Computational Electromagnetics :
 Summary of Integral Equation Methods

Uday Khankhoje

Electrical Engineering, IIT Madras

Topics in this module

(1) Surface v / s Volume Integral Approach
(2) Finding the Radar Cross-Section (RCS)
(3) Computational Considerations

Table of Contents

(1) Surface v / s Volume Integral Approach
(2) Finding the Radar Cross-Section (RCS)
(3) Computational Considerations

Quick aside: Surface Integral Equations and PECs
How do we deal with scatters that are made of perfect electric conductors?
Recall boundary conditions for PEC
TM pol:

$$
\Longrightarrow E_{2}=0=\phi
$$

$$
\left.\begin{array}{l}
\phi \rightarrow E_{2} \\
\nabla \phi \cdot \hat{n} \rightarrow H_{\text {tan }}
\end{array}\right\}
$$

If we have a $P M C \rightarrow H_{\text {tan }}=0, E_{z} \neq 0$.
The original system of equations:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left\{\left[g_{1}\left(r, r^{\prime}\right) \nabla \phi(r) \cdot \hat{n}-\phi(r) \nabla g_{1}\left(r, r^{\prime}\right) \cdot \hat{n}\right] d l=\phi_{i}\left(r^{\prime}\right), \quad r^{\prime} \in V_{2}\right. \\
\oint\left[g_{2}\left(r, r^{\prime}\right) \nabla \phi(r) \cdot \hat{n}-\phi(r) \nabla g_{2}\left(r, r^{\prime}\right) \cdot \hat{n}\right] d l=0, \quad r^{\prime} \in V_{1}
\end{array}\right] 2 N \times 2 N \\
& \left\{\begin{array}{l}
\oint\left(g_{1}\left(r, r^{\prime}\right) \nabla \phi \cdot \hat{n}\right) d l=\phi_{i}\left(r^{\prime}\right) \\
\oint g_{2}\left(r, r^{\prime}\right) \nabla \phi(v) \cdot \hat{n} d l=0
\end{array}\right\} N \times N \text { system. }
\end{aligned}
$$

Surface v/s Volume Integral Equations

Surface approach:
For each region:

$$
\left.\begin{array}{l}
\nabla^{2} \phi_{n}+k_{n}^{2} \phi=Q_{n} \\
\nabla^{2} g_{n}+k_{n}^{2} g_{n}=-\delta\left(r, 1^{\prime}\right)
\end{array}\right\}
$$

Eacheqn solved separately for each region.
variables: $\bar{E}_{\text {tan }}, \bar{H}_{\tan }$ on S.

Volume approach:

$$
\uparrow^{\prime} \quad\left\{\begin{array}{l}
\nabla^{2} \phi+k_{n}^{2} \phi=Q_{n} \\
\nabla^{2} \phi_{i}+k_{0}^{2} \phi=Q_{n}
\end{array}\right.
$$

with \& without object.
Eqn in terms of $\left(\phi-\phi_{i}\right)$
$\longrightarrow \nabla^{2}\left(\phi-\phi_{i}\right)+k_{j}^{2}\left(\phi-\phi_{i}^{\prime}\right)=\left(\begin{array}{l}k\end{array}\right)$
$\rightarrow \nabla^{2} g+k_{o}^{2} g=-\delta$
$k_{n}^{2}=k_{0}^{2} \varepsilon_{r}(r)$ Heterogenous.

Huygen's principle.
$k_{1}, k_{2} \rightarrow$ constants
Homogeneous

Surface approach: (Huygens's)

$$
\phi\left(r^{\prime}\right)=\phi_{i}\left(r^{\prime}\right)+\left[\oint_{S}\left[\underline{\phi(r)} \nabla g_{1}\left(r, r^{\prime}\right)-g_{1}\left(r, r^{\prime}\right) \underline{\nabla(r)}\right] \cdot \hat{n} d l\right]
$$

Volume approach:
$\phi\left(r^{\prime}\right)=\phi_{i}\left(r^{\prime}\right)+k_{0}^{2} \int_{V_{2}} g_{1}\left(r, r^{\prime}\right)\left[\widetilde{\left.\epsilon_{r}(r)-1\right] \phi(r)} d r \leadsto\right.$ Volume equivalence principle.
surf faster volume.

Table of Contents

(1) Surface v/s Volume Integral Approach
(2) Finding the Radar Cross-Section (RCS)
(3) Computational Considerations

$$
\sigma=\lim _{r^{\prime} \rightarrow \infty} 2 \pi\left|r^{\prime}\right| \frac{\left|E_{2}^{s}\left(r^{\prime}, \theta\right)\right|^{2}}{\left|\bar{E}_{2}^{\prime \prime}(0,0)\right|^{2}}
$$

$$
e^{j \omega t}
$$

Approximations in the RCS
An integral involving Green's function : $\phi\left(r^{\prime}\right)=\phi_{i}\left(r^{\prime}\right)+k_{0}^{2} \int_{V_{2}} g_{1}\left(r, r^{\prime}\right) \chi(r) \phi(r) d r$

Note: RCS independent of r

Table of Contents

(1) Surface v/s Volume Integral Approach
(2) Finding the Radar Cross-Section (RCS)
(3) Computational Considerations

- How fine do you discretize?

inc field have length

$$
\frac{\operatorname{lng}^{2}}{d} \rightarrow \frac{\lambda}{5}-\frac{\lambda}{10}-\frac{\lambda}{15}
$$

Numerical Convergence
numerical

$$
\lambda=\frac{\lambda_{0}}{n_{c,} \text { refractive in tex }}
$$

$|E(r)|$

Topics that were covered in this module
(1) Surface v/s Volume Integral Approach)
(2) Finding the Radar Cross-Section (RCS)
(3) Computational Considerations)

Reference: ch 1 of Peterson's book on CEM

