Computational Electromagnetics : Modes of a structure

Uday Khankhoje

Electrical Engineering, IIT Madras

Topics in this module

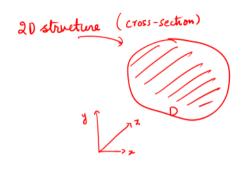
1 Modes of a structure

]

Table of Contents

Modes of a structure

Problem definition

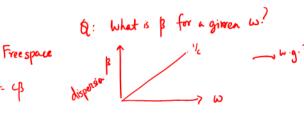


$$\frac{\varepsilon_{r}(x,y,z) = \varepsilon_{r}(x,y)}{\bar{\varepsilon}}$$

$$\bar{\varepsilon}' \propto e^{\int (\omega t - \beta z)}$$

$$\frac{\varepsilon_{r}(x,y,z) = \varepsilon_{r}(x,y)}{\int (\omega t - \beta z)}$$

$$\frac{\varepsilon_{r}(x,y,z) = \varepsilon_{r}(x,y)}{\int (\omega t - \beta z)}$$



Solution using the integral equation approach

 $\nabla_{\tau}^{2}E(x,y) + \frac{k^{2}}{2}E(x,y) = \beta^{2}E(x,y) \nabla_{\tau}^{2}E(x,y) + k_{0}^{2}E(x,y) = \left[\beta^{2}-k_{0}^{2}(\epsilon_{y}(x,y)-1)\right]E(x,y)$ $\nabla_{\tau}^{2}E(x,y) + k_{0}^{2}E(x,y) = -\delta(x,y') = -\delta(x,y')$

Solution using the integral equation approach

Assumption:
$$\nabla \cdot \vec{E}'(x,y) = 0$$
 $TM \cdot (H_Y, H_Y, E_Z)$

Assumption:
$$\nabla \cdot \vec{E}(x,y) = 0$$
 $TM \cdot (H_v, H_y, E_z)$
 $\nabla \cdot \vec{E} = -j \omega \mu \vec{H}$ $\vec{E} = \vec{E}(x,y) e^{-i\omega t}$ Cross-section \rightarrow not $z - dep \cdot n$.

Assumption:
$$\nabla \cdot E(x,y) = 0$$
 | $M: (x,y, y, z_z)$

$$\nabla \cdot \hat{E} = -j \omega \mu \hat{H}$$

$$\nabla \cdot \hat{E} = -j \omega \mu \hat{H}$$

$$\nabla \cdot \hat{E} = -j \omega \mu \hat{E}$$

$$\nabla \cdot \hat{E} = -j \omega \mu \hat{E} = 0$$

$$\nabla \cdot \hat{E} = -j \omega \mu \hat{E} = 0$$

$$\nabla \cdot \hat{E} = -j \omega \mu \hat{E} = 0$$

$$\nabla \cdot \hat{E} = -j \omega \mu \hat{E} = 0$$

$$\nabla \cdot \hat{E} = -j \omega \mu \hat{E} = 0$$

$$\nabla \cdot \hat{E} = -j \omega \mu \hat{E} = 0$$

$$\nabla \cdot \hat{E} = -j \omega \mu \hat{E} = 0$$

$$\nabla \cdot \hat{E} = -j \omega \mu \hat{E} = 0$$

$$\nabla \cdot \hat{E} = -j \omega \mu \hat{E} = 0$$

$$\nabla \cdot \hat{E} = -j \omega \mu \hat{E} = 0$$

$$\nabla \cdot \hat{E} = -j \omega \mu \hat{E} = 0$$

$$\nabla \cdot \hat{E} = -j \omega \mu \hat{E} = 0$$

$$\nabla \cdot \hat{E} = -j \omega \mu \hat{E} = 0$$

$$\nabla \cdot \hat{E} = -j \omega \mu \hat{E} = 0$$

$$\nabla \cdot \hat{E} = -j \omega \mu \hat{E} = 0$$

$$\nabla \cdot \hat{E} = -j \omega \mu \hat{E} = 0$$

 $\nabla_{x}^{2} = \nabla_{y}^{2} + \frac{3}{2}$ $\nabla_{y}^{2} = (x,y) - \beta^{2} E(x,y) + \omega^{2} \mu \epsilon E(x,y) = 0$

sumption:
$$\nabla \cdot \vec{E}(x,y) = 0$$
 TM: (H_v, H_y, E_z)

Solution using the integral equation approach

Solution:
$$E(\Upsilon) = \iint G(T, T') \left[k_o^2(\xi_T(T') - 1) - \beta^2 \right] E(T') dT'$$

known? G, ξ_T, k_o
 $V \in D$
 $V \in D$

Sohn via Conv of G with forcing for in eqn(2). Integral Eqn & Green's for. G: Coupling matrix has integrals

keep purely real B's only → Travelling modes.

Topics that were covered in this module

Modes of a structure

References: