Applications of Computational Electromagnetics: Microwave Inverse Imaging

Uday K Khankhoje

Electrical Engineering, IIT Madras

Table of Contents

What is inverse imaging?

2 Towards microwave based imaging

3 The inverse scattering problem

Inverse Imaging : What is it?

↓ Inverse Problems:

This is different. Given scattered fields, $\vec{E_s}(\vec{r})$, tell me what is $\epsilon_r(\vec{r})$? Problem has no unique solution.

E.g. buried land mine detection structural health monitoring breast cancer detection, etc. Forward Problems:

We are used to these. Given permittivity $\zeta(\vec{E})$ find t

Given permittivity, $\epsilon_r(\vec{r})$, find the radiated or scattered fields in a problem.

Problem has a unique solution.

Breast Cancer in India: a crisis

Context

A 2017 study conducted by the National Institute of Pathology in India¹

- Ranked breast cancer as having the highest rate of incidence and mortality among Indian women (earlier occupied by cervical cancer)
- Mortality to incidence ratio: as high as <u>66</u> in rural areas, around 8 in urban settings

Uday K Khankhoje (EE @ IITM)

¹S. Malvia et al, "Epidemiology of breast cancer in Indian women," Asia-Pacific Journal of Clinical Oncology, 2017.

Breast Cancer in India: a crisis

Context

A 2017 study conducted by the National Institute of Pathology in India¹

- Ranked breast cancer as having the highest rate of incidence and mortality among Indian women (earlier occupied by cervical cancer)
- Mortality to incidence ratio: as high as <u>66 in rural</u> areas, around 8 in urban settings
- Lack of diagnostic aids has been identified as being responsible for these statistics
- Sharp divide between rural and urban survival rates – issues in accessibility and affordability of diagnostic devices.

Uday K Khankhoje (EE @ IITM)

¹S. Malvia et al, "Epidemiology of breast cancer in Indian women," Asia-Pacific Journal of Clinical Oncology, 2017.

Can Microwave Technology Help?

Photo Courtesy of GE Healthcare

Current methods are expensive, time consuming, inaccessible (MRI screening), or cause cancer (X-ray)

Can Microwave Technology Help?

Photo Courtesy of GE Healthcare

Current methods are expensive, time consuming, inaccessible (MRI screening), or cause cancer (X-ray)

Need methods that are: safe, inexpensive, guick, and non invasive Microwave (RF) technology has the potential!

- RF waves penetrate human tissues without causing ionizing damage
- RF components (in the 1-10GHz range) are cheap due to other popular applications such as telecom. WiFi. etc.

Underlying Principle: waves are scattered by obstacles

High school experiment on prisms: light gets reflected & transmitted (bent) on hitting an object (glass) of different refractive index

Underlying Principle: waves are scattered by obstacles

High school experiment on prisms: light gets reflected & transmitted (bent) on hitting an object (glass) of different refractive index

When microwave travels through tissue \rightarrow gets scattered by different constituents (blood, fat, cancer).

Underlying Principle: waves are scattered by obstacles

High school experiment on prisms: light gets reflected & transmitted (bent) on hitting an object (glass) of different refractive index When microwave travels through tissue \rightarrow gets scattered by different constituents (blood, fat, cancer).

Cancerous tissue has different permittivity than healthy

- \rightarrow scatters microwaves differently
- \rightarrow fields encode information of scattering objects

Breast Cancer Detection: High Level Idea

Data collection

- Surround object by Tx/Rx
 - One Tx ON, all others Rx; store fields ✓

Processing

- Use fields to solve mathematical problem to get permittivity as a function of space, $\epsilon(r)$
- Look up tables of ϵ values prepared by biologists to infer cancer

Diagnosis \bigcirc Look up tables of ϵ values prepared by biologists to infer cancer

Table of Contents

What is inverse imaging?

2 Towards microwave based imaging

3 The inverse scattering problem

Maxwell's equations that we know and love²! Vol. 14.

$$abla imes \vec{E}(r) = -j\omega\mu \, \vec{H}(r), \quad \nabla imes \vec{H}(r) = j\omega \, \epsilon(r) \, \vec{E}(r) + \vec{J}(r)$$
(1)

²Single frequency ($e^{i\omega t}$), two-dimensions (x – y), single polarization (E_z) TM

Maxwell's equations that we know and love²!

$$abla imes \vec{E}(r) = -j\omega\mu \,\vec{H}(r), \quad \nabla imes \vec{H}(r) = j\omega \,\epsilon(r) \,\vec{E}(r) + \vec{J}(r)$$
(1)

Combine these equations using vector calculus into a wave equation

$$\nabla^2 E_z(r) + k_0^2 \epsilon_r(r) E_z(r) = j\omega\mu J_z(r)$$
⁽²⁾

²Single frequency ($e^{j\omega t}$), two-dimensions (x - y), single polarization (E_z)

Maxwell's equations that we know and love²!

$$\nabla \times \vec{E}(r) = -j\omega\mu \,\vec{H}(r), \quad \nabla \times \vec{H}(r) = j\omega \,\epsilon(r) \,\vec{E}(r) + \vec{J}(r) \qquad (1)$$

Combine these equations using vector calculus into a wave equation

$$\nabla^2 E_z(r) + k_0^2 \epsilon_r(r) E_z(r) = j\omega\mu J_z(r)$$
⁽²⁾

Specialize this to two cases [without and with object $\epsilon_r(r)$]:

$$\nabla^{2} E_{i}(r) + k_{0}^{2} E_{i}(r) = j\omega\mu J(r) \qquad (3)$$

$$\nabla^{2} E(r) + k_{0}^{2} \epsilon_{r}(r) E(r) = j\omega\mu J(r) \qquad E : \text{total field} \qquad (4)$$

²Single frequency ($e^{j\omega t}$), two-dimensions (x - y), single polarization (E_z)

Maxwell's equations that we know and love²!

$$\nabla \times \vec{E}(r) = -j\omega\mu \,\vec{H}(r), \quad \nabla \times \vec{H}(r) = j\omega \,\epsilon(r) \,\vec{E}(r) + \vec{J}(r) \qquad (1)$$

Combine these equations using vector calculus into a wave equation

$$\nabla^2 E_z(r) + k_0^2 \epsilon_r(r) E_z(r) = j\omega\mu J_z(r)$$
⁽²⁾

Specialize this to two cases [without and with object $\epsilon_r(r)$]:

$$\nabla^2 E_i(r) + k_0^2 E_i(r) = j\omega\mu J(r) \quad E_i : \text{incident field}$$
(3)
$$\nabla^2 E(r) + k_0^2 \epsilon_r(r) E(r) = j\omega\mu J(r) \quad E : \text{total field}$$
(4)

Subtract the two (eliminate source currents) + some algebra

$$\nabla^{2}[E(r) - E_{i}(r)] + k_{0}^{2}[E(r) - E_{i}(r)] = -k_{0}^{2}(\epsilon_{r}(r) - 1)E(r)$$
Define contrast $\chi(r) = (\epsilon_{r}(r) - 1)$
(5)

²Single frequency ($e^{i\omega t}$), two-dimensions (x - y), single polarization (E_z)

 $\nabla^{2}[E(r) - E_{i}(r)] + k_{0}^{2}[E(r) - E_{i}(r)] = -k_{0}^{2} \chi(r) E(r)$

$$\nabla^{2}[E(r) - E_{i}(r)] + k_{0}^{2}[E(r) - E_{i}(r)] = -k_{0}^{2} \chi(r) E(r)$$

Forward problem Given $E_i(r)$, $\epsilon_r(r)$ obtain E(r) everywhere Unique solution, all commercial CEM codes Inverse problem Given E(r), $E_i(r)$ obtain $\epsilon_r(r)$ everywhere Infinite solutions, need apriori info!

$$\nabla^{2}[E(r) - E_{i}(r)] + k_{0}^{2}[E(r) - E_{i}(r)] = -k_{0}^{2} \chi(r) E(r)$$

Forward problem Given $E_i(r)$, $\epsilon_r(r)$ obtain E(r) everywhere Unique solution, all commercial CEM codes Inverse problem Given E(r), $E_i(r)$ obtain $\epsilon_r(r)$ everywhere Infinite solutions, need apriori info!

We know how to solve this!

- Use theory of integral equations and Green's functions
- Suppose you knew the solution to this problem: $\nabla^2 G(r, r') + k^2 G(r, r') = -\delta(r, r')$ [impulse resp] δ is a Dirac delta function

$$\nabla^{2}[E(r) - E_{i}(r)] + k_{0}^{2}[E(r) - E_{i}(r)] = -k_{0}^{2} \chi(r) E(r)$$
Forward problem Given $E_{i}(r)$, $\epsilon_{r}(r)$ obtain $E(r)$ everywhere
Unique solution, all commercial CEM codes
Inverse problem Given $E(r)$, $E_{i}(r)$ obtain $\epsilon_{r}(r)$ everywhere
Infinite solutions, need apriori info!
 $\nabla^{+} k$
We know how to solve this!

- Use theory of integral equations and Green's functions
- *Suppose* you knew the solution to this problem:
- $\nabla^2 G(r, r') + k_o^2 G(r, r') = -\delta(r, r')$ [impulse resp] δ is a Dirac delta function

$$E(r) - E_i(r) = k_0^2 \int_D G(r, r') \chi(r') E(r') dr'$$

Recap: Solving the Integral Equation

$$\frac{\mathbf{E}(\mathbf{r}) - k_0^2 \int_D \mathbf{G}(\mathbf{r}, \mathbf{r}') \,\chi(\mathbf{r}') \,\mathbf{E}(\mathbf{r}') \,d\mathbf{r}' = \mathbf{E}_i(\mathbf{r})}{\mathbf{E}(\mathbf{r}') \,\mathbf{r}'}$$

- Discretize E(r), $\chi(r)$ using "pulse" basis functions: $E(r) = \sum_{n=1}^{N} u_n p_n(r)$. The new variables are u_n .
- For each *r* location on the grid, we will get one equation in all *N* variables.
- Cycle through all the N locations to get a N × N system of equations.
- Solve to get all u_n and thus E(r).

Table of Contents

1 What is inverse imaging?

2 Towards microwave based imaging

Our fav eqn: $E(r) - k_0^2 \int_D G(r, r') \chi(r') E(r') dr' = E_i(r)$

Our fav eqn:
$$E(r) - k_0^2 \int_D G(r, r') \chi(r') E(r') dr' = E_i(r)$$

Let's convert it to the language of linear algebra:

 $E(r) \rightarrow u \quad [r \in D] \quad \chi(r) \rightarrow x \quad E_i(r) \rightarrow e$ Define scattered field as $E(r) - E_i(r) \rightarrow s \quad [r \notin D]$: all col vectors

Our fav eqn:
$$E(r) - k_0^2 \int_D G(r, r') \chi(r') E(r') dr' = E_i(r)$$

Let's convert it to the language of linear algebra:

 $E(r) \rightarrow u \quad [r \in D] \quad \chi(r) \rightarrow x \quad E_i(r) \rightarrow e$ Define scattered field as $E(r) - E_i(r) \rightarrow s \quad [r \notin D]$: all col vectors

Our fav eqn:
$$E(\underline{r}) - k_0^2 \int_D G(\underline{r}, r') \chi(r') E(r') dr' = E_i(\underline{r})$$

Let's convert it to the language of linear algebra:

 $E(r) \rightarrow u \quad [r \in D] \qquad \chi(r) \rightarrow x \qquad E_i(r) \rightarrow e$ Define scattered field as $E(r) - E_i(r) \rightarrow s \qquad [r \notin D]$: all col vectors

- 'State' equation
- Can solve for *u* when *X* known
- *G_D* full rank: has unique soln

More on the inverse problem - trouble lies ahead!

Let's delve more into the 'Data' equation, connecting measurements *s* to desired parameter *x*

More on the inverse problem - trouble lies ahead!

Let's delve more into the 'Data' equation, connecting measurements \underline{s} to desired parameter x

• Typically <u>s</u> doesn't come by itself, some noise comes along for the ride! What we have is: s (actual) = s (ideal) + η (noise)

More on the inverse problem – trouble lies ahead!

Let's delve more into the 'Data' equation, connecting measurements s to desired parameter x

- Typically s doesn't come by itself, some noise comes along for the ride! What we have is: s (actual) = s (ideal) + η (noise)
- So the problem to solve becomes: $|\hat{x} = \operatorname{argmin} ||s G_S Ux||_2$

More on the inverse problem - trouble lies ahead!

Let's delve more into the 'Data' equation, connecting measurements **s** to desired parameter **x**

- Typically *s* doesn't come by itself, some noise comes along for the ride! What we have is: *s* (actual) = *s* (ideal) + η (noise)
- So the problem to solve becomes:

$$\hat{x} = \underset{x}{\operatorname{argmin}} \|s - G_S U_X\|_2$$

Let's assume for a (magical) moment that U is known

- $\bullet\,$ Linear algebra says that an underdetermined system has $\infty\,$ solutions
- I need some more information to constrain the solution, e.g. psuedo inverse soln (min 2-norm) or sparse solution (min 1-norm)

More on the inverse problem - trouble lies ahead!

Let's delve more into the 'Data' equation, connecting measurements **s** to desired parameter **x**

- Typically s doesn't come by itself, some noise comes along for the ride! What we have is: $s (actual) = s (ideal) + \eta (noise)$
- So the problem to solve becomes:

$$\hat{x} = \underset{x}{\operatorname{argmin}} \|s - G_{S} U x\|_{2}$$

Let's assume for a (magical) moment that U is known

- $\bullet\,$ Linear algebra says that an underdetermined system has $\infty\,$ solutions
- I need some more information to constrain the solution, e.g. psuedo inverse soln (min 2-norm) or sparse solution (min 1-norm)

The problem now becomes: $\hat{x} = \arg\min\{||s - G_S Ux||_2 + \beta ||x||_1\}$ Adding more info \rightarrow 'Regularization'

Aside: some kinds of regularization [1 data eqn, 2 vars]

Recall: dealing with under-determined system of equations $\implies \infty$ solns

Aside: some kinds of regularization [1 data eqn, 2 vars]

Aside: some kinds of regularization [1 data eqn, 2 vars]

The solution with minimum ℓ_2 norm has all entries non-zero \rightarrow soln is 'spread out' in all variables

Aside: some kinds of regularization [1 data eqn, 2 vars] $\|\chi\|_{L^2} \ge |\chi|_{L^2}$

The solution with minimum ℓ_2 norm has all entries non-zero \rightarrow soln is 'spread out' in all variables But solution with minimum ℓ_1 norm has some entries zero \rightarrow soln is sparse in higher dims

Natural images are sparse in wavelet / discrete cosine basis.

Natural images are sparse in wavelet / discrete cosine basis.

For example, in the Daubechies-4 Wavelet basis \rightarrow reasonable reconstructions with few coefficients

Keep 2% coeffs

Keep 25% coeffs

Uday K Khankhoje (EE @ IITM)

nverse Imaging

Natural images are sparse in wavelet / discrete cosine basis.

For example, in the Daubechies-4 Wavelet basis \rightarrow reasonable reconstructions with few coefficients Apriori knowledge of

sparseness is a regularizer. We don't need to know *which* coeffs are zero!

Original (46656 px)

Keep 2% coeffs

<mark>ℓ</mark>⊥ Keep 25% coeffs

These kind of solutions are studied in the field of **Compressive** Sensing – a new sub-field of Signal Processing since ~2008

ill-posed

Original (46656 px)

Keep 2% coeffs

Keep 7% coeffs

Keep 25% coeffs

The inverse problem – More issues! medinearity • In $\argmin\{||s - G_S Ux||_2 + R(x)\}$ trouble is, <u>U</u> is not known.

The inverse problem – More issues!

• In
$$\arg\min_{x} \{ \|s - G_S U_X\|_2 + R(x) \}$$
 trouble is, U is not known.

- Why not use the 'State' eqn? $| u = (I G_D X)^{-1} e |$
- Start with a guess for x, then alternate between solving the two:

$$\rightarrow \quad \hat{x} = \underset{x}{\operatorname{argmin}} \{ \| s - G_S U x \|_2 + R(x) \}$$

The inverse problem – More issues!

- In $\argmin\{||s G_S U_X||_2 + R(x)\}$ trouble is, U is not known.
- Why not use the 'State' eqn? $u = (I G_D X)^{-1} e$
- Start with a guess for x, then alternate between solving the two:

$$\rightarrow \quad \hat{x} = \underset{x}{\operatorname{argmin}} \{ \| s - G_{S} U x \|_{2} + R(x) \}$$

- Above procedure called the Born Iterative Method
- OR, we can combine the two into one monster eqn:

 $\hat{x} = \underset{x}{\operatorname{argmin}} \{ \| s - G_{S} \operatorname{diag}(((I - G_{D}X)^{-1}e)x \|_{2} + R(x) \}$

What's the problem with this?

- ill-posed (not enough data) •
- nonlinear (see above eqn)

An experiment to study nonlinearity

Consider a simple object to visualize the challenge

$$\begin{bmatrix} x_{1} \\ x_{2} \\ 0 \\ x_{L} \\ \vdots \\ x_{L} \\ x_{L} \end{bmatrix} = \begin{bmatrix} M \\ n \\ x_{2} \\ 2 \\ x_{1} \end{bmatrix}$$

Since only two variables, we can visualize the maxima/minimas of this function

We will plot how $\|s - G_S Ux\|_2$ looks like, where $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ (exact U is also calculated at each x)
We can look at linear (assuming U const) and nonlinear approach (treating U as a fn of x) $x_1 \rightarrow 3-5$ $x_2 \rightarrow 7-5$ $x_2 \rightarrow 7-5$ $x_2 \rightarrow 7-5$ $x_3 \rightarrow 5$ $x_1 \rightarrow 7-5$ $x_2 \rightarrow 7-5$ $x_2 \rightarrow 7-5$ $x_3 \rightarrow 7-5$ </p

Table of Contents

1 What is inverse imaging?

2 Towards microwave based imaging

3 The inverse scattering problem

Summary

- Integral equations are a powerful tool
- Forward problems \rightarrow unique solutions
- Inverse problems \rightarrow more interesting But,
 - ill-posed nonlinear

Summary

- Integral equations are a powerful tool
- Forward problems \rightarrow unique solutions
- Inverse problems \rightarrow more interesting

But,

ill-posed ~ not enough into nonlinear ~ nonconvex optimization.

What skills do you need?

- Computational Electromagnetics
- Signal Processing
- Linear Algebra
- Optimization 🎸
- Programming

* (ML)