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Inverse Imaging : What is it?

Inverse Problems:

This is different.
Given scattered fields, ~Es(~r), tell
me what is εr (~r)?
Problem has no unique solution.

E.g. buried land mine detection
structural health monitoring
breast cancer detection, etc.

Forward Problems:

We are used to these.
Given permittivity, εr (~r), find the
radiated or scattered fields in a
problem.
Problem has a unique solution.
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Breast Cancer in India: a crisis

Context

A 2017 study conducted by the National Institute of Pathology in India1

Ranked breast cancer as having the highest rate of incidence and
mortality among Indian women (earlier occupied by cervical cancer)

Mortality to incidence ratio: as high as 66 in rural areas, around 8 in
urban settings

Lack of diagnostic aids has been identified as being responsible for
these statistics

Sharp divide between rural and urban survival
rates – issues in accessibility and affordability
of diagnostic devices.

1S. Malvia et al, “Epidemiology of breast cancer in Indian
women,” Asia-Pacific Journal of Clinical Oncology, 2017.
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Can Microwave Technology Help?

Current methods are
expensive, time
consuming, inaccessible
(MRI screening), or cause
cancer (X-ray)

Need methods that are: safe, inexpensive, quick, and non invasive
Microwave (RF) technology has the potential!

RF waves penetrate human tissues without
causing ionizing damage

RF components (in the 1-10GHz range)
are cheap due to other popular applications
such as telecom, WiFi, etc
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Underlying Principle: waves are scattered by obstacles

High school experiment on prisms:
light gets reflected & transmitted
(bent) on hitting an object (glass)
of different refractive index

When microwave travels through
tissue → gets scattered by different
constituents (blood, fat, cancer).

Cancerous tissue has different permittivity than healthy
→ scatters microwaves differently
→ fields encode information of scattering objects
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Breast Cancer Detection: High Level Idea

Data collection

Surround object by Tx/Rx

One Tx ON, all others Rx; store fields

Processing

Use fields to solve mathematical problem to
get permittivity as a function of space, ε(r)

Look up tables of ε values prepared by
biologists to infer cancer

Diagnosis

Look up tables of ε values prepared by biologists
to infer cancer
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Maxwell’s equations that we know and love2!

∇× ~E (r) = −jωµ ~H(r), ∇× ~H(r) = jω ε(r) ~E (r) + ~J(r) (1)

Combine these equations using vector calculus into a wave equation

∇2Ez(r) + k20 εr (r)Ez(r) = jωµJz(r) (2)

Specialize this to two cases [without and with object εr (r)]:

∇2Ei (r) + k20Ei (r) = jωµJ(r) Ei : incident field (3)

∇2E (r) + k20 εr (r)E (r) = jωµJ(r) E : total field (4)

Subtract the two (eliminate source currents) + some algebra

∇2[E (r)− Ei (r)] + k20 [E (r)− Ei (r)] = −k20 (εr (r)− 1)E (r) (5)

Define contrast χ(r) = (εr (r)− 1)

2Single frequency (e jωt), two-dimensions (x − y), single polarization (Ez)
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Processing the Wave Equation into an Integral equation

∇2[E(r)− Ei (r)] + k2
0 [E(r)− Ei (r)] = −k2

0 χ(r)E(r)

Forward problem Given Ei (r), εr (r) obtain E (r) everywhere
Unique solution, all commercial CEM codes

Inverse problem Given E (r), Ei (r) obtain εr (r) everywhere
Infinite solutions, need apriori info!

We know how to solve this!

Use theory of integral equations and Green’s functions

Suppose you knew the solution to this problem:
∇2G (r , r ′) + k2G (r , r ′) = −δ(r , r ′) [impulse resp]
δ is a Dirac delta function

E (r)− Ei(r) = k2
0

∫
D
G (r , r ′)χ(r ′)E (r ′) dr ′

Uday K Khankhoje (EE @ IITM) Inverse Imaging 30 Mar 2019 8 / 17



Processing the Wave Equation into an Integral equation

∇2[E(r)− Ei (r)] + k2
0 [E(r)− Ei (r)] = −k2

0 χ(r)E(r)

Forward problem Given Ei (r), εr (r) obtain E (r) everywhere
Unique solution, all commercial CEM codes

Inverse problem Given E (r), Ei (r) obtain εr (r) everywhere
Infinite solutions, need apriori info!

We know how to solve this!

Use theory of integral equations and Green’s functions

Suppose you knew the solution to this problem:
∇2G (r , r ′) + k2G (r , r ′) = −δ(r , r ′) [impulse resp]
δ is a Dirac delta function

E (r)− Ei(r) = k2
0

∫
D
G (r , r ′)χ(r ′)E (r ′) dr ′

Uday K Khankhoje (EE @ IITM) Inverse Imaging 30 Mar 2019 8 / 17



Processing the Wave Equation into an Integral equation

∇2[E(r)− Ei (r)] + k2
0 [E(r)− Ei (r)] = −k2

0 χ(r)E(r)

Forward problem Given Ei (r), εr (r) obtain E (r) everywhere
Unique solution, all commercial CEM codes

Inverse problem Given E (r), Ei (r) obtain εr (r) everywhere
Infinite solutions, need apriori info!

We know how to solve this!

Use theory of integral equations and Green’s functions

Suppose you knew the solution to this problem:
∇2G (r , r ′) + k2G (r , r ′) = −δ(r , r ′) [impulse resp]
δ is a Dirac delta function

E (r)− Ei(r) = k2
0

∫
D
G (r , r ′)χ(r ′)E (r ′) dr ′

Uday K Khankhoje (EE @ IITM) Inverse Imaging 30 Mar 2019 8 / 17



Processing the Wave Equation into an Integral equation

∇2[E(r)− Ei (r)] + k2
0 [E(r)− Ei (r)] = −k2

0 χ(r)E(r)

Forward problem Given Ei (r), εr (r) obtain E (r) everywhere
Unique solution, all commercial CEM codes

Inverse problem Given E (r), Ei (r) obtain εr (r) everywhere
Infinite solutions, need apriori info!

We know how to solve this!

Use theory of integral equations and Green’s functions

Suppose you knew the solution to this problem:
∇2G (r , r ′) + k2G (r , r ′) = −δ(r , r ′) [impulse resp]
δ is a Dirac delta function

E (r)− Ei(r) = k2
0

∫
D
G (r , r ′)χ(r ′)E (r ′) dr ′

Uday K Khankhoje (EE @ IITM) Inverse Imaging 30 Mar 2019 8 / 17



Recap: Solving the Integral Equation

E (r)− k20
∫
D G (r , r ′)χ(r ′)E (r ′) dr ′ = Ei (r)

Discretize E (r), χ(r) using “pulse” basis
functions: E (r) =

∑N
n=1 unpn(r). The new

variables are un.

For each r location on the grid, we will get
one equation in all N variables.

Cycle through all the N locations to get a
N × N system of equations.

Solve to get all un and thus E (r).
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𝐷𝐷 

𝝆𝝆𝒎𝒎𝒎𝒎 

Incident field 

Scattered 
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Towards the inverse problem formulation

Our fav eqn: E (r)− k20
∫
D G (r , r ′)χ(r ′)E (r ′) dr ′ = Ei (r)

Let’s convert it to the language of linear algebra:

E (r)→ u [r ∈ D] χ(r)→ x Ei (r)→ e
Define scattered field as E (r)− Ei (r)→ s [r 6∈ D] : all col vectors

When r ∈ D

u − GDXu = e

‘State’ equation

Can solve for u
when X known

GD full rank: has
unique soln

When r ∈ S

s = GSUx

‘Data’ equation

Can solve for x when
U known

GS under determined:
no unique soln
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More on the inverse problem – trouble lies ahead!

Let’s delve more into the ‘Data’ equation,
connecting measurements s to desired parameter x

Typically s doesn’t come by itself, some noise comes along for the
ride! What we have is: s (actual) = s (ideal) + η (noise)

So the problem to solve becomes: x̂ = argmin
x
‖s − GSUx‖2

Let’s assume for a (magical) moment that U is known

Linear algebra says that an underdetermined system has ∞ solutions

I need some more information to constrain the solution, e.g. psuedo
inverse soln (min 2-norm) or sparse solution (min 1-norm)

The problem now becomes: x̂ = argmin
x
{‖s − GSUx‖2 + β‖x‖1}

Adding more info → ‘Regularization’
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Aside: some kinds of regularization [1 data eqn, 2 vars]

Recall: dealing with under-determined system of equations =⇒ ∞ solns

The solution with minimum `2 norm
has all entries non-zero → soln is
‘spread out’ in all variables

But solution with minimum `1 norm
has some entries zero → soln is
sparse in higher dims
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Why are minimum `1 norm solutions preferred?

Natural images are
sparse in wavelet /
discrete cosine basis.
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Why are minimum `1 norm solutions preferred?

Natural images are
sparse in wavelet /
discrete cosine basis.

For example, in the
Daubechies-4 Wavelet
basis → reasonable
reconstructions with
few coefficients
Apriori knowledge of

sparseness is a
regularizer.
We don’t need to
know which coeffs are
zero!
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Why are minimum `1 norm solutions preferred?

These kind of
solutions are studied
in the field of
Compressive
Sensing –
a new sub-field of
Signal Processing
since ∼2008
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The inverse problem – More issues!

In argmin
x
{‖s − GSUx‖2 + R(x)} trouble is, U is not known.

Why not use the ‘State’ eqn? u = (I − GDX )−1e

Start with a guess for x , then alternate between solving the two:

→ x̂ = argmin
x
{‖s − GSUx‖2 + R(x)}

Above procedure called the Born Iterative Method

OR, we can combine the two into one monster eqn:

x̂ = argmin
x
{‖s − GS diag( ((I − GDX )−1e)x‖2 + R(x)}

What’s the problem with this?

ill-posed (not enough data)

nonlinear (see above eqn)
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x̂ = argmin
x
{‖s − GS diag( ((I − GDX )−1e)x‖2 + R(x)}

What’s the problem with this?

ill-posed (not enough data)

nonlinear (see above eqn)
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An experiment to study nonlinearity

Consider a simple
object to visualize
the challenge

Since only two
variables, we can
visualize the
maxima/minimas
of this function

1 We will plot how ‖s − GSUx‖2 looks like, where x =

[
x1
x2

]
(exact U is also calculated at each x)

2 We can look at linear (assuming U const) and
nonlinear approach (treating U as a fn of x)

Uday K Khankhoje (EE @ IITM) Inverse Imaging 30 Mar 2019 15 / 17



Nonlinearity – Main Challenge, visualize ‖s − GSUx‖2

Low contrast object

Easy to arrive at the correct solution

High contrast object

Many local minima along the way
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Summary

Integral equations are a

powerful tool

Forward problems →
unique solutions

Inverse problems →
more interesting

But,

ill-posed

nonlinear

What skills do you need?

Computational Electromagnetics

Signal Processing

Linear Algebra

Optimization

Programming
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