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We present a novel method based on Huygens’ principle and compressive sensing to predict the electromagnetic
(EM) fields in arbitrary scattering environments by making a few measurements of the field. In doing so, we assume
a homogeneous medium between the scatterers, though we do not assume prior knowledge of the permittivities or
the exact geometry of the scatterers. The major contribution of this work is a compressive sensing-based subspace
optimization method (CS-SOM). Using this, we show that the EM fields in an indoor situation with up to four scat-
tering objects can be reconstructed with approximately 12% error, when the number of measurements is only 55%
of the number of variables used to formulate the problem. Our technique departs significantly from traditional ray
tracing approaches. We use a surface integral formulation which captures wave-matter interactions exactly, leverage
compressive sensing techniques so that field measurements at a few random locations suffice, and apply Huygens’
principle to predict the fields at any location in space. ©2020Optical Society of America

https://doi.org/10.1364/JOSAA.388136

1. INTRODUCTION

Reconstruction of electromagnetic (EM) fields in a scattering
environment is a fundamental problem, with many practical
applications such as radar cross-section estimation [1], indoor
positioning [2,3], Wi-Fi access point planning [4], and such
others. Traditional approaches to this problem use ray trac-
ing methods [5–7]. These techniques are valid only in the
high-frequency regime, suffer from large errors in near-field
estimation, and face difficulties in modeling multiple scat-
tering events (Fig. 3 in [8]). These drawbacks may limit their
applicability significantly. In this paper, we overcome these lim-
itations by proposing new techniques that model wave-matter
interactions exactly using surface integral formulations. This
characterization enables accurate prediction of EM fields in
arbitrary scattering environments.

A. Problem Statement

The general real world problem that we aim to address is as fol-
lows: consider a room with some objects such as tables and chairs
in which an active antenna (e.g., a Wi-Fi router) is placed. Can
the electromagnetic field at every point inside the room be pre-
dicted?

It is desirable to solve this problem by making the least
possible number of field measurements. For this reason,
interpolation-based techniques are impractical because field
variations on a sub-wavelength scale dictate a high density of
measurements. Motivated by this, we present techniques that

can reconstruct fields by making few measurements. A major
strength of our approach is that we do not need to know the per-
mittivity of the objects; only a rough estimate of their locations
is sufficient. That said, we assume that the medium between
the scatterers is homogeneous. An abstraction of the real world
problem stated above is shown schematically in Fig. 1 by means
of a two-dimensional (2D) scattering problem.

B. Our Approach

According to Huygens’ principle, the scattered field at a point
can be expressed as a convolution between the free space Green’s
function and the tangential electric and magnetic fields on the
surface of the scatterers. Additionally, the Extinction theorem
enforces certain relations between the tangential electric and
magnetic fields [9]. Thus, estimating these tangential fields
by using the above relations points the way to predicting the
scattered fields outside the scattering objects. Further, it is
empirically observed that these tangential fields are sparse in
certain bases (we substantiate this later in the text). By leveraging
this prior information and using the theory of compressive
sensing, we can bring down the number of measurements
required.

In the discrete world, the relation between the measurements,
b∈CM , and the tangential fields, x ∈CN , is given by the sys-
tem matrix, A, as b= Ax + ν, where ν represents measurement
noise, M is the number of measurements, and N the number
of variables used to describe the tangential fields. Additionally,
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Fig. 1. Schematic of the problem statement: can the field be pre-
dicted anywhere in Region 1 (a homogeneous medium) by making a
few measurements in the presence of an obstacle denoted by Region 2?
Sw is the inner surface of the enclosing wall and So is the outer surface
of the scatterer. n̂w and n̂o are normals to the scattering surfaces of the
wall and object, respectively.

the Extinction theorem gives the following relation between
the tangential fields: Asx = bs , where bs ∈CN/2 contains the
incident field, and As is termed as the state matrix. The field
predicted, f ∈CS , is expressed in terms of the prediction matrix
B , as f = B x , where S is the number of locations where the
field is desired. Therefore, the problem boils down to estimating
x given {b, bs} which is a convex optimization problem with
known solution strategies [10,11].

The problem of recovering a higher dimensional signal from
lower dimensional field measurements has been widely studied
in the inverse imaging community [12–14]. In particular, a
family of so-called subspace optimization methods (SOMs) [15]
provide a convenient framework to split the desired signal into
two orthogonal subspaces and to independently recover each
component. In recent work [16], we have shown an efficient
scheme to recover one component from the field data and the
other based on a priori information.

C. Our Contributions

To the best of our knowledge, this approach of using the surface
integral formulation along with compressive sensing for solving
the problem of field prediction has not been reported earlier.
We propose a compressive sensing-based subspace optimization
method (CS-SOM), that works by splitting a signal into two
orthogonal vector subspaces and uses signal sparsity in suitable
domains to achieve high accuracy field predictions. Using this
technique, we show that in a scattering environment (such as in
the schematic of Fig. 1), the EM field (in Region 1) can be recon-
structed with approximately 12% error and the tangential fields
on scatterer surfaces can be reconstructed with approximately
22% error, when the number of measurements is only 55% of
the number of variables used to formulate the problem.

D. Paper Organization

The rest of the paper is organized as follows: we formally
define the problem statement in Section 2. Then, Section 3
explains the theoretical details of the CS-SOM algorithm used
to solve the stated problem. Numerical results for the field
prediction are presented in Section 4. We conclude with a dis-
cussion of open issues, limitations, and possible applications of
our techniques in Section 5.

2. PROBLEM FORMULATION

A. Governing Physics

The EM field at any location can be obtained using Huygens’
principle, which states that the field at any location is the
superposition of primary (incident fields) and secondary
sources located on scatterer surface(s) (scattered fields) [9]. The
schematic shown in Fig. 1 shows a 2D computational domain
which is illuminated by a transverse magnetic (TM) polarization
field. The z-component of the electric field in Region 1, φ(Er ),
can be expressed using Huygens’ principle [17] as follows:

φ(Er )= φin(Er )

−

∮
Sw

[g (Er , Er ′)∇ ′φw(Er ′)− φw(Er ′)∇ ′g (Er , Er ′)] · n̂wdl ′

−

∮
So

[g (Er , Er ′)∇ ′φo (Er ′)− φo (Er ′)∇ ′g (Er , Er ′)] · n̂o dl ′,

(1)

where g (Er , Er ′)=−( j/4)H(2)
0 (k0|Er − Er ′|) is the free space

Green’s function in Region 1, φin(Er ) is the incident EM field
due to a source, φo , φw are the tangential electric fields on the
object and wall surfaces, and n̂w n̂o are normals to the scattering
surfaces of the wall and object, respectively, as shown in Fig. 1.
It can be shown that ∇φo · n̂o and ∇φw · n̂w are proportional
to the tangential magnetic fields on the object and wall, respec-
tively. Sw is the inner surface of the enclosing wall, and So is
the surface of the scatterer; since the problem is 2D, the surface
integrals are equivalent to contour integrals.

As per the Uniqueness Theorem of electromagnetics [9], it
is superfluous to use both the tangential electric and magnetic
fields over the entire surfaces to determine the field when using
Huygens’ principle. Indeed, the tangential electric and magnetic
fields on the surface are related to themselves via the Extinction
theorem. When we apply this theorem to Region 1, the follow-
ing relation is obtained between the tangential field variables,
{φt(Er ),∇φt(Er ) · n̂t}, t ∈ {o , w}:

−

∮
Sw

[g (Er , Er ′)∇ ′φw(Er ′)− φw(Er ′)∇ ′g (Er , Er ′)] · n̂wdl ′

−

∮
So

[g (Er , Er ′)∇ ′φo (Er ′)− φo (Er ′)∇ ′g (Er , Er ′)] · n̂o dl ′

=−φin(Er ), Er ∈ {Sw, So }. (2)
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B. Discretized Equations

We express the unknownsφw,φo , (∇φw · n̂w) and (∇φo · n̂o ) in
a known basis pn(r ), as follows:

φo (r )=
No∑

i=1

a o
n pn(r ), ∇φo (r ) · n̂o =

No∑
i=1

bo
n pn(r ), (3)

φw(r )=
Nw∑
i=1

awn qn(r ), ∇φw(r ) · n̂w =
Nw∑
i=1

bwn qn(r ),

(4)

where lowercase r is reserved to denote the parametrized dis-
tance along each respective surface (So or Sw); pi (r ), i =
1, 2, . . . , No , and qi (r ), i = 1, 2, . . . , Nw are the sets of basis
functions and a o

n , bo
n , awn and bwn , are the unknown coefficients.

Substituting Eqs. (3) and (4) in Eq. (1), and considering M loca-
tions of field measurement, we get a linear system of equations of
the following form:

[
E F G H

]︸ ︷︷ ︸
A

 ao

bo

aw

bw


︸ ︷︷ ︸

x

=


φs (Er1)

φs (Er2)
...

φs (Er M)

+ ν
︸ ︷︷ ︸

b

, (5)

where {E , F } ∈CM×No , {G, H} ∈CM×Nw compose the
system matrix A ∈CM×N , x ∈CN is a vector with vertically
stacked elements {ao , bo

} ∈CNo and {aw, bw} ∈CNw , with
N = 2(Nw + No ) determining the total number of unknowns.
The scattered field at a location Er i is φs (Er i ), which is corrupted
by noise given in ν.

Similarly, substituting Eqs. (3) and (4) in Eq. (2), gives the fol-
lowing form of the discretized “state” equation:

As x =−
[
φin(Er

(s )
1 ) · · · φin(Er

(s )
N
2
)
]T

︸ ︷︷ ︸
bs

, (6)

where As ∈C
N
2 ×N is the state matrix, and Er (s )i , i ∈ [1, N

2 ] in
this case refer to unique points along the surfaces So , Sw; these
points are made precise once the choice of basis functions is
made concrete.

One of the standard methods of exactly solving this linear sys-
tem for the coefficients φw, φo , (∇φw · n̂w), and (∇φo · n̂o ) is to
combine the above equation with the Extinction theorem for the
other regions (however, this requires knowledge of the scatterer
permittivity) and then solve numerically by using the method of
moments (MOM) [9].

C. Key Idea

Our approach is to trade off the exactness of the solution with
the knowledge of the scatterer permittivity, thereby only using
Eqs. (5) and (6) to estimate the unknown coefficients. Recall that
this only involves the Green’s function for Region 1 (i.e., free
space), whereas the exact solution requires the Green’s func-
tion for both Regions. Typically, Region 1 will always be free

space, whereas Region 2 will include objects with heterogeneous
permittivity, usually unknown in practical situations.

The previously mentioned estimation can be accomplished
by measuring the field at a few random locations such that the
right hand side vector b in Eq. (5) is known. Since the system
matrix A has been constructed beforehand, the coefficients x
can be estimated, and as a result, the tangential fields are known
via Eqs. (3) and (4). Then, substituting these fields back in
Eq. (1), we can predict the field at any point in Region 1.

Ideally we are interested in making this prediction by measur-
ing the field at as few locations as required. This typically leads to
the case of having the number of measurements, M, be less than
the number of unknowns, N, i.e., A is under-determined. For
this setup, the problem is formulated as follows:

1. Estimate the tangential fields by solving the following con-
vex optimization problem:

minimize
x
‖Ax − b‖2 ≤ ε, ‖As x − bs ‖2 ≤ η, (7)

where A, As , x , bs are as before, b∈CM is the vector
containing noisy measurements, ε is an estimate of the
square root of the noise variance, and η is an estimate of the
discretization error in the state equation.

2. Substitute x from the previously mentioned equation into
Eq. (1) and calculate the field at S locations. Let the true
field at these S locations obtained from the forward solver
be f ∈CS (i.e., this data is generated synthetically). Then
we compute the error, e ∈R as

e = ‖B x − f ‖2, (8)

where B ∈CS×N is the matrix obtained from Huygens’
principle Eq. (1), which when multiplied with the
tangential fields x gives the estimates of the EM fields.

It is crucial to note that B is identical to A in structure; the
difference arises purely due to the choice of the location Er in the
Green’s function, g (Er , Er ′); in A, this Er corresponds to measure-
ment locations, whereas in B , it corresponds to the locations
where the field is desired. Therefore, in order to construct B , we
follow the same procedure described in this section [discretize
Eq. (1) by expanding the unknowns in a suitable basis and plug
in those values of Er where the field prediction is desired]. It is to
be noted that we are interested in predicting the fields outside
the object (i.e., in Region 1). To get the fields inside the objects,
we need to consider the Extinction theorem, which involves
knowing the exact permittivities of the objects. Also note that
even though in this paper we only deal with the scalar 2D case,
extensions to the 3D case or to the vector formulation are not
fundamentally different.

3. COMPRESSIVE SENSING-BASED SUBSPACE
OPTIMIZATION

In this section, we explain the algorithm used to solve the prob-
lem formulated in the previous section.
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A. System & State Matrix

The system matrix depends on a particular choice of the basis
functions, pi (r ), previously introduced. To represent the tan-
gential fields on scatterer surfaces, we use pulse basis functions
defined as follows: an arbitrarily shaped contour S of length L is
divided into n segments of equal length, and with r denoting the
parameterized distance along the contour (the starting point on
the contour is chosen arbitrarily), the i th basis function is

pi (r )=
{

1 r S,i−1 ≤ r ≤ r S,i

0 else
i ∈ [1, n], 0≤ r ≤ L,

where r S,i denotes the parameterized distance giving the end
of the i th segment on S. In our case, the contour could be
either the object So (with n = No , basis functions denoted
by p), or the wall Sw (with n = Nw, basis functions denoted
by q ). In this pulse basis, the system matrix is denoted as
A p = [E p F p G p Hp ], with the elements of each sub-matrix
given by the corresponding lowercase symbols [18]:

em,k =
∫ rw,k

rw,k−1

j k0
4ρrm

H(2)
1 (k0ρm)(1ERm · n̂)dr

fm,k =−
∫ rw,k

rw,k−1

j
4 H(2)

0 (k0ρm)dr

g m,k =
∫ ro ,k

ro ,k−1

j k0
4ρrm

H(2)
1 (k0ρm)(1ERm · n̂)dr

hm,k =−
∫ ro ,k

ro ,k−1

j
4 H(2)

0 (k0ρm)dr

, (9)

where 1ERm = ERm − ER(r ), ρm = |1ERm | with ERm denoting
the position vector of the mth measurement point, and ER(r )
denoting the position vector of the point on the respective
contour with parameterized distance r . Similar expressions
can be obtained for the elements of the state matrix by setting
{Er (s )1 , . . . , Er (s )N

2
} in Eq. (6) to the midpoints of the discretized

segments of the surfaces So and Sw (these segments are N
2 in

number). Sufficient care has to be taken while evaluating the
associated singular integrals.

B. Subspace Optimization Method

In order to solve this problem, we improvise on the SOM [15],
typically used in the context of inverse scattering problems.
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Fig. 2. DFT coefficients of the tangential fields (a)∇φo · n̂o , (b) φo

on the scattering surface So , and (c) ∇φw · n̂w , (d) φw on the scat-
tering surface Sw as shown in Fig. 1. Most coefficients have very low
magnitudes.

Here, the signal of interest is recovered from its projection
in two orthogonal subspaces. Our approach begins with the
singular value decomposition (SVD) of the system matrix
as A p =

∑
i uiσiv

H
i , where u, v represent the left and right

singular vectors, and σ are the corresponding singular values
(with σi+1 ≥ σi ). The essential idea is to consider the following
orthogonal vector spaces, the “signal” space spanned by the
top L o right singular vectors of the system matrix A p , and the
“noise” space that is spanned by the remaining N − L o vectors.
In the absence of noise, L o would simply be the number of
independent rows of the matrix A p , and the signal and noise
subspaces would be identical to the row and null spaces of the
matrix A p , respectively. However, in the presence of noise, the
lower singular values amplify the noise from the measurements
and lead to a large error in the solution. Thus, the solution
sought is expanded as x = x s + xn , corresponding to the signal
and noise spaces, respectively, which are estimated as follows:

(i) Signal space estimation: this component, x s, is determined
by a L o -term truncation of the SVD of A p as follows:

x s =

Lo∑
i=1

(
uH

i b
σi

)
vi .

An immediate question concerns the selection of the
parameter L o . This number is chosen using the Morozov
discrepancy principle [19], where L o is chosen as the small-
est number such that ‖A p x s − b‖2 < ε, where ε is the
square root of the noise variance, which in many situations,
is reasonably known. The problem is not very sensitive
to the exact choice of L o , as the remaining components
are determined in the next stage; various studies have also
corroborated this observation [15,16].

(ii) Noise space estimation: this component, xn , is deter-
mined from a priori information about the problem, based
on the following observation: when the discrete Fourier
transform (DFT) coefficients of the true tangential fields
are computed (using a forward solver; see plots in Fig. 2),
we observe that most of the coefficients are very low in
magnitude, i.e., the solution exhibits sparsity in the DFT
basis. This property can be exploited to reconstruct the
EM fields by using ideas from compressive sensing [20],
which penalizes the l1 norm of the solution vector to pro-
mote sparse solutions. As per the rigorous requirements of
compressive sensing, a sparse signal can be reconstructed
from undersampled linear measurements provided that
the sensing matrix follows the restrictive isometry property
(RIP). Since the RIP is difficult to verify in practice, we heu-
ristically apply compressive sensing ideas to our problem,
a strategy that has gained popularity in the EM community
[11] in recent times. Thus, holding x s constant, the noise
space estimation proceeds as per the following optimization
problem:

minimize
xn

‖M(x s + xn)‖1

subject to ‖A p xn − (b− A p x s)‖2 ≤ ε

‖As xn − (bs − As x s)‖2 ≤ η

, (10)
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where M=F ,W, or D are the DFT, wavelet, or discrete
cosine transform (DCT) bases, respectively, chosen as can-
didates for sparse representations.

4. NUMERICAL RESULTS

In this section, we present the numerical results for the pre-
diction of spatial EM fields from measurements using the
formulations described previously. We describe the simulation
setup, define the error metrics, and then present the results for a
varying number of objects. All simulations are programmed in
MATLAB 2018b and executed on an Intel Core i7-7700 CPU
running at 3.60 GHz, using 16 GB RAM.

A. Simulation Setup

The simulation domain is 10λ× 10λ with four objects all with
different permittivities and an outer wall which encloses all the
objects. The simulation setup is shown in Fig. 3 with objects 1,
2, 3, and 4 centered at (−2.5λ, 1.5λ), (2λ, 2λ), (1λ,−2.5λ),
and (−2.5λ,−1λ), respectively, where λ is the wavelength.
The relative permittivities of the objects 1, 2, 3, 4, and wall
are εr 1 = 3.7− 2.1 j , εr 2 = 1.7− 1.1 j , εr 3 = 2.7− 3.7 j ,
εr 4 = 1.2− 1.1 j , and εrw = 3.7− 2.1 j , respectively (lossy,
so as to mimic real-life materials such as a concrete wall, etc.).
Object 1 is a square of side λ, object 2 is a circle with radius
0.75λ, object 3 is a rectangle with sides 1λ× 2.5λ, and object 4
is a circle with radius 1λ. Note that the permittivity and the true
geometry of the objects are used only in the forward solver to
generate the synthetic measurements. The source is placed at the
location Er0 = (0.5λ,−0.75λ), with a cylindrical plane wave of
the form:φinc(Er )= H(2)

0 (k0|Er − Er0|).
We obtain the true fields first using the boundary integral

(BI) method using pulse basis for the tangential fields on the
surface of the scatterers. Substituting the true tangential fields
in Huygens’ principle [Eq. (1)], fields at all other locations are

-5 0 5 
-5 

0

5 

4 s

1

3

2

w

Fig. 3. Schematic of 10λ× 10λ simulation domain. The
domain includes a wall, four objects, and a source. The objects
1, 2, 3, and 4 have their centers respectively at (−2.5λ, 1.5λ),
(2λ, 2λ), (1λ,−2.5λ), and (−2.5λ,−1λ). The source is located
at (0.5λ,−0.75λ) and “w” is the outer boundary. The dotted con-
tours are the approximate geometry of the objects used in the field
reconstruction algorithm.

obtained. For this problem, a spatial discretization of λ/40 is
considered to ensure numerical convergence. To verify the cor-
rectness of our forward solver, we have simulated the scattering
from a single infinite cylinder of radius λ and validated it with
the Mie series solution, finding agreement within a relative error
of 1.5%. Since the electric field integral equation is known to
display numerical issues related to cavity resonances, we verify
(numerically) that there are no resonances in the frequency
range f0 ±

f0
3 , where f0 is the operating frequency in our sim-

ulations. The measurements are corrupted with additive white
Gaussian noise (AWGN) with a signal to noise ratio (SNR) of
25 dB and 10 dB.

B. Error Metric Definition

We define two error metrics in order to evaluate the performance
of our method, namely the tangential field error, (1T ), and the
error in reconstruction on the 2D grid, (1G ). The tangential
field error is defined as follows:

1T =
‖x est − x true‖2

‖x true‖2
, (11)

where x est and x true are the estimated and true tangential fields,
respectively.

For the purpose of quantifying the accuracy of the predicted
field, the field is estimated over the 10λ× 10λ region that is dis-
cretized on a grid with pitch equal toλ/20.

The error in reconstruction is calculated using the following
relation:

error(1G)=
‖φest − φtrue‖2

‖φtrue‖2
, (12)

whereφest andφtrue are the estimated and true fields over the 2D
grid of points, respectively.

We also define the relative error at a location Er as follows:

|φest(Er )− φtrue(Er )|
|φtrue(Er )|

, (13)

where φest(Er ) and φtrue(Er ) are the estimated and true fields at Er ,
respectively.

The fields inside the object and fields that are very close to the
scatterer surfaces (at a distance less than λ/10 from the approxi-
mate surfaces of the objects) are not considered in the error
calculation.

C. Problem Discretizations

For predicting the field, we don’t assume the knowledge of the
exact shape of the scatterer, instead we approximate the geom-
etry of the object by a bounding box that encloses the object.
This is shown in Fig. 3 by means of dotted contours around the
objects. The system matrix and the state matrix for the inverse
problem [of the form given in Eq. (9)] are obtained using a
uniform discretization of λ/5 along the dotted contours. This
was chosen heuristically based on numerical experiments where
the discretization was varied from λ/2 to λ/20; it was found
that a discretization of λ/5 gives the optimal trade-off between
accuracy and computational cost. The number of unknowns for



Research Article Vol. 37, No. 7 / July 2020 / Journal of the Optical Society of America A 1171

the tangential fields varies with the number of objects; consid-
ering all four objects and the wall, there are 704 unknowns. In
the figures shown below, we consider the case of all 4 objects and
the wall with 387 randomly chosen field measurements (0.55
times the number of unknowns) with 25 dB SNR. The system
matrix A p has a rank of 380, and using the Morozov principle
gives a number, L o , in the range of 140–150 as the number of
significant singular values at this value of SNR (i.e., the signal
space is spanned by the first L o right singular vectors of A p ).

D. Applicability of Compressive Sensing When M> N
2

In the cases where the number of measurements M is greater
than N

2 , a natural question arises regarding whether or not there
are more equations than the number of variables, and sub-
sequently the applicability of the idea of compressive sensing.
However, when we construct a “composite” system matrix such

that Ã= (
A p

As
) for various values of M and study its singular

value spectrum, the following observations emerge:

(i) Even by the conservative definition of rank, which includes
very small but non-zero singular values, the rank of the
composite system does not exceed N.

(ii) If we take a more realistic scenario and consider singular val-
ues within a factor of 106 of the maximum singular value,
the number of significant singular values is well below N.

Therefore, even though the composite matrix Ã is overde-
termined, it does not have full column rank. Thus, the use of
a priori information toward compressive sensing solutions
remains legitimate.

E. Predictions Based on Random Measurements

The reconstructed tangential fields on the wall are plotted along
with the true tangential fields in Fig. 4. It can be seen that the
tangential fields are recovered well.

To visualize field prediction, we consider a contour of radius
4.2λ centered at origin, which includes all objects, plot the
true and predicted fields over it using the CS-SOM method,
and report the results in Fig. 5. As can be seen, the prediction
matches the true field very well. Next, to consider a larger area

0 4 8 12 16 20 24 28 32 36 

0.02

0.04
True Prediction

0 4 8 12 16 20 24 28 32 36 

0.1

0.2

Fig. 4. Comparison of the magnitudes of the estimated and
true tangential fields on the surface of the inexact wall, obtained
for 387 measurements (0.55 times the number of unknowns). The
measurements are noise corrupted by 25 dB SNR.
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Fig. 5. Comparison of reconstructed and true fields (magnitudes
and phase) over a contour of radius 4.2λ obtained for 0.55x sampling
rate (387 measurements). The measurements are noise corrupted by
25 dB SNR.
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Fig. 6. Magnitude of (a) true and (b) reconstructed 2D fields over
a 10λ× 10λ grid, obtained for 0.55x sampling rate (387 measure-
ments). The measurements are noise corrupted by 25 dB SNR. The
color bar shows the field magnitude in V/m.

for prediction, we consider the entire scattering region out-
side the objects, plotting the true and reconstructed fields in
Figs. 6 and 7, which again reveal a very good correspondence.
Finally, Table 1 shows the tangential field error and the error in
reconstruction for various measurement modalities (different
numbers of measurements and SNR values). We also report
along with the number of measurements, the sampling rate (SR)
which is defined as the ratio of the number of measurements to
the number of unknowns in the problem. We use the DCT bases
and apply the subspace optimization method [see Eq. (10)] for
estimating the tangential fields.

In order to study how well our results generalize to differ-
ent scattering geometries, we also perform experiments with
different numbers of objects (two to four). Table 2 shows the
tangential field error and the error in reconstruction with differ-
ent numbers of objects with a fixed SR of 0.55. As can be seen,
the predictions are quite accurate, giving an error of 12% for an
SR of 0.55 and 25 dB SNR with a simulation time of 5 min per
instance of random measurement points. The relative error at
each location is shown in Fig. 8, and it can be seen that though
the error observed is 12% for a 0.55x SR, the major error occurs
near the boundary of the walls and in between close objects. As
evidenced by the histogram of error values reported in Fig. 8(b),
the prediction accuracy is very good at all the other regions and is
less than 10% for more than 80% of the grid locations.
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Fig. 7. Phase of (a) true and (b) reconstructed 2D fields over a
10λ× 10λ grid, obtained for 0.55x sampling rate (387 measure-
ments). The measurements are noise corrupted by 25 dB SNR. The
color bar shows the phase in radians.

Table 1. Percentage Error in the Predicted Field (1G)
and Recovered Tangential Field (1T ) for Different
Measurement Modalities (Different Numbers of
Measurements and SNR Values) over a 10λ× 10λ Grid
Calculated for 100 Monte Carlo Trials

a

Measurements/Sampling Rate

212/ 0.3x 387/0.55x 563/0.8x

SNR (dB) 1G 1T 1G 1T 1G 1T

25 Mean 23 32 12 22 8 19
Max 32 43 17 29 11 24
Min 15 24 7 17 5 16
SD 3 3 2 3 1 2

10 Mean 45 45 31 36 24 30
Max 54 53 37 41 28 39
Min 39 39 25 30 20 24
SD 3 3 2 3 2 3

aAbbreviation: SD, standard deviation.

Table 2. Percentage Error in the Predicted Field (1G)
and Recovered Tangential Field (1T ) for Different
Numbers of Objects over a 10λ× 10λ Grid, for 0.55x
Sampling Rate

a

Number of Objects

2 3 4

SNR (dB) 1G 1T 1G 1T 1G 1T

25 Mean 10 17 9 17 12 22
Max 19 13 14 22 17 29
Min 6 25 6 14 7 11
SD 3 3 2 2 2 3

10 Mean 30 31 30 32 31 36
Max 37 38 39 46 37 47
Min 24 25 27 28 25 30
SD 3 3 2 4 2 3

aThe error was calculated for 100 Monte Carlo trials. The numbers of
objects are considered in serial wise as shown in Fig. 3. Abbreviation: SD,
standard deviation.

F. Note on Related Numerical Schemes

It is worth mentioning in passing, the accuracy of three related
schemes in solving the previously mentioned problem.

Fig. 8. (a) Relative error [see Eq. (13)] in the prediction of total field
over a 10λ× 10λ grid discretized at λ/20. The prediction is obtained
for 0.55x sampling rate (387 measurements). The measurements are
noise corrupted by 25 dB SNR, and (b) histogram of normalized error
over different locations of the simulation domain in (a). 80% of the
locations have less than 10% prediction error with an average error of
12%.

(i) It is natural to consider a truncated SVD (of the composite
matrix Ã) when faced with finding the solution to a linear
inverse problem with noisy data. Since this approach does
not leverage any a priori information about the problem,
the error, not surprisingly, is higher. In particular, we obtain
1G = 19% and 1T = 30% in the case of an SR of 0.55
and 25 dB SNR when we retain the minimum number of
singular terms so as to satisfy ‖A p x − b‖2 < ε.

(ii) The second approach is to use compressive sensing in a
straight forward manner by formulating the problem as
follows:

minimize
ξ
‖ξ‖1

subject to ‖A p K ξ − b‖2 ≤ ε

‖As K ξ − bs‖2 ≤ η

, (14)

where sparsity of the solution in a domain represented by
a linear transformation K with coefficients ξ is leveraged
for obtaining a solution. Since exact knowledge of the
sparsifying domain is not known in general, this approach
also leads to a higher error. In our experiments, we consid-
ered the DFT, DCT, and Wavelet (db-2) transformations,
achieving an average of1G = 14% and1T = 25% in the
case of an SR of 0.55 and 25 dB SNR. Our proposed CS-
SOM approach gives superior results and can be thought of
as a synthesis of these two “naive” approaches.

(iii) The third approach is to enforce sparsity by choosing the
lower frequency DFT coefficients as the unknowns. We
compare CS-SOM to two such reconstruction algorithms,
namely the New FFT (NFFT) SOM [21] and the FFT—
Twofold SOM (T-SOM) [22]. We find that for an SR
of 0.55 and 25 dB SNR, both NFFT SOM and T-SOM
achieve an average of 1G = 15% and 1T = 30%. We do
note, however, that CS-SOM has a higher computational
run time than NFFT SOM or T-SOM.
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5. DISCUSSION

A. Sparsity in Electromagnetic Reconstruction
Problems

In this paper, we have proposed a method of field reconstruction
using EM principles (Huygens’ principle, Extinction theorem)
and tangential field sparsity in certain transformed domains.
A natural question arises regarding the applicability of sparse
reconstruction in general EM problems. This issue has been
addressed in [22] (Fig. 6.14). As it turns out, the right singu-
lar vectors corresponding to the highest singular values of the
state operator resemble low-frequency Fourier bases, whereas
those corresponding to the lower singular values resemble high-
frequency Fourier bases. If we consider the simple idea of the
pseudoinverse of the operator, it becomes clear that the solution
is dominated by the highest singular values and, therefore, the
low-frequency bases. Hence, the idea of imposing sparsity is a
general principle in all EM problems involving radiation-like
operators.

B. Extensions of This Work

An interesting line of research opens up when we consider the
optimality of the sampling locations. To understand this point
better, we conducted numerical experiments in which we made
field measurements only along an arbitrary line, and found
the field prediction to be erroneous. Motivated by this obser-
vation, we plan to extend our work by investigating optimal
sensor placement and optimal sensing basis with an aim to min-
imize the number of measurements. There has been promising
recent work, both theoretical and computational, in this regard
[23–28], though in different settings than those considered
here.

Currently, we characterize the error using the SR which
is defined as the ratio between the number of measurements
and the number of unknowns. The latter is not a fundamental
choice and other characterizations, such as the electrical length
of the scatterers or the degrees of freedom of the scattered fields
[29,30], are also possible.

An important line of research is to consider the case of phase-
less (amplitude-only) measurements. Such an extension would
be useful in situations where it is inconvenient/expensive to
make measurements with phase. This problem is called “Phase
Retrieval” and has been studied extensively in the literature
[31–34]. Traditional approaches like alternating projections
[35,36] often reach a local minima, but more recent advances
in this area are based on dictionary learning [37,38] and have
achieved considerable success, even for the case where the num-
ber of measurements is smaller than the number of unknowns.
Finally, we plan to extend our work to three-dimensional (3D)
scenarios.

C. Limitations of the Proposed Method

The method proposed in this paper suffers from the following
limitations:

(i) The highest error in prediction occurs at the corners of the
outer wall and the regions in between the objects where
very few field measurements are taken. To mitigate the

error in between the objects, more measurements should be
considered in such regions.

(ii) In complex scattering environments with a large number
of scatterers, the number of unknowns increases. Since the
error in reconstruction depends on the SR, the number of
measurements needed to attain the same level of accuracy
is also higher. Further studies on the degrees of freedom
inherent in a scattering environment need to be undertaken
in order to determine how the number of unknowns scale
with the number of scatterers [29,30,39].

D. Summary

In this work, we have shown that when spatial measurements
of fields are taken in an indoor scenario, we can recover the EM
fields to varying degrees of accuracy depending on the number
and location of measurements. We use the compressive sensing
subspace optimization technique to find tangential fields on the
surfaces of the scatterers. For example, in the numerical study,
we undertook within a 10λ× 10λ region, the EM fields can be
recovered with 387 measurements up to an error of ≈12%.

E. Future Applications

The method described in this paper can be employed in a
number of scenarios, a few of which are mentioned here. Since
our method correctly reconstructs the tangential fields on a
contour bounding the object, a logical extension is the predic-
tion of the radar cross-section (RCS) of the scattering object
using a near-to-far field transformation (e.g., see [1]). RCS
estimation is known to be a time-intensive process, and any
improvement that can be attained by minimizing the number of
measurements required is welcome. Next, indoor positioning
systems can employ this method, instead of ray tracing methods
(e.g., [40–42]) to determine the location of a person based
on EM field measurements. To counter uniqueness problems
(where two or more locations have approximately the same
field magnitude), multiple frequency sources can be employed,
and/or data can be collected from several locations. Finally, our
method can also be applied to Wi-Fi access point planning,
in which one tries to optimally place Wi-Fi routers in an envi-
ronment so that most locations receive good quality of service
(QoS) guarantees.
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