microwave inverse imaging algorithms rely on
measurements of both, the total and the incident electric field,
in order to estimate the dielectric properties of an unknown
scattering object. We propose a new technique to jointly estimate
the incident field and relative permittivity of a heterogeneous
dielectric object from measurements of the total electric field
alone. For the first task, we express the incident field as a
collection of plane waves, and estimate the wave coefficients
from the given data by leveraging sparsity of the plane wave
spectrum and obtain the solution via a constrained re-weighted
L1 norm minimization technique. Subsequently, we estimate
the permittivity and geometry of the scattering object using
using a two-fold subspace optimization method. We evaluate the
performance of our algorithm on synthetically generated object,
as well as experimental data. For synthetic objects, the accuracy
in reconstruction of the incident field and relative permittivity is
≈ 93% for field measurements with 15 dB signal to noise ratio,
while the accuracy obtained for an experimental data set was ≈
90%.

Index Terms—Microwave imaging, Compressive Sensing, in-
verse scattering

I. INTRODUCTION

Microwave inverse imaging concerns itself with the recon-
struction of the relative permittivity of an remote scattering
object (SO) in a given domain of interest D. Inverse imaging
algorithms, such as the Born type approximation methods [1],
contrast source inversion (CSI) [2], and subspace optimization
methods (SOM) [3] require knowledge of the scattered field in-
formation on a measurement contour C, which in turn requires
complete knowledge of the incident field in D. Incident fields
are field-measurements made in the absence of the scattering
object. In most practical scenarios, the total and incident fields
are measured separately (see [4] for e.g.). However, incident
field information is not readily available in many real world
settings, particularly when the SO is spatially fixed and cannot
be removed, for e.g. in the case of buried object detection
using ground penetrating radar. In such cases reconstruction
of the relative permittivity of the SO should be achieved with
only total field data. An intermediate step in such a problem
involves the retrieval of incident fields, which is accomplished
via the solution of an optimization problem.

Related work: In [5] the incident field inside D is estimated
using a source reconstruction method where equivalent cur-
rents are estimated on a surface which encloses the transmit-
ters. This approach does not completely eliminate the need
for the incident field, as the estimation inside D is achieved
by incident field measurements on C. In [6] the incident
field is estimated using the surface equivalence principle by
measuring the tangential components of both total electric

C. Bhat (e-mail: chandanbhat21@gmail.com) and U. K. Khankhoje (cor-
responding author, e-mail: uday@ee.iitm.ac.in) are with the Department of
Electrical Engineering, Indian Institute of Technology Madras, Chennai, India.

Fig. 1: Schematic of the imaging experiment where the trans-
mitters and receivers are placed a contour C. A scattering
object SO with unknown permittivity is within a domain
of interest D, immersed in freespace. S denotes a Huygens’
surface that encloses D.

and magnetic fields; subsequently, the estimated incident field
is used to retrieve the scatterer permittivity in [7]. In [8]
the incident field data is recovered from total electric and
magnetic field measurements by representing the incident field
as a summation of Bessel functions. A disadvantage of these
methods are that they require both total electric and magnetic
field measurements.

Our contributions: We consider a two-dimensional,
transverse-magnetic polarization scenario and propose a sur-
face integral formulation that estimates the incident field on C
and inside D using only the total electric field measurements
on C. We do so by expressing the unknown incident field
in terms of a plane wave expansion, and then casting the
problem in a constrained optimization framework that employs
a novel re-weighted L1 norm minimization strategy. The
use of the L1 norm leverages the implicit sparsity in the
plane wave spectrum, while the constraints make sure that
the measured data is consistent with the estimated incident
fields. Subsequently, we reconstruct the relative permittivity
profile of the SO in D using a two-fold subspace optimization
method (TSOM) [9]. The advantage of the proposed method
is that it completely eliminates the need for information of
the incident electric field, and only relies on total electric
field measurements. We validate our method by estimating the
incident field and reconstructing the SO in two scenarios:
(1) a synthetically generated case (where we also consider the
role of the measurements being corrupted by noise), and
(2) using an experimental “Fresnel” data set [4] which includes
measurements of total and incident electric fields on C.

II. PROBLEM FORMULATION – FOUNDING EQUATIONS

In this section we outline the basic mathematical tools used
for the incident field reconstruction and inverse imaging.
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1) Incident field estimation – surface integral equations:
As per Huygens’ principle, the field outside any contour S
can be expressed as a sum of primary sources (i.e. incident
fields) and secondary sources (i.e. equivalent tangential electric
and magnetic currents on S); the Extinction theorem in turn
gives us consistency relations between the incident field and
the equivalent tangential electric and magnetic currents [10].
The incident field is approximated as a linear combination of
Ni planewaves travelling in different directions [11], i.e. :

Ei(~r) =

Ni∑
i=1

ci exp(−j ~ki · ~r), (1)

where ~ki = k0[cos θi, sin θi]
T , k0 is the free space wave

number, θi’s are the wavevector angles, and ci’s are complex
wave coefficients; the number Ni is pre-assigned and much
larger than the actual number of planewaves. Thus, by con-
sidering the founding relations mentioned above (and detailed
below), we can arrive at a system of equations relating the
measurements to the unknowns to be determined.
Huygens’s principle: The total field at any location ~r outside
the Huygens’ surface S (see Fig. 1) is expressed as [10]:

Et(~r) = Ei(~r)−
∮
S
[G(~r, ~r′)∇′Et

S(~r
′)

−∇′G(~r, ~r′)Et
S(~r
′)] · n̂S dl′, ~r ∈ C, (2)

where Et
S is the tangential electric field on S, ∇Et

S · n̂S is
proportional to the tangential magnetic field on S, G(~r, ~r′) is
the 2D free space Green’s function, n̂S is the outward normal
to the surface S, and ∇′ refers to the gradient with respect to
primed coordinates, ~r′.
Extinction theorem: The consistency relation between the
electric and magnetic fields on S are given as [12]:

Ei(~r)−
∮
S
[G(~r, ~r′)∇′Et

S(~r
′)

−∇′G(~r, ~r′)Et
S(~r
′)] · n̂S dl′ = 0, ~r ∈ S (3)

For numerical estimation, we discretize the surface S into N
segments, and expand the tangential electric and magnetic
fields in the pulse basis function (see [13, Sec. 3]). This
gives us the discretized version of the Hugyens’ principle
(i.e. Eq. (2) with Eq. (1)) as:

ADx = b+ ν, (4)

where AD ∈ CM×(2N+Ni) is called as data matrix, the
unknown vector is denoted as x ∈ C(2N+Ni)×1, with
the first 2N terms corresponding to the tangential electric
and magnetic fields and the next Ni terms are the coef-
ficients of incident field expansion (i.e. ci’s). The vector
b = [Et(~r1) · · ·Et(~rM )]T contains M measurements of the
total electric field, and ν ∈ CM represents measurement
noise (modelled as complex additive white Gaussian noise
for synthetic measurements). The discretized version of the
extinction theorem (i.e. Eq. (3) with Eq. (1)) is:

ASx = ~0 (5)

where AS ∈ CN×(2N+Ni) is called as state matrix, ~0 ∈ RN .
The elements of the matrix AD and AS are computed as

per standard relations (see [14, Eq. 7]). The Eqs. (4) and (5)
are referred to in the literature as data and state equations
respectively.

2) Inverse imaging formulation – volume integral equa-
tions: Consider the figure schematic as per Fig. 1. The relation
between the fields and scatterer permittivity is given by the
Fredholm integral equation of the second kind [1]:

Et(~r) = Ei(~r) + k20

∫
D
G(~r, ~r′)Et(~r′)χ(~r′)d~r′, (6)

where Et(~r), Ei(~r) are the total and incident field, respec-
tively, and χ(~r) = εr(~r) − 1 is referred to as the dielectric
contrast given relative permittivity εr(~r).

A total of M receivers, which measure the total field Et,
are placed on C. Total field measurements are recorded for
NI illuminations. By defining a convenient “contrast source”
term, w(~r) = Et(~r)χ(~r) for ~r ∈ D, and discretizing D on a
square grid of size L×L, we arrive at the following equations
for the pth illumination [2]:

wp = X (ep +GD wp), ~r ∈ D (7)

dp = Ei
p +GS wp, ~r ∈ C (8)

where {wp, ep, E
i
p, dp} ∈ CL2

are discretized versions of
the contrast source, incident field in D and C (obtained by
substituting the estimated coefficients ci in Eq. (1), and ~r as
per Eqns. (7),(8)) and total fields, respectively; X ∈ CL2×L2

is a diagonal matrix of contrasts of each grid. The matrices
GD ∈ CL2×L2

and GS ∈ CM×L2

are discretized versions of
G(~r, ~r′); GD is obtained from Eq. (6) when ~r ∈ D, and GS

is obtained from Eq. (6) when ~r ∈ C.
Summary: In total field inverse imaging, the aim is to

reconstruct the contrast χ(~r), ~r ∈ D with only total electric
field measurements. Eqs. (4),(5) are the governing equations
for incident field estimation, whereas Eqs. (7),(8) are the
governing equations for subsequent permittivity estimation.

III. SOLVING THE INVERSE PROBLEMS

This section provides the details of the solution strategies
and algorithms employed in incident field estimation and
further reconstruction of relative permittivity of the SO.

1) Stage I: incident field estimation: In our recent work
[14] we developed the Total field – Compressive Sensing based
Subspace Optimization Method (TCS-SOM) to estimate x
from total field measurements. The solution, x, is decomposed
into two orthogonal vector subspaces, called the major (x+)
and minor space (x−) components, respectively (i.e. x = x++
x−). The singular value spectrum of the data matrix, AD, is
used to partition the solution between these two subspaces. The
major part, x+, is uniquely determined from the data equation
(Eq. 4) by using a truncated singular value decomposition
(SVD) [14, Eq. 13], i.e. x+ =

∑L0

i=1 u
H
i bvi/σi, where ui, vi

are the left and right singular vectors of AD, respectively, σi
represent the singular values, and L0 is a parameter estimated
using Morozov’s principle (see [14, Eq. 14]).

In contrast, the minor space component of the solution, x−,
is not determined from the measurements, and its estimation
is based on the following two observations: (i) we consider
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a sufficiently large Ni for the incident field expansion which
suggests that only a few of the coefficients c′is are significant
[11], and (ii) the tangential fields are known to be sparse
in certain transformed domains (e.g. in the discrete Fourier
or Cosine transformed-domain [15]). These observations of
sparsity motivate determining x− using Compressive Sensing
techniques [13], [16]. Thus, having obtained the major part x+

in the first step, the objective function for estimating the minor
part x− is formulated using the re-weighted L1 minimization
method [17] is given by:

minimize
x−

‖W{MI1(x
+ + x−) + I2(x

+ + x−)}‖1

subject to ‖AD(x+ + x−)− (b+ ν)‖2 ≤ε,
‖AS(x

+ + x−)‖2 ≤η

(9)

where, W is a diagonal re-weighting matrix, M is a trans-
formation matrix (for e.g. the DFT or DCT basis); also see
[14, Eq. 15]. I1 ∈ R2N×(2N+Ni) and I2 ∈ RNi×(2N+Ni) are
block diagonal matrices which when multiplied to the vector
x extract the coefficients corresponding to tangential and inci-
dent fields, respectively (thus facilitating their transformation
by M), ε is the noise variance and η is an estimate of the
discretization error in the State equation.

2) Stage II: Inverse scattering solution: Among the vari-
ous methods to solve the inverse scattering problem (i.e. of
estimating dielectric contrast given field data), we choose the
two-fold SOM (TSOM) [9] with an additional total variation
(TV) regularization for the contrast (see [18, Eq. 5] specialized
to a single frequency for formulations details).

IV. RESULTS - SYNTHETIC AND EXPERIMENTAL DATA

In this section, we evaluate the accuracy of our proposed
algorithm via numerical examples. We visualize the recon-
struction of the scatterer for: (a) synthetic data – where the
measurements are corrupted by two noise levels with signal to
noise ratio (SNR) of 25 dB and 15 dB, and (b) experimental
data (Fresnel database [4]). The results are programmed in
MATLAB 2019b on a 2.4GHz Quad-Core Intel i5 processor,
using 8GB RAM.

Synthetic data : We choose a 2D cylinder and the ‘Austria’
profile [19] to test the algorithm’s performance of recovering
the incident field and for inverse imaging. The simulation
domain, D, is 1 × 1 m for 2D cylindrical object and 2 ×
2 m for the ‘Austria’ profile. We consider a 16 transmitters
× 64 receivers configuration, where the transmitters emit an
incident field composed of seven plane waves. The receivers
are placed on a contour (C) of radius 4 m which measures only
the total electric field. We vary the relative permittivity of the
scatterer from 1.4 to 2.6 and radius of the cylinder from 0.2 m
to 0.6 m with a 400 MHz operating frequency. For the inverse
solver (see Eq. 7) D is discretized into a 32 × 32 grid. The
total electric field data is generated using the volume integral
(VI) method which is validated with the Mie series solution
[20] for scattering from a 2D dielectric cylinder of radius 1 m.

1) Incident field estimation: The Huygens’ surface S
(which encloses D) is discretized at λ/10. The number of
coefficients in the expansion of the incident field is Ni = 100,
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Fig. 2: Comparison of (a) magnitude (V/m), (b) phase
of true and estimated incident fields on the receiver con-
tour C for 360 locations. The true field (for one trans-
mitter) consists of planewaves travelling at these angles
(in degrees): [−10,− 20

3 ,−
10
3 , 0,

10
3 ,

20
3 , 10], with these co-

efficients: [0.58 + 0.42j, 0.14 + 0.77j, 0.74 + 0.49j, 0.58 +
0.43j, 0.77 + 0.50j, 0.38 + 0.48j, 0.97 + 0.40j]. The accu-
racy of estimation of incident field is 98.6% and 94.2%
for total field measurements with 25 dB and 15 dB SNR.
In the former case, the reconstructed planewave angles are:
[−11.06,−7.72,−3.48, 0.45, 5.00, 9.85, 15.00], and the coef-
ficients are: [0.35 + 0.16j, 0.43 + 0.87j, 0.61 + 0.65i, 0.96 +
0.50i, 0.80 + 0.76i, 1.06 + 0.52i, 0.02− 0.02i].

which makes the total number of unknowns Nt = 2N + 100.
For a 2D cylindrical scatterer with radius 0.4 m, Nt =
2×56+100 = 212. We solve the optimization problem (Eq. 9)
using reweigthed L1 minimization [17] for each illumination
from the transmitter. The time taken for the incident field
estimation for all the illuminations is 560s. Fig. 2 and 3 shows
the comparison of true and estimated incident field on C and
D respectively, for a single illumination. We define the relative
incident field error as

erri =
‖Ei(~r)− Êi(~r)‖2
‖Ei(~r)‖2

(10)

where Êi(r) is the estimated incident field. The average error
in estimation of incident field for all the 16 illuminations are
3.7% on C and 3.9% on D for 25 dB SNR and 7.9% and 8.3%
for 15 dB SNR respectively. We note that since the data matrix
need not satisfy the restricted isometry property required for a
unique solution to the compressive sensing problem [16], the
reconstructed coefficients of the incident field are not exact;
however, the reconstructed field over a chosen contour or the
entire domain matches the true field to high accuracy.

2) Inverse Imaging: The incident field information on C
and D which are obtained from the previous stage is used in
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Fig. 3: (a) True, (b) estimated incident field magnitude (V/m,
with common scale bar) over the entire domain of interest
(D), and (c) absolute difference between true and estimated
incident fields. Measurements (M = 64) have 25 dB SNR,
and field estimation accuracy is 97.2%.
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Fig. 4: Reconstructed permittivity profile of (top) a 2D
cylindrical scattering object (true relative permittivity: 2.2,
radius: 0.4m) and (bottom) the Austria profile (true relative
permittivity is 2) with illuminations (a),(d) known (TE ≈ 3%
and 8%, IE ≈ 5% and 10%); (b),(e) estimated from total
field measurements (TE ≈ 3.5% and 10%, IE ≈ 5.5% and
12% ); (c) absolute difference of (a) and (b); and (f) absolute
difference between (d) and (e). Measurements (M = 64) have
25 dB SNR; dotted red contours indicate the true shape of the
scatterers.

inverse imaging algorithms. Fig. 4 shows the reconstruction of
a 2D cylindrical scatterer, and the Austria profile. To measure
the accuracy of the inverse imaging algorithm we define two
error quantities (a) total error (TE) and (b) internal error (IE):

TE =
1

|D|
∑
i∈D

|εr(i)− ε̂r(i)|
|εr(i)|

, IE =
1

|SO|
∑
i∈SO

|εr(i)− ε̂r(i)|
|εr(i)|

(11)
where εr(·), ε̂r(·) are the true and estimated relativity permit-
tivity, and |P | denotes the size of set P .

The inverse scattering problem is highly nonlinear with
respect to the size and permittivity of the SO. Therefore, for a
fixed frequency of operation, the algorithm fails to reconstruct
larger and higher permittivity scatterers (we have shown a
deep learning-based technique to overcome this limitation in
earlier work [19]). Fig. 5 shows the internal and total errors
in reconstruction of the cylindrical scatterer for varying radius
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Fig. 5: Percentage (a) internal error (IE) and (b) total error
(TE) for 2D cylindrical scattering object of varying radius
and permittivity when the illuminations are estimated. The
frequency of operation is 400 MHz.
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Fig. 6: Reconstruction of (a) magnitude (V/m), and (b) phase
of incident field from total field measurements for Fresnel data
set at 2 GHz. The error in incident field estimation is 3.1%.

and permittivity. We also investigated the reconstruction
errors in the more conventional case where the incident
illuminations are known, and found that our method performs
only marginally worse (approximately 1% more error) when
the illuminations are estimated.

3) Experimental data: We evaluate our method with the
experimental data obtained from Fresnel database [4]. We con-
sider an in-homogeneous object FoamDielIntTM at frequency
2 GHz. Fig. 7(a) shows the relative permittivity profile of the
scatterer. The dataset consists of the total and incident field
at 241 receiver locations from 8 transmitters. The receivers
are placed with a gap of 1 degree. For the inverse solver, we
consider only 80 total field measurements from the dataset.
We assume the noise variance (ε) to be known for the
synthetic data simulations, while we set it as ε = 0.001‖b‖2
for experimental data. The discretization error in the State
equation η is empirically set to 0.01.

Fig. 6 shows the comparison of the experimentally measured
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Fig. 7: (a) True and (b) estimated relative permittivity of an
inhomogeneous scatterer: A plastic cylinder (radius 15 mm) of
relative permittivity 3± 0.3 embedded inside a foam cylinder
(radius 40 mm) of relative permittivity of 1.45± 0.15.

incident field and the estimated incident field on all 241
receiver locations for a single illumination. The average error
in incident field estimation is 6.6%.

An important consideration is the comparison between the
cases where the incident field information is either available
or not. In our extensive numerical studies, we find that the
accuracy degrades by a very small amount (≈ 1− 2%) if this
information is not available and is instead estimated by the
techniques shown in this Letter.

V. CONCLUSION

In this Letter, we have shown a promising technique for
solving the microwave imaging problem from measurements
of the total electric field measurements alone and without any
information of the incident field; the latter was estimated as an
intermediate step. The use of the Extinction theorem helped us
to eliminate the need for both electric and magnetic field mea-
surements. We evaluated the proposed method for synthetic
data with varying object permittivity and size. Furthermore,
we have also validated the total field inverse imaging for
an experimental dataset. For synthetic data we estimate the
permittivity with noisy total field measurements. For all the
SNRs considered in the synthetic experiments, the accuracy
of inverse imaging was found to always be in excess of 93 %
(both total and internal error metrics). For experimental data
the total and internal reconstruction accuracy was 91% and
85%, respectively. An extension of these techniques to three
dimensional settings is in progress.
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