Applications of Computational Electromagnetics: Microwave Inverse Imaging

Uday K Khankhoje

Electrical Engineering, IIT Madras

Table of Contents

(1) What is inverse imaging?

(2) Towards microwave based imaging

(3) The inverse scattering problem

4 Summary

Inverse Imaging : What is it?

Inverse Problems:

This is different.
Given scattered fields, $\overrightarrow{\vec{E}_{s}(\vec{r})}$, tell me what is $\epsilon_{r}(\vec{r})$?
Problem has no unique solution.
E.g. buried land mine detection ${ }^{\text {d }}$ structural health monitoring breast cancer detection, etc.

Forward Problems:

We are used to these. Given permittivity, $\epsilon_{r}(\vec{r})$, find the radiated or scattered fields in a problem.
Problem has a unique solution.

Breast Cancer in India: a crisis

Context

A 2017 study conducted by the National Institute of Pathology in India ${ }^{1}$

- Ranked breast cancer as having the highest rate of incidence and mortality among Indian women (earlier occupied by cervical cancer)
- Mortality to incidence ratio: as high as 66 in rural areas, around 8 in urban settings

[^0]
Breast Cancer in India: a crisis

Context

A 2017 study conducted by the National Institute of Pathology in India ${ }^{1}$

- Ranked breast cancer as having the highest rate of incidence and mortality among Indian women (earlier occupied by cervical cancer)
- Mortality to incidence ratio: as high as 66 in rural areas, around 8 in urban settings
- Lack of diagnostic aids has been identified as being responsible for these statistics
- Sharp divide between rural and urban survival rates - issues in accessibility and affordability of diagnostic devices.

[^1]
Can Microwave Technology Help?

Current methods are expensive, time consuming, inaccessible (MRI screening), or cause cancer (X-ray)
Photo Courtesy of GE Healthcare

Can Microwave Technology Help?

Photo Courtesy of GE Healthcare
Current methods are expensive, time consuming, inaccessible (MRI screening), or cause cancer (X-ray)

Need methods that are: safe, inexpensive, quick, and non invasive Microwave (RF) technology has the potential!

- RF waves penetrate human tissues without causing ionizing damage
- RF components (in the $1-10 \mathrm{GHz}$ range) are cheap due to other popular applications such as telecom, WiFi, etc

Underlying Principle: waves are scattered by obstacles

High school experiment on prisms:
light gets reflected \& transmitted (bent) on hitting an object (glass) of different refractive index

Underlying Principle: waves are scattered by obstacles

High school experiment on prisms: light gets reflected \& transmitted (bent) on hitting an object (glass) of different refractive index

When microwave travels through tissue \rightarrow gets scattered by different constituents (blood, fat, cancer).

Underlying Principle: waves are scattered by obstacles

High school experiment on prisms: light gets reflected \& transmitted (bent) on hitting an object (glass) of different refractive index

When microwave travels through tissue \rightarrow gets scattered by different constituents (blood, fat, cancer).

Cancerous tissue has different permittivity than healthy
\rightarrow scatters microwaves differently
\rightarrow fields encode information of scattering objects

Breast Cancer Detection: High Level Idea

Data collection

- Surround object by $T x / R x$
- One Tx ON, all others Rx; store fields /

Processing

- Use fields to solve mathematical problem to get permittivity as a function of space, $\epsilon(r)$
- Look up tables of ϵ values prepared by biologists to infer cancer

Diagnosis

Look up tables of ϵ values prepared by biologists to infer cancer

Table of Contents

(1) What is inverse imaging?

(2) Towards microwave based imaging

(3) The inverse scattering problem

Maxwell's equations that we know and love ${ }^{2}$! Vol. Intg.

$$
\begin{equation*}
\nabla \times \vec{E}(r)=-j \omega \mu \vec{H}(r), \quad \nabla \times \vec{H}(r)=j \omega \epsilon(r) \vec{E}(r)+\vec{J}(r) \tag{1}
\end{equation*}
$$

${ }^{2}$ Single frequency $\left(e^{j \omega t}\right)$, two-dimensions $(x-y)$, single polarization $\left(E_{z}\right)$ TM

Maxwell's equations that we know and love ${ }^{2}$!

$$
\begin{equation*}
\nabla \times \vec{E}(r)=-j \omega \mu \vec{H}(r), \quad \nabla \times \vec{H}(r)=j \omega \epsilon(r) \vec{E}(r)+\vec{J}(r) \tag{1}
\end{equation*}
$$

Combine these equations using vector calculus into a wave equation

$$
\begin{equation*}
\nabla^{2} E_{z}(r)+k_{0}^{2} \epsilon_{r}(r) E_{z}(r)=j \omega \mu J_{z}(r) \tag{2}
\end{equation*}
$$

${ }^{2}$ Single frequency $\left(e^{j \omega t}\right)$, two-dimensions $(x-y)$, single polarization $\left(E_{z}\right)$

Maxwell's equations that we know and love ${ }^{2}$!

$$
\begin{equation*}
\nabla \times \vec{E}(r)=-j \omega \mu \vec{H}(r), \quad \nabla \times \vec{H}(r)=j \omega \epsilon(r) \vec{E}(r)+\vec{J}(r) \tag{1}
\end{equation*}
$$

Combine these equations using vector calculus into a wave equation

$$
\begin{equation*}
\nabla^{2} E_{z}(r)+k_{0}^{2} \epsilon_{r}(r) E_{z}(r)=j \omega \mu J_{z}(r) \tag{2}
\end{equation*}
$$

Specialize this to two cases [without and with object $\epsilon_{r}(r)$]:

$$
\begin{align*}
\nabla^{2} E_{i}(r)+k_{0}^{2} E_{i}(r) & =j \omega \mu J(r) \tag{3}\\
\nabla^{2} E(r)+k_{0}^{2} \epsilon_{r}(r) E(r) & =j \omega \mu J(r) \tag{4}
\end{align*} \mathcal{E}_{E_{i}: \text { incident field }}^{E: \text { total field }}
$$

[^2]Maxwell's equations that we know and love!

$$
\begin{equation*}
\nabla \times \vec{E}(r)=-j \omega \mu \vec{H}(r), \quad \nabla \times \vec{H}(r)=j \omega \epsilon(r) \vec{E}(r)+\vec{J}(r) \tag{1}
\end{equation*}
$$

Combine these equations using vector calculus into a wave equation

$$
\begin{equation*}
\nabla^{2} E_{z}(r)+k_{0}^{2} \epsilon_{r}(r) E_{z}(r)=j \omega \mu J_{z}(r) \tag{2}
\end{equation*}
$$

Specialize this to two cases [without and with object $\left.\epsilon_{r}(r)\right]$:

$$
\begin{align*}
\nabla^{2} E_{i}(r)+k_{0}^{2} E_{i}(r) & =j \omega \mu J(r) & E_{i}: \text { incident field } \tag{3}\\
\nabla^{2} E(r)+k_{0}^{2} \epsilon_{r}(r) E(r) & =j \omega \mu J(r) & E: \text { total field } \tag{4}
\end{align*}
$$

Subtract the two (eliminate source currents) + some algebra

$$
\begin{equation*}
\nabla^{2}\left[E(r)-E_{i}(r)\right]+k_{0}^{2}\left[E(r)-E_{i}(r)\right]=-k_{0}^{2}\left(\epsilon_{r}(r)-1\right) E(r) \tag{5}
\end{equation*}
$$

Define contrast $\chi(r)=\left(\epsilon_{r}(r)-1\right)$

[^3]
Processing the Wave Equation into an Integral equation

$$
\nabla^{2}\left[E(r)-E_{i}(r)\right]+k_{0}^{2}\left[E(r)-E_{i}(r)\right]=-k_{0}^{2} \chi(r) E(r)
$$

Processing the Wave Equation into an Integral equation

$$
\nabla^{2}\left[E(r)-E_{i}(r)\right]+k_{0}^{2}\left[E(r)-E_{i}(r)\right]=-k_{0}^{2} \chi(r) E(r)
$$

Forward problem Given $E_{i}(r), \epsilon_{r}(r)$ obtain $E(r)$ everywhere Unique solution, all commercial CEM codes Inverse problem Given $E(r), E_{i}(r)$ obtain $\epsilon_{r}(r)$ everywhere Infinite solutions, need apriori info!

Processing the Wave Equation into an Integral equation

$$
\nabla^{2}\left[E(r)-E_{i}(r)\right]+k_{0}^{2}\left[E(r)-E_{i}(r)\right]=-k_{0}^{2} \chi(r) E(r)
$$

Forward problem Given $E_{i}(r), \epsilon_{r}(r)$ obtain $E(r)$ everywhere Unique solution, all commercial CEM codes Inverse problem Given $E(r), E_{i}(r)$ obtain $\epsilon_{r}(r)$ everywhere Infinite solutions, need apriori info!

We know how to solve this!

- Use theory of integral equations and Green's functions
- Suppose you knew the solution to this problem: $\nabla^{2} G\left(r, r^{\prime}\right)+k^{2} G\left(r, r^{\prime}\right)=-\delta\left(r, r^{\prime}\right) \quad$ [impulse resp] δ is a Dirac delta function

Processing the Wave Equation into an Integral equation

$$
\nabla^{2}\left[E(r)-E_{i}(r)\right]+k_{0}^{2}\left[E(r)-E_{i}(r)\right]=-k_{0}^{2} \chi(r) E(r)
$$

Forward problem Given $E_{i}(r), \epsilon_{r}(r)$ obtain $E(r)$ everywhere Unique solution, all commercial CEM codes
Inverse problem Given $E(r), E_{i}(r)$ obtain $\epsilon_{r}(r)$ everywhere Infinite solutions, need apriori info!
$\nabla^{2}+k_{0}^{2}$
We know how to solve this!

- Use theory of integral equations and Green's functions
- Suppose you knew the solution to this problem: $\nabla^{2} G\left(r, r^{\prime}\right)+k_{o}^{2} G\left(r, r^{\prime}\right)=-\delta\left(r, r^{\prime}\right)$, [impulse resp] δ is a Dirac delta function

$$
E(r)-E_{i}(r)=k_{0}^{2} \int_{D} G\left(r, r^{\prime}\right) \chi\left(r^{\prime}\right) E\left(r^{\prime}\right) d r^{\prime}
$$

Recap: Solving the Integral Equation

$$
E(r)-k_{0}^{2} \int_{D} G\left(r, r^{\prime}\right) \chi\left(r^{\prime}\right) E\left(r^{\prime}\right) d r^{\prime}=E_{i}(r)
$$

- Discretize $E(r), \chi(r)$ using "pulse" basis functions: $E(r)=\sum_{n=1}^{N} u_{n} p_{n}(r)$. The new variables are u_{n}.
- For each r location on the grid, we will get one equation in all N variables.
- Cycle through all the N locations to get a $N \times N$ system of equations.
- Solve to get all u_{n} and thus $E(r)$.

Table of Contents

(1) What is inverse imaging?

(2) Towards microwave based imaging
(3) The inverse scattering problem

Towards the inverse problem formulation

$$
\text { Our fav eqn: } \quad E(r)-k_{0}^{2} \int_{D} G\left(r, r^{\prime}\right) \chi\left(r^{\prime}\right) E\left(r^{\prime}\right) d r^{\prime}=E_{i}(r)
$$

Towards the inverse problem formulation

Our fav eqn: $\quad E(r)-k_{0}^{2} \int_{D} G\left(r, r^{\prime}\right) \chi\left(r^{\prime}\right) E\left(r^{\prime}\right) d r^{\prime}=E_{i}(r)$
Let's convert it to the language of linear algebra:
$E(r) \rightarrow u \quad[r \in D] \quad \chi(r) \rightarrow x \quad E_{i}(r) \rightarrow e$ Define scattered field as $E(r)-E_{i}(r) \rightarrow s \quad[r \notin D]:$ all col vectors

Towards the inverse problem formulation

Our fav eqn: $\quad E(r)-k_{0}^{2} \int_{D} G\left(r, r^{\prime}\right) \chi\left(r^{\prime}\right) E\left(r^{\prime}\right) d r^{\prime}=E_{i}(r)$

Let's convert it to the language of linear algebra:
$E(r) \rightarrow u \quad[r \in D] \quad \chi(r) \rightarrow x \quad E_{i}(r) \rightarrow e$
Define scattered field as $E(r)-E_{i}(r) \rightarrow s \quad[r \notin D]:$ all col vectors

Towards the inverse problem formulation

Our fav eqn: $\quad E(\underline{r})-k_{0}^{2} \int_{D} G\left(\underline{r}, r^{\prime}\right) \chi\left(r^{\prime}\right) E\left(r^{\prime}\right) d r^{\prime}=E_{i}(\underline{r})$

Let's convert it to the language of linear algebra:
$E(r) \rightarrow u \quad[r \in D] \quad \chi(r) \rightarrow x \quad E_{i}(r) \rightarrow e$
Define scattered field as $E(r)-E_{i}(r) \rightarrow s \quad[r \notin D]:$ all col vectors
When $r \in D^{\star}$

- $u-G_{D} X u=e$
- 'State’ equation
- Can solve for u when X known
- G_{D} full rank: has unique soln

$$
\text { Our fave eqn: } \quad E(r)-k_{0}^{2} \int_{D}\left(G\left(r, r^{\prime}\right) \chi\left(r^{\prime}\right) E\left(r^{\prime}\right) d r^{\prime}=E_{i}(r)\right.
$$

Bucci

Let's convert it to the language of linear algebra:

$$
E(r) \rightarrow u \quad[r \in D] \quad \chi(r) \rightarrow x \quad E_{i}(r) \rightarrow e
$$

Define scattered field as $E(r)-E_{i}(r) \rightarrow s \quad[r \notin D]:$ all col vectors
When $r \in r_{i} r^{\prime} \in D$

- $u-G_{D} X u=e$
- 'State' equation
- Can solve for u when X known
- G_{D} full rank: has unique soln

u

More on the inverse problem - trouble lies ahead!

Let's delve more into the 'Data' equation, connecting measurements s to desired parameter x

More on the inverse problem - trouble lies ahead!

Let's delve more into the 'Data' equation, connecting measurements \underline{s} to desired parameter x

- Typically s doesn't come by itself, some noise comes along for the ride! What we have is: s (actual) $=s$ (ideal) $+\eta$ (noise)

More on the inverse problem - trouble lies ahead!

Let's delve more into the 'Data' equation, connecting measurements s to desired parameter x

- Typically s doesn't come by itself, some noise comes along for the ride! What we have is: s (actual) $=s$ (ideal) $+\eta$ (noise)
- So the problem to solve becomes:

$$
\hat{x}=\underset{x}{\operatorname{argmin}}\left\|s-G_{S} U x\right\|_{2}
$$

More on the inverse problem - trouble lies ahead!

Let's delve more into the 'Data' equation, connecting measurements s to desired parameter x

- Typically s doesn't come by itself, some noise comes along for the ride! What we have is: s (actual) $=s$ (ideal) $+\eta$ (noise)
- So the problem to solve becomes:

$$
\hat{x}=\operatorname{argmin}\left\|s-G_{S} U x\right\|_{2}
$$

Let's assume for a (magical) moment that U is known

- Linear algebra says that an underdetermined system has ∞ solutions
- I need some more information to constrain the solution, e.g. psuedo inverse soln (min 2-norm) or sparse solution (min 1-norm)

More on the inverse problem - trouble lies ahead!

Let's delve more into the 'Data' equation, connecting measurements s to desired parameter x

- Typically s doesn't come by itself, some noise comes along for the ride! What we have is: s (actual) $=s$ (ideal) $+\eta$ (noise)
- So the problem to solve becomes:

$$
\hat{x}=\underset{x}{\operatorname{argmin}}\left\|s-G_{S} U x\right\|_{2}
$$

Let's assume for a (magical) moment that U is known

- Linear algebra says that an underdetermined system has ∞ solutions
- I need some more information to constrain the solution, e.g. psuedo inverse soln (min 2-norm) or sparse solution (min 1-norm)

Aside: some kinds of regularization [1 data eqn, 2 vars]

Recall: dealing with under-determined system of equations $\Longrightarrow \infty$ solns

Aside: some kinds of regularization [1 data eqn, 2 vars]

Recall: dealing with under-determined system of equations $\Longrightarrow \infty$ solns

Aside: some kinds of regularization [1 data eqn, 2 vars]

 Recall: dealing with under-determined system of equations $\Longrightarrow \infty$ solns

The solution with minimum ℓ_{2} norm has all entries non-zero \rightarrow soln is 'spread out' in all variables

Aside: some kinds of regularization [1 data eqn, 2 vars] $\|x\|_{1}=\sum_{i}\left|x_{i}\right|$
Recall: dealing with under-determined system of equations $\Longrightarrow \infty$ solns

The solution with minimum ℓ_{2} norm has all entries non-zero \rightarrow soln is 'spread out' in all variables

But solution with minimum ℓ_{1} norm has some entries zero \rightarrow soln is sparse in higher dims

Why are minimum ℓ_{1} norm solutions preferred?

Natural images are sparse in wavelet / discrete cosine basis.

Why are minimum ℓ_{1} norm solutions preferred?

Natural images are sparse in wavelet / discrete cosine basis.

For example, in the Daubechies-4 Wavelet basis \rightarrow reasonable reconstructions with few coefficients

Why are minimum ℓ_{1} norm solutions preferred?

Natural images are sparse in wavelet / discrete cosine basis.

For example, in the Daubechies-4 Wavelet basis \rightarrow reasonable reconstructions with few coefficients Apriori knowledge of
sparseness is a regularizer.
We don't need to know which coeffs are zero!

Original (46656 px)

Orig

$$
l_{2}
$$

Keep 7\% coeffs

Keep 2\% coeffs

Keep 25\% coeffs

Why are minimum ℓ_{1} norm solutions preferred?

These kind of solutions are studied in the field of
Compressive) Sensing -)
a new sub-field of Signal Processing since ~ 2008

Keep 7\% coeffs

Keep 25\% coeffs

The inverse problem - More issues!

 nonlinearity.- In $\underset{x}{\operatorname{argmin}}\left\{\left\|s-G_{S} U_{x}\right\|_{2}+R(x)\right\}$ trouble is, \underline{U} is not known.

The inverse problem - More issues!

- In $\underset{x}{\operatorname{argmin}\left\{\left\|s-G_{S} U_{x}\right\|_{2}+R(x)\right\}}$ trouble is, U is not known.
- Why not use the 'State' eqn? $\underline{u}=\left(I-G_{D} X\right)^{-1} e$
- Start with a guess for \underline{x}, then alternate between solving the two:

$$
\rightarrow \quad \hat{x}=\operatorname{argmin}\left\{\left\|s-G_{S} U x\right\|_{2}+R(x)\right\}
$$

- Why not use the 'State' eqn?

$$
u=\left(I-G_{D} X\right)^{-1} e
$$

- Start with a guess for x, then alternate between solving the two:

$$
\rightarrow \quad \hat{x}=\underset{x}{\operatorname{argmin}}\left\{\left\|s-G_{S} U x\right\|_{2}+R(x)\right\}
$$

$$
\text { Born Approx } \rightarrow x=0 \text {. }
$$

- Above procedure called the Born Iterative Method
- OR, we can combine the two into one monster eqn:

$$
\hat{x}=\underset{x}{\operatorname{argmin}}\left\{\| s-G_{S}\left[\operatorname{diag}\left(\left(\left(I-G_{D} X\right)^{-1} e\right) \times \|_{2}+R(x)\right\}\right.\right.
$$

The inverse problem - More issues!

- In $\underset{x}{\operatorname{argmin}}\left\{\left\|s-G_{S} U x\right\|_{2}+R(x)\right\}$ trouble is, U is not known.
- Why not use the 'State' eqn? $u=\left(I-G_{D} X\right)^{-1} e$
- Start with a guess for x, then alternate between solving the two:

$$
\rightarrow \quad \hat{x}=\operatorname{argmin}\left\{\left\|s-G_{S} U x\right\|_{2}+R(x)\right\}
$$

- Above procedure called the Born Iterative Method
- OR, we can combine the two into one monster eqn:

$$
\hat{x}=\underset{y}{\operatorname{argmin}}\left\{\| s-G_{S} \operatorname{diag}\left(\left(\left(I-G_{D} X\right)^{-1} e\right) x \|_{2}+R(x)\right\}\right.
$$

What's the problem with this?

- ill-posed (not enough data)
- nonlinear (see above eqn)

An experiment to study nonlinearity

Consider a simple object to visualize the challenge

$$
x=\varepsilon_{r}-1
$$

(1) We will plot how $\left\|s-G_{S} U x\right\|_{2}$ looks like, where $\underset{=}{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ (exact U is also calculated at each x)
(2) We can look at linear (assuming U const) and nonlinear approach (treating U as a in of x)

$$
x_{1} \rightarrow \frac{3-5}{5} \quad x_{2} \rightarrow \frac{7-5}{5} \quad x(r)=\frac{\varepsilon_{r}(r)-\varepsilon_{b}}{\varepsilon_{p}}
$$

Nonlinearity - Main Challenge, visualiz $\left\|s-G_{S} U x\right\|_{2}$

Easy to arrive at the correct solution

$$
\left(x_{1}, x_{2}\right)=(0.5,0.5)
$$

Many local minima along the way

$$
\left(x_{1}, x_{2}\right)=(3,7)
$$

Table of Contents

(1) What is inverse imaging?
(2) Towards microwave based imaging
(3) The inverse scattering problem

4 Summary

Summary

- Integral equations are a powerful tool
- Forward problems \rightarrow unique solutions
- Inverse problems \rightarrow
more interesting
But,
ill-posed
nonlinear

Summary

What skills do you need?

- Integral equations are a powerful tool
- Forward problems \rightarrow unique solutions
- Inverse problems \rightarrow more interesting But,
- Computational Electromagnetics
- Signal Processing
- Linear Algebra
- Optimization
- Programming
* (ML)
ill-posed \swarrow not enough info
nonlinear
noncorvex optimization.

[^0]: ${ }^{1}$ S. Malvia et al, "Epidemiology of breast cancer in Indian women," Asia-Pacific Journal of Clinical Oncology, 2017.

[^1]: ${ }^{1}$ S. Malvia et al, "Epidemiology of breast cancer in Indian women," Asia-Pacific Journal of Clinical Oncology, 2017.

[^2]: ${ }^{2}$ Single frequency $\left(e^{j \omega t}\right)$, two-dimensions $(x-y)$, single polarization $\left(E_{z}\right)$

[^3]: ${ }^{2}$ Single frequency $\left(e^{i \omega t}\right)$, two-dimensions $(x-y)$, single polarization $\left(E_{z}\right)$

