Computational Electromagnetics :
 The 1D Finite Element Method

Uday Khankhoje

Electrical Engineering, IIT Madras

Topics in this module

(1) Equation Setup
(2) Converting to weak form
(3) Discretization \& Solution

Table of Contents
(1) Equation Setup
(2) Converting to weak form
(3) Discretization \& Solution

A generic differential equation

$$
-\frac{d}{d x}\left(p(x) \frac{d U}{d x}\right)+q(x) U(x)=f(x), \quad \overline{0}<x<\overline{x_{a}}
$$

(1) Parallel plate capacitor. $\nabla^{2} v=-\rho / \varepsilon$. unknowns: $\frac{U(x) \text {, knowns: } p(x), q(x), f(x)}{1(2) \text { wave between parallel plates. }}$

$$
\begin{array}{lll}
U(x): \text { potential, } & U(0)=0 & E^{\prime \prime}+k_{0}^{2} E=\alpha J \\
& U\left(x_{a}\right)=V_{0} & p(x)=-\frac{1}{\mu r}, q(x)=k_{0}^{2} \varepsilon_{r} \\
p(x)=-1, q(x)=0, f(x)=-\rho / \varepsilon & \frac{d}{d x}\left(\frac{1}{\mu_{r}} \frac{d E}{d x}\right)+k_{0}^{2} \varepsilon_{r} E=f(x)
\end{array}
$$

FEM \hookleftarrow Weighted Residual Method \& Requirements on $W_{m}(x)$

$$
R(x)=-\frac{d}{d x}\left(p(x) \frac{d U}{d x}\right)+q(x) U(x)-f(x)
$$

$$
\begin{aligned}
& \text { unknowns } U_{2} \longrightarrow \text { local names: } \underbrace{U_{1}^{e=2}=U_{[2]}^{L}}_{\substack{\text { local name } \\
U_{2}^{e=1} \\
U_{R}}} \\
& \text { Lar } \underline{R}
\end{aligned}
$$

Weight f_{n} or basis fr. or testing fro or trial fr

Mapping between local \& 8 lobal should be maintained.
(2) $W_{m}(x)$ must obey boundary cons.

$$
\Rightarrow \int_{0}^{x_{a}}\left\{\left(w_{m}(x)\right)^{2}+\left(\frac{d}{d x} w_{m}(x)\right)^{2}\right\} d x<\infty
$$

Table of Contents
(1) Equation Setup
(2) Converting to weak form
(3) Discretization \& Solution

Integration by parts. Towards a system of equations - 2 Steps
Step 1:

r end pts.

1) Weak form of FEM.

$$
\begin{gathered}
\int_{\Omega_{m}} w_{n}(x) \underbrace{}_{l}(x) d x=0 \\
R(x)=\underbrace{\left[\frac{-d}{d_{l}}\left(p(x) \frac{d u(x)}{d x}\right)\right.}+q(x) u(x)-f(x)]
\end{gathered}
$$

2) B.C's appear in this eqn.

Table of Contents

(1) Equation Setup
(2) Converting to weak form
(3) Discretization \& Solution
tesselation
of domain. Discretization and shape/basis functions

- Breaking into elements (segments)

Substitute into the weak form

$$
\begin{aligned}
& V(x)=\sum_{i=1}^{V_{2}} \sum_{i}^{2} \int_{c_{i}^{c}}^{\text {Unkmom }} \\
& W_{m}(x)=\frac{N_{i}^{e}(x)}{\alpha} \leftrightarrow \underbrace{\text { L.c.s. of } N_{i}^{e}(x) ?} \\
& \left.\sum^{N_{e}} \sum^{2} U_{i}^{e} \iint p(x) d w_{m e}(x) \frac{d N_{i}^{e}(x)}{d x}+q^{(x) \omega_{m}^{\prime}(x) N_{i}^{e^{\ell}}(x)}\right] d_{x}-\left[\omega_{m}^{\prime}(x) f(x) d x\right. \\
& \left.-p(x) \omega_{m}(x) d U d_{d x}\right]_{x=x^{e}}^{x-x_{2}^{e}}=0
\end{aligned}
$$

Weak i Substitute $\omega_{m}(x)$ for various values of m.
\rightarrow Get a system of equations.
\rightarrow Sparse? Choose $W_{m}(x)=N_{i=1}^{e=2}(x) \rightarrow U_{2}, U_{3}$
\rangle overall sparse system.

Example problem: 1D wave equation

$$
+-\nabla^{2} u+k^{2} u=0 \rightarrow \frac{d^{2} u(x)+k^{2} u(x)=0}{d x^{2}}
$$

$$
\begin{aligned}
& -\nabla U+k^{2} u=0 \rightarrow \frac{d}{d x^{2}} \\
& \underbrace{y}_{H_{z}} x \cdot \vec{E}=U(x) \hat{y}, \vec{H}=\frac{U(x)}{\eta}, \quad \nabla \times \vec{E}=-j \omega \mu \bar{H}=\hat{z} \frac{\partial U(x)}{\partial x}=-j \omega \mu \frac{U(x)}{\eta} \hat{z}
\end{aligned}
$$

Dirichlet: $U\left(x_{0}\right)=$
Neumann:
Boundary condemn
$\longrightarrow \frac{d}{d x} U(x)+j \frac{\omega \mu}{\eta} U(x)=\left.0\right|_{\text {at boundary }} \rightarrow\left[\begin{array}{l}\text { Robin boundary condn. } \\ \text { Impedance " " }\end{array}\right.$

$$
\left.\int_{d x}^{d} U(x)\right|_{x=x_{0}}=\text { cons }
$$

1) $\quad \int_{\Omega_{N}} w(x)\left(u^{\prime \prime}(x)+k^{2} u(x)\right) d x=0 \quad$ Weighted Residual $\left.\leftarrow\right)$
2) $\left.\omega(x) u^{\prime}(x)\right]-\int_{\Omega_{W}} w^{\prime}(x) u^{\prime}(x) d x+\int_{\Omega_{W}} k^{2} w(x) u(x) d x=0$ weak form $?$

$$
\begin{aligned}
& 8 \xrightarrow{\text { unknowns }} U_{i, i=1,2}^{e} U_{i=1,2,3}^{e} U(x)=\sum \sum U_{i}^{e} N_{i}^{e}(x)=\underline{U_{1} N_{1}+U_{2} T_{2}+U_{3} T_{3}+U_{4} N_{2} \text { local } Z \text {. }} \\
& \text { int id wave equation } \\
& \text { (kn-at) } \\
& =U_{1} \underbrace{N_{1}^{\prime}(x)}+U_{2}[\underbrace{N_{2}^{\prime}(x)+N_{1}^{2}(x)}]+U_{3}[\underbrace{N_{2}^{2}(x)+N_{1}^{3}(x)}]+U_{4} \underbrace{N_{2}^{3}(x)} \\
& \text { global } \\
& \text { testing/ } \\
& \text { weight frs. }-\int w^{\prime}(x) u^{\prime}(x) d x+\int k^{2} \omega(x) u(x) d x=-\left[w(x) u^{\prime}(x)\right] \text { end pots. } \\
& \text { testing with : wi } \\
& W_{1}(x)=N_{1}^{\prime}(x) \rightarrow N_{1} \\
& E_{S}^{\prime}(x)=\alpha E_{S}(x) \quad \subset U-U_{\text {in }}=E_{S}
\end{aligned}
$$

testing with $\omega_{2}(x)=T_{2}(x):-\int_{1} \frac{1}{\Delta}\left[\frac{-v_{1}}{\Delta}+\frac{v_{2}}{\Delta}\right] d x-\int_{e_{2}} \frac{-1}{\Delta}\left[\frac{v_{2}}{\Delta}+\frac{v_{3}}{\Delta}\right] d x$
Example problem: 1D wave equation
is eqn: $\quad A_{11} U_{1}+A_{12} U_{2}+0+0=b_{1}$

$$
-\underbrace{\int w^{\prime}(x) u^{\prime}(x)}_{1} d x+\underbrace{\int k^{2} \omega(x) u(x)}_{r} d x=-[\underbrace{\left.w(x) u^{\prime}(x)\right]} \text { end pts. }
$$

$$
\begin{array}{ll}
x & -\int_{e_{1}} \frac{\perp}{\Delta}\left[-\frac{U_{1}}{\Delta}+\frac{U_{2}}{\Delta}\right] d x-\int_{e_{2}} \frac{-1}{\Delta}\left[\frac{U_{2}}{\Delta}+\frac{U_{3}}{\Delta}\right] d x \\
: & \int_{1} k^{2}\left[N_{2}^{\prime}(x)\left(U_{1} N_{1}^{\prime}(x)+U_{2} N_{2}^{\prime}(x)\right)\right] d x+\int_{e_{2}} k^{2}\left[N_{1}^{2}(x)\left(U_{2} N_{1}^{2}(x)+U_{3} N_{2}^{2}(x)\right)\right] d x \\
& e_{1}
\end{array}
$$

$$
\begin{array}{c:c}
e_{1}^{\text {nd }} & A_{21} U_{1}+A_{22} U_{2}+A_{23} u_{3}+0=0
\end{array} \quad-\left[T_{2}(x) u^{\prime}(x)\right]_{\text {node }}^{\text {node 3 }}=0
$$

$$
\begin{array}{ll}
\frac{\alpha \text { en }}{{ }^{r d}} & 0+A_{32} U_{2}+A_{33} U_{3}+A_{34} U_{4}=0 \\
\frac{3_{\text {eq }}}{4_{\text {H eq }}} & 0+0+A_{43} U_{3}+A_{44} U_{4}=b_{4}
\end{array}
$$

$O(d n) \approx O(n)$
\downarrow no o of of diagonal els.

Topics that were covered in this module

(1) Equation Setup
(2) Converting to weak form
(3) Discretization \& Solution

Reference: Ch 3 of FEM for Electromagnetics; Volakis, Chatterjee, Kempel; IEEE Press

