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Abstract— Reconstructing the permittivity of dispersive
scatterers from the measurements of scattered electromagnetic
fields is a challenging problem due to the nonlinearity of the
associated optimization problem. Traditionally, this has been
addressed by collecting scattered field data at multiple fre-
quencies and using lower frequency reconstructions as a priori
information for higher frequency reconstructions. By modeling
the object dispersion as a Debye medium, we propose an inversion
technique that recovers the object permittivity with a minimum
number of frequencies. We compare the performance of this
method with our recently developed deep learning based tech-
nique (Sanghvi. et al., IEEE Trans. Comp. Imag., 2019) and show
that given a properly trained neural network, single frequency
reconstructions can be very competitive with multifrequency
techniques that do not use neural networks. We quantify this
performance via extensive numerical examples and comment on
the hardware implications of both approaches.

Index Terms— Deep learning, dispersion, inverse scattering.

I. INTRODUCTION

WE PRESENT solutions to the problem of determin-
ing the electrical permittivity of dispersive objects by

studying the electromagnetic fields scattered by them. It is
well known that such problems, termed inverse scattering
problems (ISPs), are nonlinear in nature [1], [2], and that
nonlinearity plays a larger role as the object size, permittivity,
or frequency increases.

Solutions to overcome the nonlinearity of the ISP have been
extensively studied in the literature; these include iterative
and algebraic schemes [1], [3]–[8], and neural network-based
schemes in more recent times [9], [10] (see [11] for a
review). Since ISPs are of interest in many imaging problems
such as breast cancer detection [12], it is desirable to solve
the problem at small wavelengths so as to obtain high-
resolution reconstructions. This presents a challenge, since
the nonlinearity of the ISP gets worse as the frequency is
increased. One of the techniques to overcome this is to collect
scattering data at multiple frequencies, and to use the lower
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frequency reconstructions as a priori information for higher
frequency results [2], [13], [14], a technique called “frequency
hopping” (FH). In the absence of such information, recon-
struction algorithms can often get stuck in local minima [15].
Realistic materials are dispersive in nature; as a result, it is
crucial to model the dispersion into the reconstruction algo-
rithm. In recent work [16], [17], a single pole Debye model
was incorporated into the distorted Born iterative method
(DBIM) for reconstructions using multiple frequencies. How-
ever, the DBIM has a large computational cost since it requires
repeated solutions of the forward problem.

Our contributions are summarized as follows.
1) We present a multi frequency dispersive (MFD) sub-

space optimization method (SOM) to handle the problem
of reconstructing dispersive media within the framework
of the popular SOM [6]. The latter is chosen due to its
computational advantage over the DBIM. To the best of
our knowledge, this is the first such combination in the
literature.

2) We compare the proposed MFD-SOM method with our
recently proposed deep learning enabled SOM [10].
We show that given a properly trained neural network,
this method outperforms other methods while requiring
only single frequency data.

The hardware and data acquisition implications of using both
methods are discussed. To form a suitable baseline for these
comparisons, we use the FH method that ignores material
dispersion.

The letter is organized as follows. In Section II we detail
the numerical methods considered in this work, including FH,
the proposed MFD-SOM, and the deep learning enabled SOM.
In Section III, we present numerical results of reconstruc-
tions of various dispersive objects. Finally, we conclude in
Section IV with a discussion on the various features of each
approach.

II. METHODS
A. Problem Setup

The well-known electric field integral equation is used
to formulate the ISP [18] for a 2-D transverse magnetic
[(TM), i.e., Ez] polarization scattering problem

E(�r) − Ei (�r) = Es(�r) = k2
��

D

G(�r , �r �)χ(�r �)E(�r �)d�r � (1)

where E, Ei , and Es are the total, incident, and scattered
fields, respectively, k is the wavevector for a medium with
Green’s function G, and χ(�r) = �r (�r) − 1 denotes the object
contrast and �r (�r) is the complex relative permittivity inside
the imaging domain D.
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The scattered field is measured at M receiver locations
with NI transmitters illuminating one at a time with a known
incident field. We numerically solve (1) by discretizing the
D into an N square pixels using the method of moments [18].
A “contrast source” variable, w, is defined as the product of
the contrast, x , and the internal field, d , at any point in D.
The resulting discretized equations for illumination by the
pth transmitter operating at frequency fc are

s(c)
p = G(c)

S w(c)
p (Data Equation) (2a)

d(c)
p = e(c)

p + G(c)
D w(c)

p (Object Equation) (2b)

w(c)
p = X (c)�e(c)

p + G(c)
D w(c)

p

�
(2c)

where e(c)
p , d(c)

p ∈ CN are the incident and total fields in
the domain of interest, respectively, and s(c)

p ∈ CM is the
corresponding scattered field measured at the receivers. G(c)

S ∈
CM×N and G(c)

D ∈ CN×N are the matrices that result after
discretization and integration of Green’s function, x (c) ∈ CN

is the contrast at frequency fc and X (c) ∈ CN×N = diag(x (c))
is its diagonal form.

The frequency dependence of contrast for a dispersive
medium is given using single-pole Debye model [16]

x (c) = �∞ + ��

1 + j2π fcτ
+ σs

j2π fc�0
− 1

= �∞ − 1 + ��g(c) + σsh(c) (3)

where �∞, ��, σs ∈ RN and τ ∈ R are the Debye
parameters.

B. Summary of the Twofold SOM

The numerical methods we present are based on a variant
of the SOM, called the twofold SOM (T-SOM) [19]. The
SOM works by splitting the contrast-source variable into
two orthogonal vector spaces, termed the signal and noise
space, respectively. This kind of split into the signal (ws )
and noise space (wn) component is based on the spectrum
of the scattering operator, GS , i.e., with the singular value
decomposition (SVD) of GS (= US�S VS), we express the
contrast course as

w = ws + wn . (4)

The split could be determined heuristically [6] or based on
the knowledge of the variance of noise by the Morozov
principle [10]. In the T-SOM [19], an additional regularization
is imposed on the contrast-source noise space components by
projecting them on only the top M0 right singular vectors from
the SVD of G D (= UD�DVD). The algorithm determines the
signal space components, ws , from the data and then iteratively
updates x and wn until convergence is reached.

Our final objective is to estimate the contrast x at the highest
frequency given measurements for various illuminations and
frequencies. We now outline the three numerical methods used
in the remainder of the text.

C. FH Using SOM

The baseline method which we use to compare other
methods is the so-called FH that was introduced earlier in

the literature [13]. We implement the FH method using the
standard T-SOM method, with an additional total variation
(TV) regularization [10].

Here, the standard T-SOM cost function is minimized at
each frequency [10], [19] starting from the lowest, and the
solution from a lower frequency is used as the initialization
point for the optimization at the higher frequency (treating
the contrast as frequency independent). Some variants of the
above scheme have also been discussed [13], [14], where the
imaginary part of the permittivity is scaled with frequency
in accordance with Ohm’s law, i.e., (3) with �� = 0.
We note that as per the Debye model, depending on the
relative strengths of �� and σs , it is possible that the dis-
persion characteristics can be quite different from Ohm’s
law, and contrast initializations must be done as per a priori
information.

D. Multi Frequency Dispersive SOM

The obvious limitation of the FH method is the inability
to model the medium dispersion. To compensate for this,
FH requires the use of many intermediate frequencies. Instead,
the Debye model, as indicated in (3), can be incorporated into
the reconstruction algorithm. Previously, this was shown in
conjunction with the DBIM method [16].

The central idea of the proposed method, termed the MFD
SOM, is to estimate the Debye parameters by minimizing a
cost function consisting of information at all frequencies (C in
number) and illuminations at once as shown in (5). The benefit
of the method is that reconstruction is performed with fewer
frequencies. The composite cost function is

J
�
β

(1)
1 , . . . , β

(1)
NI

, . . . , β
(C)
1 , . . . , β

(C)
NI

, r
�

=
C�

c=1

NI�
p=1

�
||s(c)

p − G(c)
S

�
w

s(c)
p + V

�(c)
D β

(c)
p
�||22

||s(c)
p ||22

+||A(c)β
(c)
p − b(c)

p ||22
||ws(c)

p ||22

�
+ γ ||

⎡
⎣D 0 0

0 D 0
0 0 D

⎤
⎦ r ||1

(5)

where

A(c) : = �
I − X (c)G(c)

D

�
V

�(c)
D

b(c)
p : = X (c)e(c)

p − �I − X (c)G(c)
D

�
ws(c)

p

V
�(c)
D : = �

I − V (c)
S+V (c)H

S+
�
V (c)

D+
D = �

Dv Dh
T

.

Here, V (c)
S+ represents the basis used for representing the signal

subspace of contrast-source (ws(c)
p ) at the pth illumination and

cth frequency; V (c)
D+ is the basis used for representing the noise

space components with β
(c)
i denoting the coefficient of the

i th basis vector; Dv and Dh are the vertical and horizontal
first-order difference matrices used to enforce TV regulariza-

tion with an empirical factor, γ ; and r = �
�∞ �� σs

T ∈
R3N×1 represents the set of Debye parameters which need to
be estimated.
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The complete algorithm is outlined as follows:
1) Procedure for MFD SOM:
1) Solve for x (1) using T-SOM at the lowest frequency
2) Estimate w

s(c)
p from s(c)

p ∀c (Morozov’s principle)
3) Estimate w

n(c)
p using (2c) with x (1) at all frequencies

and thereby obtain β
(c)
p

4) Optimize the cost function provided in (5) by iterating r
and β updates using the alternating direction method
of multipliers (ADMM) [20], and the conjugate gra-
dient method, respectively (See Appendix for details
of r -update).

5) Repeat step 4 till convergence.
We note that the above-described scheme is similar in

essence to the so-called “hybrid” FH described in the earlier
work [13].

E. Single Frequency SOM With Deep Learning

In this method, we collect the scattered fields at only the
highest frequency, fC , and estimate the contrast using our
recently introduced method [10]. This method, termed as
single frequency SOM with deep learning (SFDL), is a deep
learning-based method, where we embed a convolution neural
network in the conventional T-SOM [19].

In the conventional T-SOM approach, the contrast-source
noise space components, w

n(c)
p , are initialized to zero in the

reconstruction algorithm. Our key observation was that as the
contrast of the object increases, most of the true solution’s
energy moves from the signal space to the noise space. Thus
the choice of initialization of the noise space components at the
origin becomes worse as the contrast increases, thereby raising
the chances of the algorithm getting stuck in local minima.
In our approach, the neural network is trained to learn the
noise space components given the signal space components,
thereby initializing the reconstruction algorithm closer to the
true solution. We refer the reader to [10] and note that while
the conventional T-SOM type methods were able to reconstruct
standard benchmark objects (like the “Austria” profile) up to
contrast 1.5, the SFDL was able to achieve reconstructions for
very high contrasts up to 4.

We have performed a large number of numerical exper-
iments on dispersive media. In the interest of clarity and
conciseness, we distill the findings in the results of three
distinct numerical experiments.

III. RESULTS

A. Computational Details

The computational domain is a square domain of side 2 m,
illuminated by 16 transmitters/32 receivers placed uniformly
on a circle of radius 6 and 4 m, respectively. The domain
is discretized into 100 × 100 pixels for synthetic generation
of scattered field measurements (corrupted with Gaussian
distributed noise with a signal to noise ratio of 25 dB). For the
inverse problem, the domain is discretized into 50×50 pixels.
A standard “Austria” profile object (see [21] for details) is
used as a benchmark object for numerical simulations. The
lowest and highest frequencies used for FH and MFD are
100 and 400 MHz, respectively. Unless otherwise specified,

reconstructions are shown at 400 MHz. The standard quan-
titative metrics used for reconstruction are the total error,
T = (1/N)

�
i∈[1,N](|xt,i − xr,i |)/(|1 + xt,i |) and the internal

error, I = (1/|S|)�i∈S(|xt,i − xr,i |)/(|1 + xt,i |), where xr ,
xt are the reconstructed and true contrast profiles, respec-
tively, and S is the support of the object. All simulations
were performed on a 3.1 GHz Intel-Xeon 4-core processor.
In the case of the SFDL, each pixel in each object of the
training set was assigned a random contrast in the range
[0, 7] (real part) and [−5, 0] (imaginary part). The training
was done over 30 epochs and took 36 h. Each reconstruction
took approximately 300 s to converge. In the case of the
MFD approach, each reconstruction involving two frequencies
took approximately 2500 s to converge. The computational
complexity of the SFDL, FH-SOM, and MFD-SOM meth-
ods, apart from the constant O(N2) cost of an SVD [6],
are approximately: O(Iit NI N log N), O(C Iit NI N log N), and
O(C Iit NI N log N), respectively, where Iit is the number of
iterations; the latter varies across the three methods, however,
they are comparable within the same complexity class.

B. Preliminary Results

In our recent work, we have shown that a nondispersive
Austria profile object with Debye-parameters: �∞ = 5.0,
�� = 0, and σs = 0 can be reconstructed using SFDL
[10, Fig. 7(c)] (but not T-SOM). For successfully reconstruct-
ing the same using the FH method, we needed scattered field
data at two frequencies, 100 and 400 MHz [10, Fig. 9(a)].
However, a simplistic assumption of a nondispersive medium
was made. Noting that higher values of �� and σs leads to
larger dispersion, we now show the reconstruction results using
the previously described methods (keeping τ = 20 × 10−11 s
fixed).

C. First Numerical Experiment–FH Fails

In our first experiment (see Fig. 1), we consider an Austria
profile object with Debye parameters of �∞ = 3.0, �� = 0.5,
and σs = 0.02. It is observed that the FH could not reconstruct
the profile as the reconstruction at the lowest frequency is
not a very good initial guess for the higher frequency due
to dispersion. But in the case of MFD, we can reconstruct
the solution correctly because we solve for Debye parameters
(instead of contrast) using both frequencies at a time. Note
that the MFD has an advantage of describing the contrast
with fewer unknowns than the FH [3N (3 Debye parameters
per pixel) instead of 4N (real and imaginary parts of contrast
per pixel per frequency)]. It is also observed that the SFDL
reconstruction is better than MFD because the neural network
helps in starting from a better initial guess in this experiment.

D. Second Numerical Experiment—MFD Needs More
Frequencies

In the second experiment (see Fig. 2), we use Austria profile
with Debye parameters of �∞ = 2.0, �� = 1, and σs = 0.02.
In this case, the scatterer is more dispersive compared to the
first experiment (due to a larger ��). It can be observed that
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Fig. 1. (a) Real and (b) Imaginary parts of the true scatterers. Real and Imag-
inary parts of reconstruction results using (c) and (d) SFDL, (e) and (f) FH,
and (g) and (h) MFD. The respective internal and external errors are 16.2%,
59%, 23.6%, and 17.9%, 27.3%, 28.95%. The true Debye parameters are
�∞ = 3.0, �� = 0.5, σs = 0.02. 100, and 400 MHz are used for FH, MFD
reconstructions.

SFDL reconstructed the object successfully, whereas the MFD
failed at the task due to the increased dispersion. From our
numerical experiments, we found that the only way in which
the MFD could be made to reconstruct successfully was to
give it scattered field data at more frequencies. In addition
to the 100 and 400-MHz data, we also supply the algorithm
with 200 and 300-MHz data, and as shown by the results
in Fig. 2(g) and (h), the MFD now succeeds. We note that the
quantitative reconstructions with SFDL at a single frequency
are still better than the MFD with 4 frequencies.

E. Third Numerical Experiment—MFD Also Fails

In the third experiment (see Fig. 3), we consider an Austria
profile object with Debye parameters of �∞ = 2.0, �� = 0.5,
and σs = 0.04. The MFD failed to reconstruct the object even
though data at 100, 200, 300, and 400 MHz was provided.
We conjecture that the reason for this failure is that the skin
depth at 400 MHz for this object is fairly low (0.24 m). Since
the ring thickness is larger (0.30 m), some information about
the interior of the object is not accessible at this frequency.
It can be observed that the SFDL reconstruction is only
qualitatively good, though better than MFD, aided by the fact
that the neural network was trained on a data set containing
lossy objects. In such situations, the recommended strategy
will be to lower the highest frequency such that the entire

Fig. 2. (a) Real and (b) Imaginary parts of the true scatterers. Real and
Imaginary parts of reconstruction results using (c) and (d) SFDL, (e) and
(f) MFD at 100, and 400 MHz, and (g) and (h) MFD at 100, 200, 300,
and 400 MHz. The respective internal and external errors are 20.2%, 30.5%,
24.2%, and 17.8%, 30.3%, 24.6%. The true Debye parameters are �∞ = 2.0,
�� = 1.0, and σs = 0.02.

object can be interrogated by the incident field. However,
the trade-off is that lowering the frequency also lowers the
reconstruction resolution.

IV. DISCUSSION

Based on the various numerical simulations that have been
reported in this study, we arrive at the following important
conclusions that will inform future experiments in microwave
inverse imaging.

1) A properly trained SFDL approach is superior in its
reconstruction abilities as compared to multifrequency
approaches. The obvious advantage from a hardware
perspective is that the design of antennas becomes
simpler, as only a single frequency operation needs to
be optimized. The second advantage is that the data
acquisition/signal processing also becomes simpler since
data at multiple frequencies need not be recorded.

2) An advantage of the MFD approach is that the lengthy
training times involved in the SFDL approach (detailed
earlier) are avoided. A retraining of the neural network
is required when the physical setup, e.g., operating
frequency, estimated size of object, viewing geometry,
etc., changes.

Thus, in more exploratory problems where the physical
setup is yet to be optimized, it would be preferable to invest in
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Fig. 3. (a) Real and (b) Imaginary part of the true scatterers. Real
and Imaginary part of reconstruction results using (c) and (d) SFDL,
(e) and (f) MFD at 100, 200, 300, and 400 MHz. The respective internal
and external errors are 28.2%, 44.9%, and 23.2%, 36.1%. The true Debye
parameters are �∞ = 2.0, �� = 0.5, and σs = 0.04.

an MFD approach. However, once the setup has been finalized,
the benefits of the SFDL approach win over, as the training
of the neural network is a one-time cost for a given setup.
It is hoped that by future innovations, this training cost can
be greatly reduced.

APPENDIX–UPDATE OF r

When (5) is rearranged by fixing β’s, and by using (3)
to covert contrast x to the r -variable, we get the following
equation in terms of r :

min
r

C F =
NI�

n=1

C�
c=1

1

2

����K (c)
n r − b(c)

n

����2
2 + γ

������
⎡
⎣D 0 0

0 D 0
0 0 D

⎤
⎦ r

������
1
(6)

where

K (c)
n

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D

�
Re

�
d(c)

n��ws(c)
n
��
��

D

�
Im

�
d(c)

n��ws(c)
n
��
��

D

�
Re

�
d(c)

n g(c)��ws(c)
n
��
��

D

�
Im

�
d(c)

n g(c)��ws(c)
n
��
��

D

�
Re

�
d(c)

n hs(c)��ws(c)
n
��
��

D

�
Im

�
d(c)

n hs(c)��ws(c)
n
��
��

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b(c)
n =

⎡
⎢⎢⎢⎢⎣

Re

�
w

(c)
n − d(c)

n��ws(c)
n
��
�

Im

�
w

(c)
n − d(c)

n��ws(c)
n
��
�
⎤
⎥⎥⎥⎥⎦ .

D converts a column vector to a diagonal matrix and the
division is done element-wise. This equation is solved using
the ADMM method [20].
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