Computational Electromagnetics :

The 2D Vector Finite Element Method

Uday Khankhoje

Electrical Engineering, IIT Madras

Topics in this module

(1) Shape functions
(2) Equation Setup, Converting to weak form, Boundary conditions
(3) Choosing Variables
(4) Putting it together

Table of Contents
(1) Shape functions
(2) Equation Setup, Converting to weak form, Boundary conditions
(3) Choosing Variables
(4) Putting it together

2D scalar Shape functions

\rightarrow Nedelec elements. $\quad \overrightarrow{T_{2}}(x, y) \quad \rightarrow$ all zero outside Δ

2D vector Shape functions

$$
\overrightarrow{T_{3}}(x, y)
$$

Field at any pt inside:

$$
\begin{aligned}
\vec{U}(x, y)= & U_{1} \overrightarrow{T_{1}}(x, y)+U_{2} \overrightarrow{T_{2}}(x, y) \\
& +U_{3} \overrightarrow{T_{3}}(x, y)
\end{aligned}
$$

Unknowns ore scalars U_{1}, U_{2}, U_{3}.

1) \vec{T}_{1} along edge 2-3 : constant component $\vec{T}_{1} \cdot \hat{r}_{2-3}= \pm 1$ (Not inside)
2) \vec{T}_{1} along edges 1-2, 3-1: Normal to other edges

$$
\begin{aligned}
& \vec{T}_{1} \cdot \hat{r}_{1-3}=0 \\
& \vec{T}_{1} \cdot \hat{r}_{1-2}=0
\end{aligned}
$$

Tangential bo undary condos
\rightarrow Automatically satisfied.

Table of Contents

(1) Shape functions
(2) Equation Setup, Converting to weak form, Boundary conditions
(3) Choosing Variables
(4) Putting it together
$4 \quad \nabla \times \vec{H}=j \omega \varepsilon \vec{E} \vec{\varepsilon}^{\varepsilon_{r} \varepsilon_{0}}, \quad \nabla \times \vec{E}=-j \omega \mu \vec{H}$
2D, TM pol.

$$
\iint_{\cdot}^{\overrightarrow{T_{m}}(r) \cdot\left[\nabla \times \frac{1}{\varepsilon_{1}(r)}\left(\nabla \times H^{-}(r)\right.\right.}-\underbrace{\left.k_{0}^{2} \mu_{r} \vec{H}\right]} \frac{d \vec{r}=0}{\left[\int \bar{\nabla} \cdot \vec{F} d s\right.}
$$

$$
1 \nabla \times \vec{H}=j \omega \varepsilon_{0} \vec{E}+\vec{\prime}
$$

$$
\begin{aligned}
& \varepsilon_{r}(r) \\
& \nabla \times\left[\frac{1}{\varepsilon_{r}} \nabla \times \vec{H}\right]=j w \varepsilon_{0}(\nabla \times \vec{E}) \\
&=w^{2} \varepsilon_{0} \mu_{0} \mu_{r}(r) \vec{H}
\end{aligned}
$$

$$
\varepsilon_{r}(r)
$$

$$
=\omega^{2} \varepsilon_{0} \mu_{0} \mu_{r}(r) \vec{H}
$$

$$
{\overrightarrow{C_{H}}}_{\vec{F}_{H}}=\dot{\nabla} \times\left[\begin{array}{l}
1 \\
\varepsilon_{6}
\end{array} \stackrel{\nabla}{\bar{H}}\right]-k_{0}^{2} \operatorname{\mu r} \vec{H}=0
$$

Ideally $\vec{F}_{H}(r)=0 \forall r \quad$ vector wave Eqn.
Instead, FEM say:

$$
\int_{\Omega} \vec{T}_{m}(r) \dot{F_{H}(r)} \underbrace{\vec{r}=0}_{V d x d y}
$$

weighted Residual Method.

$$
\begin{aligned}
& \nabla^{2} \vec{E}+k^{2} \vec{E}=0, \vec{E}=E_{0} \exp (-j \vec{k} \cdot \vec{r}) \\
& \vec{E}=\int_{-\infty}^{\infty} E_{0}(p) \exp (-j \vec{j} \cdot \vec{r}) d p \longleftarrow \operatorname{coln} \\
& \left(k_{x}, k_{y}, k_{z}\right) \text { obs } \text { soln. }
\end{aligned}
$$

Any wave: collection of plane waves.

An expression satisfied by a plane wave

True for a plane wave hitting Γ normally.

Radiation Boundary Condition or $1^{\text {st }}$ order absorbing $B \cdot C$.
Weak form RHS I
$\left[\oint_{\Gamma} \vec{T}_{m} \cdot \hat{n} \times \frac{1}{\varepsilon_{i}}(\nabla \times H) d l \quad\right.$ [earlier, exad]
$\left[\oint_{\Gamma} \vec{T}_{m} \cdot\left[\hat{n} \times(\hat{n} \times \vec{H}]\left(\frac{-j k}{\varepsilon_{r}}\right) d l \quad\right.\right.$ [approx]
\times Not correct when $\hat{k} \neq \hat{n}$
\times Leads to numerical reflections
\Rightarrow Larger comp. domain.
\times Obeyed by only scattered fields

Table of Contents
(1) Shape functions
(2) Equation Setup, Converting to weak form, Boundary conditions
(3) Choosing Variables
(4) Putting it together

6

- Variable of interest $=\xrightarrow{\text { Total field }}$ Total field formulation
$\vec{H}_{\text {tot }}=\vec{H}_{s c}+\vec{H}_{\text {in }} \rightarrow$ known
C easily satisfy 'natural Maxwell's tangential B.C.'s.
Slightly harder to impose $R B C$.
Only on boundary.

$$
\begin{aligned}
& \left.\omega\left[\hat{n} \times \frac{1}{\varepsilon_{r}} \nabla \times \bar{H}\right)\right] \rightarrow \hat{n} \times \frac{1}{\varepsilon_{r}}(\nabla \times[\underbrace{-\vec{H}-\vec{F}_{i n}}_{-\vec{H}_{\text {inc }}}])_{\overrightarrow{H_{s c}}} \\
& =\hat{\eta} \times \frac{1}{\varepsilon_{r}}\left(\nabla \times \overrightarrow{H_{i n}}\right)+\overrightarrow{\hat{n} \times \frac{1}{\varepsilon_{r}} \nabla \times\left(\vec{H}-H_{i n}\right)}- \\
& =\quad \text { " }-\frac{\stackrel{j k}{\varepsilon_{i}} \bar{n} \times\left(\hat{n} \times\left(\bar{H}-\vec{H}_{i n}\right)\right)}{n} \\
& =\hat{n} \times \underset{\varepsilon_{r}}{1} \nabla \times \bar{H}_{i n}+\frac{j k}{\bar{\varepsilon}_{r}} \hat{n} \times\left(\hat{n} \times H_{i n}^{-1}\right)-{ }_{\varepsilon}^{j k} \hat{\varepsilon_{r}} \times(\hat{n} \times \vec{H}) \star \\
& \text { in } A x=b
\end{aligned}
$$

Variable of interest is

$$
\vec{H}_{\text {tot }}^{\prime}=\underbrace{\vec{H}_{s c}}_{\text {unknown. }}+\vec{H}_{\text {in }}
$$

\qquad Scattered field formulation
start with Ω : (variable H_{s})

$$
\begin{align*}
& =\oint_{r}()-\oint_{r^{\prime}}() \tag{1}\\
& \text { About } \Omega^{\prime} \text { (variable }{ }^{H} \text {) }
\end{align*}
$$

Tot Domain: $\Omega \cup \Omega^{\prime}$,

$$
\Omega \cap \Omega^{\prime}=\phi
$$

$$
\iint_{\Omega}\left((\nabla \times \bar{T}) \cdot \frac{-\dot{\varepsilon_{x}}}{}(\nabla \times \bar{H})-k_{0}^{2} \mu r \cdot \vec{T} \cdot \bar{H}\right) d \bar{r}=\oint_{r^{\prime}}\left[\bar{T} \times\left(\frac{1}{\varepsilon_{1}} \nabla \times H\right) \cdot \hat{n}\right] d l-(2)
$$

$E_{q}(1) R H S: \operatorname{term}(1) \rightarrow \operatorname{apply} R B C=-j \frac{k}{\varepsilon_{s}}\left[\hat{n} \times\left(\hat{n} \times \bar{H}_{s}\right)\right]$ term (2) \& RHS of eqn(2) \rightarrow leave as is.
$\operatorname{Tr}(2) \rightarrow \vec{H}$

$$
\vec{H}-\vec{H}_{s}=\vec{H}_{i} \quad(3)
$$

T (1) $\rightarrow \vec{R}_{6}$

Absorbers:
4 TF: More errors due to prop thru abs.
C SF: No change.

Table of Contents

(1) Shape functions
(2) Equation Setup, Converting to weak form, Boundary conditions
(3) Choosing Variables TF; SF
(4) Putting it together

Global Node numbers
Global edge nos
Assembling the system of equations term,
Cont: Edge points from
Smaller \#to larger no $\# \left\lvert\, \Phi(\bar{T}, \bar{H})=(\nabla \times \bar{T}) \cdot \frac{1}{\varepsilon_{1}}(\nabla \times \bar{H})-\mu_{r} k_{0}^{2} \vec{T} \cdot \vec{n}\right.$
Testing along edge \#5: Non-zero over \#a, \#b: $\underbrace{\widetilde{\vec{T}}_{2}^{a}(\vec{r})}_{\vec{T}}+{\overrightarrow{T_{2}^{b}}}^{b}(\vec{r}), ~ T e s t i n g ~ f n . ~$

$$
\begin{aligned}
& \iint_{\Omega} \Phi(\vec{T}, \vec{H}) d s=\iint_{a}+\iint_{b} \quad \vec{H}=\sum v_{i} \overrightarrow{T_{i}} \quad \text { (expanding } \vec{H} \dot{\mu} \text { basis frs) } \begin{array}{l}
d a b \rightarrow U_{1}, U_{4}, U_{5} \\
\text { er } b \rightarrow U_{2}, U_{3}, U_{5}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{ll}
a: \vec{H}=U_{1} \bar{T}_{1}^{a}-U_{4} \bar{T}_{0}^{a}+U_{5} \vec{T}_{2}^{a} \\
b
\end{array}\right\} \text { global } \\
& \text { b: } \left.\vec{H}=U_{2} T_{0}^{b}+U_{3} T_{1}^{b}-U_{5} T_{2}^{b}\right\} \\
& u \text { 's }
\end{aligned}
$$

\times Brute force
\checkmark Huygens's principle

${ }^{\text {tom }}$ directly computed.

$$
\sigma_{20}=\lim _{r \rightarrow \infty}\left(2 \pi r\left|\frac{E_{2}^{s}(r)}{E_{2}^{i}(r)}\right|^{2}\right)
$$

Radar Cross-section.
$\rho_{\gg 1}$
for $r \geqslant 1 H_{0}^{(2)}(k P) \approx \sqrt{\frac{2 j}{\pi k P}} e^{-j k P} \quad($ far field)
\qquad
Computing the far-field

.

$$
\left[\begin{array}{l}
\nabla \times \bar{T}=\text { cons } \\
\nabla \cdot \vec{T}=0
\end{array}\right.
$$

$A_{x}+B_{x y} C_{k}+D_{x} x \quad 01$
Numerical aspects in computing matrix elements
$\vec{T}_{k}=\frac{l_{k}}{L_{2}^{2}}\left(A_{k}+B_{k} y, C_{k}+D_{k} x\right) \sim \nabla \times \vec{T}=$ cost. $\quad \vec{T}_{m} \cdot \vec{T}_{n} \rightarrow$ quadratic in x, y.
We want: $\iint_{e} \underbrace{\Phi\left(\overrightarrow{T_{n}}\right)} \vec{T}_{n}) d x d y$.

$$
\iint_{\Delta} f(u, v) d u d v=\int_{u=0}^{1}\left[\int_{v=0}^{1-u} f(u, v) d v\right] d u
$$

$$
4 x=x_{1}+\left(x_{2}^{a}-x_{1}\right) u+\underset{\left(x_{3}-x_{1}\right) v}{b}
$$

$$
4 y=y_{1}+\left(y_{2}-y_{1}\right) u+\left(y_{3}-y_{1}\right) v
$$

$$
\iint_{C} f(x, y) d x d y \rightarrow \iint_{\Delta} \tilde{f}(u, v) J d u d u
$$

$$
\iint_{e} x d x d y=\iint_{\Delta}\left(x_{1}+a \stackrel{a}{=}+\stackrel{d}{v}\right) J d u d v
$$

Jacobian

RS?
Summary of FEM procedure

Topics that were covered in this module

(1) Shape functions
(2) Equation Setup, Converting to weak form, Boundary conditions
(3) Choosing Variables
(4) Putting it together

References: Ch 4 of FEM for Electromagnetics; Volakis, Chatterjee, Kempel; IEEE Press
Instructor notes on 2D edge based FEM:
http://www.ee.iitm.ac.in/uday/notes/fem2dprimer.pdf

