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Inverse Imaging : What is it?

: &

Inverse Problems: Forward Problems:
Ene
This is different. We are used to these.
Given scattered fields, tell Given permittivity, €,(r), find the
me what is €,(7)? radiated or scattered fields in a
\.___-——"_ .
Problem has no unique solution. problem.

/ Problem has a unique solution.
E.g. buried land mine detection —

structural health monitoring

breast cancer detection, etc.
—_— Mum (Tﬂ E")
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Breast Cancer in India: a crisis

Context
A 2017 study conducted by the National Institute of Pathology in India® J

@ Ranked breast cancer as having the highest rate of incidence and
mortality among Indian women (earlier occupied by cervical cancer)

@ Mortality to incidence ratio: as high as 66 in rural areas, around 8 in
urban settings

S. Malvia et al, “Epidemiology of breast cancer in Indian
women,” Asia-Pacific Journal of Clinical Oncology, 2017.
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Breast Cancer in India: a crisis

Context
A 2017 study conducted by the National Institute of Pathology in India® J

@ Ranked breast cancer as having the highest rate of incidence and
mortality among Indian women (earlier occupied by cervical cancer)

@ Mortality to incidence ratio: as high as 66 in rural areas, around 8 in
urban settings

@ Lack of diagnostic aids has been identified as being responsible for
these statistics

@ Sharp divide between rural and urban survival
rates — issues in accessibility and affordability
of diagnostic devices.

1S, Malvia et al, “Epidemiology of breast cancer in Indian
women,” Asia-Pacific Journal of Clinical Oncology, 2017.
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Can Microwave Technology Help?

Breast MRI

Current methods are
expensive, time
consuming, inaccessible
(MRI screening), or cause
cancer (X-ray)

/a

\ ,

Photo Courtesy of GE Healthcare
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Can Microwave Technology Help?

Breast MRI

Current methods are
expensive, time
consuming, inaccessible
(MRI screening), or cause
cancer (X-ray)

Photo Courtesy o\f GE Healthcare

Need methods that are: safe, inexpensive, quick, and non invasive
Microwave (RF) technology has the potential!

@ RF waves penetrate human tissues without
causing ionizing damage v/

@ RF components (in the 1-10GHz range)
are cheap due to other popular applications
such as telecom, WiFi, etc
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Underlying Principle: waves are scattered by obstacles

High school experiment on prisms:
light gets reflected & transmitted

(bent) on hitting an object (glass)
of different refractive index
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Underlying Principle: waves

High school experiment on prisms:
light gets reflected & transmitted
(bent) on hitting an object (glass)
of different refractive index

Uday K Khankhoje (EE @ IITM)

are scattered by obstacles

When microwave travels through
tissue — gets scattered by different
constituents (blood, fat, cancer).
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Underlying Principle: waves are scattered by obstacles

High school experiment on prisms: When microwave travels through
light gets reflected & transmitted tissue — gets scattered by different
(bent) on hitting an object (glass) constituents (blood, fat, cancer).
of different refractive index

Cancerous tissue has different permittivity than healthy
— scatters microwaves differently
— fields encode information of scattering objects
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: : G
Breast Cancer Detection: High Level Idea

Data collection
Y\ @ Surround object by Tx/Rx
@ One Tx ON, all others Rx; store fields/

Processing
@ Use fields to solve mathematical problem to
get permittivity as a function of space, €(r)

@ Look up tables of € values prepared by
biologists to infer cancer

Diagnosis
Look up tables of € values prepared by biologists
to infer cancer

D A

NV

—‘ - Receiver OI : Object of interest
D : Domian of interest

4
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Maxwell's equations that we know and love?! Vel - 2§

V x E(r) = —jwp H(r), V x H(r)=jwe(r)E(r)+J(r) (1)

\l v b

2Single frequency (€/“!), two-dimensions (x — y), single polarization (E;) ™



Maxwell's equations that we know and love?!
V x E(r) = —jwp H(r), 'V x H(r)=jwe(r) E(r)+J{r) (1)
Combine these equations using vector calculus into a wave equation

V2E,(r) + kger(r)Ex(r) = jowpdy(r) (2)

2Single frequency (€/“!), two-dimensions (x — y), single polarization (E;)



Maxwell's equations that we know and love?!
V x E(r) = —jwp H(r), V x H(r) = jwe(r) E(r) + J(r)
Combine these equations using vector calculus into a wave equation
V2E(r) + ke (r)Ex(r) = jwpdz(r)
Specialize this to two cases [without and with object €,.(r)]:
V2E(r) + K3Ei(r)

V2E(r) + ke, (r)E(r) =

[—

Jwpd(r) sE; :incident field
jwpd(r)  E : total field

2Single frequency (€/“!), two-dimensions (x — y), single polarization (E;)



Maxwell's equations that we know and love?!
V x E(r) = —jwp H(r), V x H(r) = jwe(r) E(r) + J(r)
Combine these equations using vector calculus into a wave equation
V2E(r) + ke (r)Ex(r) = jwpdz(r)
Specialize this to two cases [without and with object €,.(r)]:

V2E(r) + K3Ei(r)
V2E(r) + ke, (r)E(r) =

Jwpd(r) E;:incident field
jwpd(r) E : total field

Subtract the two (eliminate source currents) + some algebra

VEIE(r) = Ei(n)] + k3 [E(r) — Ei(r)] = — k5 (e-(r) — 1)E(r)

L — |

Define contrast x(r) = (e,(r) — 1)

L S ——

2Single frequency (€/“!), two-dimensions (x — y), single polarization (E;)



Processing the Wave Equation into an Integral equation

V2[E(r) — Ei(r)] + kS [E(r) — Ei(r)] = —ko x(r) E(r)
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Processing the Wave Equation into an Integral equation

V2[E(r) = En)] + kS [E(r) — Ei(r)] = —k5 x(r) E(r) J

Forward problem Given E;(r), €,(r) obtain E(r) everywhere
Unique solution, all commercial CEM codes

Inverse problem Given E(r), E;(r) obtain €,(r) everywhere
Infinite solutions, need apriori info!
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Processing the Wave Equation into an Integral equation

V2[E(r) = En)] + kS [E(r) — Ei(r)] = —k5 x(r) E(r)

Forward problem Given E;(r), €,(r) obtain E(r) everywhere
Unique solution, all commercial CEM codes

Inverse problem Given E(r), E;(r) obtain €,(r) everywhere
Infinite solutions, need apriori info!

We know how to solve this!

@ Use theory of integral equations and Green's functions

@ Suppose you knew the solution to this problem:
V2G(r,r')+ k?G(r,r') = —d(r,r'")  [impulse resp]
d is a Dirac delta function
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Processing the Wave Equation into an Integral equation

7 VAE() - E(0] + KIE() - ()] = -Kx(NEW) O

L.--'—'_—"——__/

Forward problem Given E;(r), €,(r) obtain E(r) everywhere
Unique solution, all commercial CEM codes

Inverse problem Given E(r), E;(r) obtain €,(r) everywhere
Infinite solutions, need apriori info!

Vl‘f 1(: We know how to solve this!

@ Use theory of integral equations and Green's functions

@ Suppose you knew the solution to this problem:

< V2G(r,r') + k2G(r,r') = =6(r,r')  [impulse resp] @
d is a Dirac delta function

E(r) — Er) = K [, G(r. ") x(r) E(F) dr’ | ==

—
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Recap: Solving the Integral Equation

E(r)— kg fp G(r,r") x(r') E(r') dr' = Ei(r) J
S d

o Discretize E(r), x(r) using “pulse” basis ;?(tjt?;: T
functions: E(r) = ZnN:1 uppn(r). The new / Pun \
variables are u,,. ) :\\ /] \

] ] ] / Internal

@ For each r location on the grid, we will get [ fieldu,,, 755 ¢
one equation in all N variables. fontrast tufgeteToTs ~=_

@ Cycle through all the N locations to get a / \/
N x N system of equations. /

@ Solve to get all u, and thus E(r). //'Inmdentfleld
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Towards the inverse problem formulation

Our faveqn:  E(r) — k3 [5 G(r, ') x(r') E(r") dr' = Ei(r)
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Towards the inverse problem formulation

Our faveqn:  E(r) — k3 fD G(r,r")x(r") E(r") dr' = Ei(r) J

Let’s convert it to the language of linear algebra:

E(r) > u [re D] x(r) — x Ei(r) — e
Define scattered field as E(r) — Ei(r) — s [r & D] : all col vectors J
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Towards the inverse problem formulation

Our faveqn:  E(r) — k3 [5 G(r, ') x(r') E(r") dr' = Ei(r)

Let’s convert it to the language of linear algebra:

E(r) = u [reD] x(r) — x Ei(r) — e
Define scattered field as E(r) — Ei(r) — s [r & D] : all col vectors

_< -Receiver ~ OI:Objectof interest
D : Domian of interest

—‘ : Transmtter § : Measurement Domain|
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Towards the inverse problem formulation

Our faveqn:  E(r) — k3 [5 G(r, ') x(r') E(r") dr' = Ei(r) J
Let’s convert it to the language of linear algebra:
E(r) = u [reD] x(r) — x Ei(r) — e
Define scattered field as E(r) — Ei(r) — s [r & D] : all col vectors J
When re D¢ - $
‘ - G X ‘ A ,
°|u— u=e N
: ,D : \"’K x(
e ‘State’ equation T B
@ Can solve for u “‘* : +"‘
when X known EA N N

@ Gp full rank: has ) 4 «
unique soln

/ —< -Receiver Ol : Object of interest

D : Domian of interest
—‘ : Transmtter S : Measurement Domain|
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Towards the inverse problem formulation gpels

2
IL(O fD (rv

Our faveqn:  E(r) —

N E) dr = E(r)

eldn ane
Lond Umibed
Bucet
J

Scalbenad

— 1
J

Let’s convert it to the language of linear algebra:

E(r) = u [reD]

x(r) = x

E,-(r) —
Define scattered field as E(r) — Ei(r) — s [r & D] : all col vectors

e

J

Yyt e D

When r e D .~
o‘u—qDXu:e‘

‘ i B
@ 'State” equation

@ Can solve for u
when X known

@ Gp full rank: has
unique soln
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ves, t'ed

_< -Receiver ~ OI:Objectof interest
D : Domian of interest

—‘ : Transmtter S : Measurement Domain|

Inverse Imaging

When r € i

‘Data’ equation

@ Can solve for x when
U known

@ Ggs under determined:
no unique soln

S-.'rn Qw.jme)

w
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More on the inverse problem — trouble lies ahead!

Let's delve more into the ‘Data’ equation,
connecting measurements s to desired parameter x
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connecting measurements s to desired parameter x

@ Typically s doesn't come by itself, some noise comes along for the
ridel What we have is: s (actual) = s (ideal) + 7 (noise)
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connecting measurements s to desired parameter x

@ Typically s doesn’t come by itself, some noise comes along for the
ride!l What we have is: s (actual) = s (ideal) + 71 (noise)

@ So the problem to solve becomes: | & = argmin||s — GsUx||2
X
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More on the inverse problem — trouble lies ahead!
Let's delve more into the ‘Data’ equation,
connecting measurements s to desired parameter x

@ Typically s doesn’t come by itself, some noise comes along for the
ride!l What we have is: s (actual) = s (ideal) + 71 (noise)

@ So the problem to solve becomes: | & = argmin||s — GsUx||2
X

Let's assume for a (magical) moment that U is known
o Linear algebra says that an underdetermined system has oo solutions

@ | need some more information to constrain the solution, e.g. psuedo
inverse soln (min 2-norm) or sparse solution (min 1-norm)
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More on the inverse problem — trouble lies ahead!
Let's delve more into the ‘Data’ equation,
connecting measurements s to desired parameter x

@ Typically s doesn’t come by itself, some noise comes along for the
ride!l What we have is: s (actual) = s (ideal) + 71 (noise)

@ So the problem to solve becomes: | & = argmin||s — GsUx||2
X

Let's assume for a (magical) moment that U is known
o Linear algebra says that an underdetermined system has oo solutions

@ | need some more information to constrain the solution, e.g. psuedo
inverse soln (min 2-norm) or sparse solution (min 1-norm)

l\‘n.um (,
The problem now becomes: X = argmin{||s — GsUx]||> + 5||x|[1} J
X —
Adding more info — ‘Regularization brodie

Se—~——
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Aside: some kinds of regularization [1 data eqn, 2 vars]

Recall: dealing with under-determined system of equations = oo solns
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Aside: some kinds of regularization [1 data eqn, 2 vars]

Recall: dealing with under-determined system of equations = oo solns

1.6 1.6

T~ ——Data ——Data
14 ~. ——-1,=05 Lar ——-1,=0.75

~
1.2 o ___IZ:U.SQ 1.2+ ___|1:1
S - -
1 ___|271.5 1 ___|171‘5
- O Soln o Soln
0.8 B Soast
~ \ :

0.6 N 3 0.6

P \ \
0.4 N, \ iy 0.4r N

N 1 ~
0.2 A A | 0.2 b AN
! 1 | Ay
0 | | | 0
0 0.5 1 1.5 2 1.5 2
Xl
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Aside: some kinds of regularization [1 data eqn, 2 vars]

Recall: dealing with under-determined system of equations = oo solns

1.6 1.6
T~ —Data —Data
1.4 ~. ——-1,=05 Lars _ __1,=0.75
~ N 1
1.2 < ——-1,=0.89 121N — =1
S Y
) |e--1,=15 ) \ ——-l=15
Ny o Soln N \\ o Soln
SNos B Sost N N
N
AN \ N \
0.6 | \ 0.6 " \\ AN
. . '
0.4 ~ \ v 0.4t \\ \\ N
N \ - NN \
0.2 \ \ | 0.2t SN LN
\ | | N N
0 . ! 0
0 0.5 1 1.5 2 0 0.5 1 1.5 2
Xl Xl
The solution with minimum #¢> norm
has all entries non-zero — soln is
‘spread out’ in all variables
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Aside: some kinds of regularization [1 data eqn, 2 vars]
faclly - = 1l
Recall: dealing with under-determined system of equations = oo solns

1.6
o 1.4

/

"

=
(VAN

(=]

i3

o
.

i

—Datav’
___|2=U_.__§

- —-1,=0.89
-—-1,=1.5

o  Soln
T

The solution with minimum #¢> norm
has all entries non-zero — soln is
‘spread out’ in all variables

pieat o
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1.6
—Data
1“"\\ ——-1,=0.75
PR A
NN ——-1,=15
N N \\ o Soln
w 0B N N
N
- \
0.6} V'T'\ N <
N
oab S N N ek
. NN N
N
0.2 + ~, N A ‘Z
N N
NN
0 £
0 0.5 {, l—}ufl"' 1.5 2
Xl

But solution with minimum #¢; norm

. —_—
has some entries zero — soln is
sparse in higher dims

—
———
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Why are minimum {1 norm solutions preferred?

Natural images are
sparse in wavelet /
discrete cosine basis.
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Why are minimum ¢1 norm solutions preferred?

Natural images are
sparse in wavelet /
discrete cosine basis.

For example, in the
Daubechies-4 Wavelet
basis — reasonable
reconstructions with
few coefficients

Uday K Khankhoje (EE Q@ IITM)

Drlglnal (46656 px)

Keep 7% coeffs

Inverse Imaging

.._1

Keep 2% coeffs

Keep 25% coeffs
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Why are minimum ¢1 norm solutions preferred?

Natural images are
sparse in wavelet /
discrete cosine basis.

For example, in the
Daubechies-4 Wavelet
basis — reasonable
reconstructions with
few coefficients
Apriori knowledge of

sparseness is a
regularizer.

We don't need to
know which coeffs are
ero!

Uday K Khankhoje (EE @ IITM)

3
Original (46656 px) Keep 2% coeffs

01’1}
L, R
Keep 7% coeffs Keep 25% coeffs
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Why are minimum {5 norm solutions preferred?

/ Original (46656 px) Keep 2% coeffs

These kind of
solutions are studied
in the field of
Compressive)
kSensing -

a new sub-field of
Signal Processing
since ~2008

Keep 7% coeffs Keep 25% coeffs

lU- \’j ase,d
L
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The inverse problem — More issues! ~ neliteardy -

L
e In|argmin{||s — GsUx|]2 + R(x)} | trouble is, U is not known.
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The inverse problem — More issues!

e In /alrgmin{||s — GsUx||2 + R(x)} | trouble is, U is not known.
-~ = /
e Why not use the ‘State’ eqn? |u = (/ — GpX) e

e Start with a guess for x, then alternate between solving the two:
— X =argmin{||s — GsUx|]2 + R(x)}
X
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: . Z()Err) d-f X v
The inverse problem — More |ssuesIJ

. s ["*“' ; 3[:*] [vv:][.

e In |argmin{||s — %h + R(x)} | trouble is, U is not known.
X 1 d“’g
/’7 X - / 6/

e Why not use the ‘State’ eqn? |u = (/ — GpX)~}

@ Start with a guess for x, then alternate between solving the two:
— X =argmin{||s — GsUx|]2 + R(x)}
X

x-‘)l._

@ Above procedure called the Born Iterative Method

>

@ OR, we can combine the two into one monster eqn:

% = argmin{||s — Gs Hiag(((/ — GDX)‘lﬂng + R(x)
X Vs S J 27 A’\

e
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The inverse problem — More issues!

; In jgxmin{lls - ngxllz + R(x)}
N\

trouble is, U is not known.

@ Why not use the ‘State’ eqn?( v = (I — GD)_()_leD

—=
@ Start with a guess for x, then alternate between solving the two:

— X =argmin{||s — GsUx|]2 + R(x)}

@ Above procedure called the Born Iterative Method

@ OR, we can combine the two into one monster eqn:

P

x—argmm{Hs— Gs diag( ((I — GpX)~te)x|]2 + R(x)}

What's the problem with this?
o ill-posed (not enough data

@ nonlinear (see above eqn)

J
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An experiment to study nonlinearity
W= £y -1

Since only two
variables, we can
visualize the
maxima/minimas
of this function

Consider a simple
object to visualize
the challenge

@ We will plot how looks like, where x = [il]

(exact U is also calc each x) - e
@ We can look at linear (assuming U const) and
. e boekgrouwnd
nonlinear approach (treating U as a fn of x) P
x, - 3-5 xn= &)~ &
> 2 75 €
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Nonlinearity — Main Challenge, visualiz

Low contrast object L l Highree-n%ras‘rcrl:gﬁ;ct
- 16 = 7 T 16

Contrast (x1)

R e e e e T e
« ~f- -OCost Function %n- Cost Function |
£ N2 < J—Nonlinear Steepest Descent 1 . -|7 Z[[=>Nonlinear Steepest Descent N 14
8 { 8. NI/ - [ YON IR 4
‘II' 4N D '
i YOOI SRR’ S R W 12
p LA A
N6 w6 :
= x 10
w w
s T
=4 4 8
S =
8 g
o < 6
2, X
[ Y L S A .
Yy aord N e 4
l‘Wlllll|\\\\r':Llll
[ \;,;.‘s VA A I e e N SR pr VA
01‘ A W L1/ eY L SNNY B d Y 2
0o V2 4 6 8
1

Contrast (x1)

Easy to arrive at the correct solution Many local minima along the way

(m) = (0»5',05) (x,,%,) = €3,7)
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Summary

e Integral equations are a
powerful tool

e Forward problems —
unique solutions

@ Inverse problems —
more interesting
But,
ill-posed
nonlinear
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Summary

What skills do you need?

e Integral equations are a) e Computational Electromagnetics
powerful tool o Signal Processing «—
e Forward problems — o Linear Algebra,”
unique solutions o Optimization
@ Inverse problems — \{ e Programming /
more Interesting . (ML)
But, )
ill-posed / ot mwg[\ *"Gg
nonlinear

™y Nenlawex ﬁf‘t‘l""“l':lte"l. .
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