(

Computational Electromagnetics : Finite Difference Time Domain Methods – Sources

Uday Khankhoje

Electrical Engineering, IIT Madras

Topics in this module

1 Current Sources

2 Indirect Sources: Scattering problems

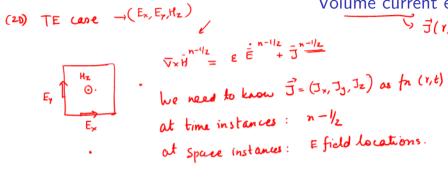

]

Table of Contents

1 Current Sources

2 Indirect Sources: Scattering problems

Volume current excitation

Dx, Dt. a

Easy to implement.

Relation between current source and Δt , Δx ?

$$\mathcal{F}$$
 $\widetilde{J}(f)$, say band limited.

Nyquist thm: Correctlyrepresent
$$\bar{J}^{(4)}$$
 = High BW courrent source => Space discretization fixed.

At the same time,
Courant fador:
$$\alpha = \frac{C \Delta t}{\Delta z}$$

Other implementation issues

1) Gaussian current source. $g(t) = \exp\left(-\left(\frac{t-t_o}{t}\right)^2\right) \stackrel{\mathcal{J}}{\Longleftrightarrow} t_w \pi \exp\left[-\left(\pi t_w f\right)^2\right] \exp\left[-j 2\pi f t_o\right]$ what is $f_{bw} = \frac{1}{\pi t_w}$. To be safe $f_0 = 2f_{bw} \Rightarrow f_0 = f_{max} = \frac{2}{\pi t_w}$ $\Rightarrow f_{1} \times e_{2} \times e_{3} \times e_{4} \times e_{4} \times e_{5} \times e$

2) At start, t = 0, $g(0) = e(-(\frac{t_0}{t_0})^2)$. Minimize high values of g(0)Make to large. eg. to = 4 tw = longer simulation.

3) How long to run the sim? long enough e.g 4tw x2.

Common mistake es. T = 2 tw.

4

Table of Contents

1 Current Sources

2 Indirect Sources: Scattering problems

No "J(r,t)" term in scattering problems

Fix via total/scattered formulation

6

Table of Contents

1 Current Sources

2 Indirect Sources: Scattering problems

Topics that were covered in this module

- 1 Current Sources
- 2 Indirect Sources: Scattering problems
- 3 Summary of FDTD

References:

- * Ch 12 of Computational Methods for Electromagnetics Peterson, Ray, Mitra
- * Computational Electrodynamics: The Finite-Difference Time-Domain Method Allen Taflove (the 'Bible' for FDTD)