Computational Electromagnetics : Finite Difference Time Domain Methods

Uday Khankhoje

Electrical Engineering, IIT Madras

Topics in this module

1 Introduction

2 2D Formulation

Table of Contents

1 Introduction

2 2D Formulation

2/11 FDTD IEM, FEM,
$$\rightarrow e^{j\omega t}$$

 \times Simplest, most widely use $d \in EM$ method.
 \times Yee 1966 \rightarrow Laid the foundation.
 \times Very useful for time domain formulations: wave prop, pulsed
 \times Based on differential form of Maxwell's Eqns
 \Im dineor, isotropic, non dispersive media, time invariant
 $\widehat{D} = \varepsilon \vec{E}, \ \vec{B} = |\mu\vec{H}$ $\Im \vec{D} = \nabla \times \vec{H} - \vec{J} = \varepsilon 2\vec{E}, \ \Im \vec{B} = -\nabla \times \vec{E}$
 $\Rightarrow f(z_{*} + \Delta z) = f(z_{0}) + \Delta z f'(z) + \cdots$
 $f(z_{*} - \Delta z) = f'(z) + \cdots$
 $= f(z_{*} - \Delta z) = f'(z) + \cdots$
 $= f'(z_{*} - \Delta z) = f'(z) + \cdots$
 $= f'(z_{*} - \Delta z) = f'(z) + \cdots$
 $= f'(z_{*} + \Delta z) = f'(z) + \cdots$
 $= f'(z_{*} - \Delta z) = f'(z) + \cdots$
 $= f'(z_{*} - \Delta z) = f'(z) + \cdots$
 $= f'(z_{*} - \Delta z) = f'(z) + \cdots$
 $= f'(z_{*} - \Delta z) = f'(z) + \cdots$
 $= f'(z_{*} - \Delta z) = f'(z) + \cdots$
 $= f'(z_{*} - \Delta z) = f'(z) + \cdots$
 $= f'(z_{*} - \Delta z) = f'(z) + \cdots$
 $= f'(z_{*} - \Delta z) = f'(z) + \cdots$
 $= f'(z_{*} - \Delta z) = f'(z) + \cdots$
 $= f'(z_{*} - \Delta z) = f'(z) + \cdots$
 $= f'(z_{*} - \Delta z) = f'(z) + \cdots$

Table of Contents

1 Introduction

2 2D Formulation

3/11
$$2 \text{ pols TE} (E_x, E_y, H_z)$$

TM (H_{xy}, H_y, E_z)
 $\nabla x \vec{E} = -k \frac{2\vec{H}}{2k}$, $\nabla x \vec{H} = \mathcal{E} \frac{2\vec{E}}{2k} + \vec{J}$ assume = 0
2D FDTD formulation: Stencil
Should Space grid
Stencil
Space grid
Yee cell:
 $H_z \odot E_y + \frac{H_z}{2k} = \frac{2H_z}{2k}$, $E_y \underbrace{-\frac{3H_z}{2k}} = \frac{2H_z}{2k} - \frac{2E_y}{2k}$
 $(i_{j,j})$
 $(i_{j,j})$

TM pol
$$\rightarrow$$
 (H_x, H_y, E_z) $\bigcirc -\frac{2}{8t} = \nabla \times H$, $\frac{2}{8t} = -\nabla \times E - 2$
Hy $\downarrow - 2D$ FDTD formulation: Time Stepping
 $2D$ FDTD formulation: Time Stepping
 $2D$ FDTD formulation: Time Stepping
 $\frac{2}{3} \rightarrow finite differences.$
 $\frac{2}{3} \rightarrow finite differences.$
 $E^n \rightarrow time index$
 $in time \rightarrow "$, " grid (Δt)
 $\Rightarrow Say E evaluated at integer time grids
 $\bigcirc \Rightarrow \varepsilon_0 \left[\overline{E}^n - \overline{E}^{h-1} \right] = \nabla \times \overline{H}^n - \frac{1}{2}$
 $\Im \Rightarrow \mu_0 \left[\overline{H}^{nH_z} - \overline{H}^{n-H_z} \right] = -\nabla \times \overline{E}^n \cap (\overline{H}^{nH_z} + \overline{H}^{n-H_z}) \left[\nabla \times \overline{E}^n \right]) \left[\Im = \frac{1}{2} \sum_{k=1}^{n} \frac{1}{2} \sum_{k=1$$

The case
$$\vec{p} = D_z(x,y)\hat{z} \rightarrow \vec{v} \cdot \vec{D} = 0$$

 $\nabla \cdot \vec{H} = 0$ (TE) $\hat{a} \vec{D} = \nabla \times \vec{H}$
2D FDTD formulation: Divergence Conditions
 $\vec{D} = \nabla \times \vec{H} = \hat{\partial} \vec{D}$ $(\vec{J} = 0)$
 $\vec{V} \cdot \nabla \times \vec{H} = \hat{\partial} \vec{D}$ $(\vec{J} = 0)$
 $\vec{V} \cdot \nabla \times \vec{H} = \hat{\partial} (\vec{V} \cdot \vec{D}) = 0$ TE
 $\vec{D} = \vec{V} \cdot \vec{D} = \vec{D} \cdot \vec{D} = \vec{D} \cdot \vec{D} \cdot \vec{D}$
 $\Rightarrow \nabla \cdot \vec{D} = \text{coust}(\text{trime}) \rightarrow \text{Does FDTD}$
 $\vec{V} \cdot \vec{V} \times \vec{H} = \hat{\partial} (\vec{V} \cdot \vec{D}) \text{dxdy} = \hat{\vec{V}} \vec{D} \cdot \hat{\vec{D}} \text{dx}$
 $\Rightarrow \nabla \cdot \vec{D} = \text{coust}(\text{trime}) \rightarrow \text{Does FDTD}$
 $\vec{V} \cdot \vec{V} \times \vec{H} = \hat{\partial} (\vec{V} \cdot \vec{D}) \text{dxdy} = \hat{\vec{V}} \vec{D} \cdot \hat{\vec{D}} \text{dx}$
 $\vec{D} = \hat{\vec{U}} \cdot \vec{D} = \hat{\vec{U}} \cdot \vec{D} \cdot \vec{D} \text{dxdy} = \hat{\vec{V}} \cdot \vec{D} \cdot \vec{D} \text{dxdy} = \hat{\vec{V}} \cdot \vec{D} \cdot \vec{D} \text{dxdy} = \hat{\vec{V}} \cdot \vec{D} \cdot \vec{D} \text{dx}$
 $\vec{V} = \hat{\vec{U}} \cdot \vec{D} \cdot \vec{D} \text{dxdy} = \hat{\vec{V}} \cdot \vec{D} \cdot \vec{D} \text{dxdy} = \hat{\vec{V}} \cdot \vec{D} \cdot \vec{D} \text{dx}$
 $\vec{V} = \hat{\vec{U}} \cdot \vec{D} \cdot \vec{D} \text{dxdy} = \hat{\vec{V}} \cdot \vec{D} \cdot \vec{D} \text{dxdy} = \hat{\vec{V}} \cdot \vec{D} \cdot \vec{D} \text{dxdy} = \hat{\vec{V}} \cdot \vec{D} \cdot \vec{D} \text{dx}$
 $\vec{V} = \hat{\vec{U}} \cdot \vec{D} \cdot \vec{D} \text{dxdy} = \hat{\vec{U}} \cdot \vec{D} \cdot \vec{D} \text{dxdy} = \hat{\vec{V}} \cdot \vec{D} \cdot \vec{D} \cdot \vec{D} \text{dx}$
 $\vec{V} = \hat{\vec{U}} \cdot \vec{D} \cdot \vec{D} \text{dxdy} = \hat{\vec{V}} \cdot \vec{D} \cdot \vec{D} \cdot \vec{D} \text{dx}$
 $\vec{V} = \hat{\vec{U}} \cdot \vec{D} \cdot \vec{D} \text{dxdy} = \hat{\vec{V}} \cdot \vec{D} \cdot \vec{D} \text{dx}$
 $\vec{V} = \hat{\vec{U}} \cdot \vec{D} \cdot \vec{D} \text{dxdy} = \hat{\vec{V}} \cdot \vec{D} \cdot \vec{D} \text{dx}$
 $\vec{V} = \hat{\vec{U}} \cdot \vec{D} \cdot \vec{D} \text{dxdy} = \hat{\vec{V}} \cdot \vec{D} \cdot \vec{D} \text{dx}$
 $\vec{V} = \hat{\vec{U}} \cdot \vec{D} \cdot \vec{D} \text{dx}$
 $\vec{V} = \hat{\vec{U}} \cdot \vec{D} \cdot \vec{D} \text{dx}$
 $\vec{V} = \hat{\vec{U}} \cdot \vec{D} \cdot \vec{D} \cdot \vec{D} \text{dx}$
 $\vec{V} = \hat{\vec{U}} \cdot \vec{D} \cdot \vec{D} \cdot \vec{D} \text{dx}$
 $\vec{V} = \hat{\vec{U}} \cdot \vec{D} \cdot \vec{D} \cdot \vec{D} \text{dx}$
 $\vec{V} = \hat{\vec{U}} \cdot \vec{D} \cdot \vec{D} \cdot \vec{D} \text{dx}$
 $\vec{V} = \hat{\vec{U}} \cdot \vec{D} \cdot \vec{D} \cdot \vec{D} \text{dx}$
 $\vec{V} = \hat{\vec{U}} \cdot \vec{D} \cdot \vec{D} \cdot \vec{D} \cdot \vec{D} \text{dx}$
 $\vec{V} = \hat{\vec{U}} \cdot \vec{D} \cdot \vec{D$

Table of Contents

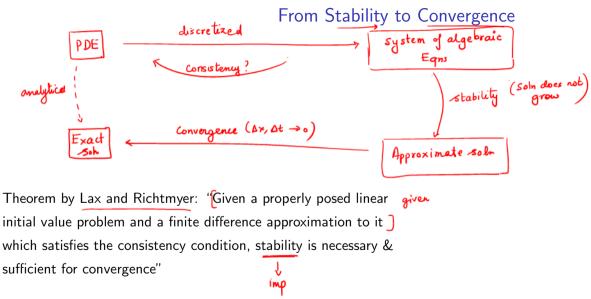
1 Introduction

2 2D Formulation

$$\begin{array}{c} E^{n}(i) \rightarrow E^{1+\alpha kx}_{(x,z,x_{0}+i)\Delta x} + \int_{1}^{i-1} \frac{i}{i+i} \frac{i+i}{x} \\ \end{array} \\ \begin{array}{c} Stability \ Criteria - comparing true/computed solutions \\ \frac{\partial^{2}E}{\partial x^{2}} = \frac{1}{2} \frac{\partial^{2}E}{\partial t^{2}} \left(|wave \ Eqn \rangle \rightarrow \frac{i}{2} |^{(kx \pm iwt)} \\ \frac{\partial^{2}E}{\partial x^{2}} = \frac{1}{2} \frac{\partial^{2}E}{\partial t^{2}} \left(|wave \ Eqn \rangle \rightarrow \frac{i}{2} |^{(kx \pm iwt)} \\ \frac{\partial^{2}E}{\partial x^{2}} = \frac{1}{2} \frac{\partial^{2}E}{\partial t^{2}} \left(|wave \ Eqn \rangle \rightarrow \frac{i}{2} |^{(x \pm iwt)} \\ \frac{\partial^{2}E}{\partial x^{2}} = \frac{1}{2} \frac{\partial^{2}E}{\partial t^{2}} \left(|wave \ Eqn \rangle \rightarrow \frac{i}{2} |^{(x \pm iwt)} \\ \frac{\partial^{2}E}{\partial x^{2}} = \frac{1}{2} \frac{\partial^{2}E}{\partial t^{2}} \left(|wave \ Eqn \rangle \rightarrow \frac{i}{2} |^{(x \pm iwt)} \\ \frac{\partial^{2}E}{\partial t^{2}} = \frac{1}{2} \frac{\partial^{2}E}{\partial t^{2}} \left(|wave \ Eqn \rangle \rightarrow \frac{i}{2} |^{(x \pm iwt)} \\ \frac{\partial^{2}E}{\partial t^{2}} = \frac{1}{2} \frac{\partial^{2}E}{\partial t^{2}} \left(|wave \ Eqn \rangle \rightarrow \frac{i}{2} |^{(x \pm iwt)} \\ \frac{\partial^{2}E}{\partial t^{2}} = \frac{1}{2} \frac{\partial^{2}E}{\partial t^{2}} \left(|wave \ Eqn \rangle \rightarrow \frac{i}{2} |^{(x \pm iwt)} \\ \frac{\partial^{2}E}{\partial t^{2}} = \frac{1}{2} \frac{\partial^{2}E}{\partial t^{2}} \left(|wave \ Eqn \rangle \rightarrow \frac{i}{2} |^{(x \pm iwt)} \\ \frac{\partial^{2}E}{\partial t^{2}} = \frac{1}{2} \frac{\partial^{2}E}{\partial t^{2}} \left(|wave \ Eqn \rangle \rightarrow \frac{i}{2} |^{(x \pm iwt)} \\ \frac{\partial^{2}E}{\partial t^{2}} = \frac{1}{2} \frac{\partial^{2}E}{\partial t^{2}} \left(|wave \ Eqn \rangle \rightarrow \frac{i}{2} |^{(x \pm iwt)} \right) \\ \frac{\partial^{2}E}{\partial t^{2}} = \frac{1}{2} \frac{\partial^{2}E}{(i + 1)^{2}} - 2E^{n}(i) + E^{n}(i) \\ \frac{\partial^{2}E}{\partial x^{2}} = \frac{1}{2} \frac{\partial^{2}E}{\partial t^{2}} \left(|wave \ Eqn \rangle \rightarrow \frac{i}{2} |wave \rangle \right) \\ \frac{\partial^{2}E}{\partial t^{2}} = \frac{1}{2} \frac{\partial^{2}E}{(i + 1)^{2}} - 2E^{n}(i) + E^{n}(i) \\ \frac{\partial^{2}E}{\partial x^{2}} = \frac{1}{2} \frac{\partial^{2}E}{\partial t^{2}} \left(|wave \ Eqn \rangle \rightarrow \frac{i}{2} |wave \rangle \right) \\ \frac{\partial^{2}E}{\partial t^{2}} = \frac{1}{2} \frac{\partial^{2}E}{(i + 1)^{2}} - 2E^{n}(i) + E^{n}(i) \\ \frac{\partial^{2}E}{\partial x^{2}} = \frac{1}{2} \frac{\partial^{2}E}{\partial t^{2}} \left(|wave \ Eqn \rangle \right) \\ \frac{\partial^{2}E}{\partial t^{2}} = \frac{1}{2} \frac{\partial^{2}E}{(i + 1)^{2}} - 2E^{n}(i) + E^{n}(i) \\ \frac{\partial^{2}E}{\partial t^{2}} = \frac{1}{2} \frac{\partial^{2}E}{\partial t^{2}} \left(|wave \ equ \ equ$$

Stability Criteria – comparing true/computed solutions Eqn is: $\alpha^{2} - 2A\alpha + 1 = 0$, $\alpha = A \pm \sqrt{A^{2} - 1}$ solution This condy is the Courant E"(i) = «"e-jkari stability criteria. Say we fix Dx. For an oscillatory solu: 1a1=1 => lat>1 -> unstable solms then $\Delta t \leq \frac{\Delta x}{c} \rightarrow both updates$ one fixed. $\frac{\partial f}{\partial x} = \left[A + j \sqrt{1 - A^2} \right] |x| = \sqrt{A^2 + (1 - A^2)} = L \implies \text{oscillatory as } A^2$ $\alpha = A + j\sqrt{1 - A^2} = e^{j\theta} = e^{j\omega}$ 14151 Needed

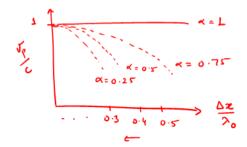
$$b_{\Delta x} = \frac{c \Delta t}{\Delta x} \leq 1$$



4) Check
$$Dz$$
, $\Delta t \rightarrow 0$
 $k^{2} = \frac{w^{2}}{c^{2}}$
phase vel, $\nabla p = w_{k} = c$.
4) what when Δz , Δt finite? $C \frac{\Delta t}{\Delta z} \leq 1$
 \rightarrow when $\alpha = 1 \Rightarrow c \Delta t = \Delta z$, $k = w/c$
satisfies dispersion ral.

12

Accuracy Considerations - 1D ⁴ when a ≠1 ? Solved numerically. Wave travels slower than c. → Dispersion (numerical) * courant parameter (a=1)? * discretization (finc)



Accuracy Considerations – higher dimensions $\frac{C \Delta t}{\Delta s} \leq \frac{1}{\sqrt{2}} \qquad (2a) \ \text{Here, can't set } C \Delta t = 1 \ \frac{C \Delta t}{\Delta s} \leq \frac{1}{\sqrt{3}} \qquad (3b) \ \text{Here, can't set } C \Delta t = 1 \ \frac{C \Delta t}{\Delta s} \leq \frac{1}{\sqrt{3}} \qquad (3b) \ \text{Here, can't set } C \Delta t = 1 \ \frac{C \Delta t}{\Delta s} \leq \frac{1}{\sqrt{3}} \qquad (3b) \ \text{Here, can't set } C \Delta t = 1 \ \frac{C \Delta t}{\Delta s} \leq \frac{1}{\sqrt{3}} \qquad (3b) \ \text{Here, can't set } C \Delta t = 1 \ \frac{C \Delta t}{\Delta s} \leq \frac{1}{\sqrt{3}} \qquad (3b) \ \text{Here, can't set } C \Delta t = 1 \ \frac{C \Delta t}{\Delta s} \leq \frac{1}{\sqrt{3}} \qquad (3b) \ \frac{C \Delta t}{\Delta s} \leq \frac{1}{\sqrt{3}} \qquad (3b) \ \frac{C \Delta t}{\Delta s} \leq \frac{1}{\sqrt{3}} \qquad (3b) \ \frac{C \Delta t}{\Delta s} \leq \frac{1}{\sqrt{3}} \qquad \frac{1}{\sqrt{3}} \qquad$ pube distortion. $\frac{1}{(C \Delta t)^{2}} \sin^{2}(\frac{\omega \Delta t}{2}) = \frac{1}{(\Delta z)^{2}} \sin^{2}(\frac{\omega \Delta z}{2}) + \frac{1}{(\Delta y)^{2}} \sin^{2}(\frac{\omega \Delta y}{2}) - \frac{\omega \omega \omega}{\omega}$ Different directions -> diff speds

Grid Anisotropy.

13

Only sole - Small DX, Dy, Dt.

Topics that were covered in this module

Introduction

- **2** 2D Formulation
- **3** Numerical Analysis of FDTD

References:

- * Ch 12 of Computational Methods for Electromagnetics Peterson, Ray, Mitra
- * Computational Electrodynamics: The Finite-Difference Time-Domain Method Allen Taflove (the 'Bible' for FDTD)
- * Interesting interview by Taflove on Maxwell's equations and FDTD: http://www.eecs.northwestern.edu/images/nphoton.2014.305.pdf