Computational Electromagnetics : Introduction to Green's functions

Uday Khankhoje

Electrical Engineering, IIT Madras

Topics in this module
(1) Motivations for Green's functions
(2) A one-dimensional example
(3) Some general properties of Green's functions
(4) A two-dimensional example
(5) A three-dimensional example

Table of Contents
(1) Motivations for Green's functions
(2) A one-dimensional example
(3) Some general properties of Green's functions
(4) A two-dimensional example
(5) A three-dimensional example

Electrical Engineers are familiar with the concept of a impulse response of a system:

How do we calculate $\underline{h(t)}$?

1) Canc $\left(\frac{y(u)}{X(w)}\right) \&$
2) IFT $H(w) \rightarrow h(t)$

Green's function: the motivation
Make the idea of impulse response more general \rightarrow also called Green's function
resp? $\quad \downarrow^{i / P} \rightarrow$ given
Now \mathbb{L} is an operator:

Given g, what is ϕ ?
How to solve:

$$
\begin{aligned}
& \text {, what is } \phi ? \\
& f\left(r^{\prime}\right) \times(2) f\left(r^{\prime}\right) \mathbb{Q} g\left(r, r^{\prime}\right)=f\left(r^{\prime}\right) \delta\left(r, r^{\prime}\right) \\
& \Rightarrow \mathbb{L} f\left(r^{\prime}\right) g\left(r, r^{\prime}\right)=f(r) \delta\left(r, r^{\prime}\right)
\end{aligned}
$$

Integrate
over a region incl $r=r^{\prime}$

$$
\mathbb{L} \int f\left(r^{\prime}\right) g\left(r, r^{\prime}\right) d r^{\prime}=f(r)-3^{3}
$$

over primed coordinates
(this is the equivalent of convolution)

Table of Contents

(1) Motivations for Green's functions
(2) A one-dimensional example
(3) Some general properties of Green's functions
(4) A two-dimensional example
(5) A three-dimensional example

1-D example: string tied at both ${ }_{\downarrow}$ ends

Differential equation is $\frac{d^{2} u(x)}{d x^{2}}=F(x)$
$u(x)$: String displacement at x.
$F(x)$: Applied force.
$L \equiv \frac{d^{2}}{d x^{2}}$

$$
\begin{aligned}
& u(0)=0 \\
& u(l)=0
\end{aligned}
$$

$$
\phi \equiv u
$$

$$
f \equiv F
$$

Green's function defn:

$$
\begin{array}{ll}
d^{2} G_{1}\left(x, x^{\prime}\right) & =\delta\left(x, x^{\prime}\right) \\
\bar{d} x^{2} & =\delta\left(x-x^{\prime}\right)
\end{array}
$$

st.

$$
G\left(x=0, x^{\prime}\right)=G\left(0, x^{\prime}\right)=0
$$

$$
G\left(x=l, x^{\prime}\right)=G\left(l, x^{\prime}\right)=0
$$

$x \neq x^{\prime}$.

1-D example: solving with boundary conditions
Let's solve when $x \neq x^{\prime} \Longrightarrow \frac{d^{2} g\left(x, x^{\prime}\right)}{d x^{2}}=0 \Longrightarrow \quad A x+B=G\left(x, x^{\prime}\right)$

Consider two cases:
How many variables?

1) $x<x^{\prime}$

$$
\begin{aligned}
& \text { two cases: } \\
& \qquad\left(x, x^{\prime}\right)=\left\{\begin{array}{l}
A_{1} x+B_{1}-(1) \\
A_{2} x+B_{2}-(2)
\end{array}\right\}
\end{aligned}
$$

$4-3$
$G^{\prime \prime}=0$
2) $x>x^{\prime}$

$$
s \xrightarrow{x=0}
$$

$$
A_{1} \times 0+B_{1}=0 \Rightarrow \frac{B_{1}=0}{D_{2}-A}
$$

- (a

Apply boundary conns $\xrightarrow{x=l} \quad A_{2} l+B_{2}=0 \Rightarrow B_{2}=-A_{2} l$. -b
String continuity

$$
\begin{aligned}
x=x^{\prime} \Rightarrow A_{1} x^{\prime}= & A_{2}\left(x^{\prime}-l\right) \\
l & \Rightarrow A_{2}=
\end{aligned}
$$

case 1

$$
\Rightarrow A_{2}=\frac{A_{1} x^{\prime}}{x^{\prime}-l}-«
$$

1-D example: final solution
We have 4 variables, and 3 relations. Final trick?

$$
G^{\prime \prime}=\delta\left(r, r^{\prime}\right) \leftharpoonup
$$

Integrate.

$$
\begin{aligned}
& \int_{x^{\prime}-\varepsilon}^{x^{\prime}+\varepsilon} G^{\prime \prime}\left(x, x^{\prime}\right) d x=\int_{x^{\prime}-\epsilon}^{x^{\prime}-\epsilon} \delta\left(x-x^{\prime}\right) d x \\
& \left.G^{\prime}\left(x, x^{\prime}\right)\right|_{x^{\prime}-\varepsilon} ^{x^{\prime}+\varepsilon}=1=A_{2}-A_{1}-(d \\
& A=x^{\prime}-l \quad A_{0}=x^{\prime}
\end{aligned}
$$

Is G^{\prime} continuous?

$$
G^{\prime}=\left\{\begin{array}{lll}
A_{1} & x<x^{\prime} & \left.G^{\prime}\left(x, x^{\prime}\right)\right|_{x^{\prime}+\varepsilon} ^{x^{\prime}+\varepsilon}=1=A_{2}-A_{1}-(d \\
A_{2} & x>x^{\prime} & A_{1}=\frac{x^{\prime}-l}{l}, A_{2}=\frac{x^{\prime}}{l}
\end{array}\right.
$$

Final solution is:

Wrapping it all up:

$$
\begin{aligned}
& \text { Wrapping it all up: } \\
& G\left(x, x^{\prime}\right)= \begin{cases}\left(\frac{\left.x^{\prime}-l\right) x}{l},\right. & x<x^{\prime} \\
\left(\frac{x-l}{l}\right) x^{\prime} /, x>x^{\prime}\end{cases}
\end{aligned}
$$

1-D example: alternate representation
We derived a closed form solution, but alternatives possible
$G\left(x, x^{\prime}\right)$ has finite energy \Longrightarrow square integrable
Write as: $G\left(x, x^{\prime}\right)=\sum_{n=1}^{\infty} a_{n}\left(x^{\prime}\right) \sin \left(\frac{n \pi x}{l}\right) \quad \sum_{n=1}^{\infty} \frac{-n^{2} \pi^{2}}{l^{2}} a_{n}\left(x^{\prime}\right) \sin \left(\frac{n \pi x}{l}\right)=\delta\left(x, x^{\prime}\right)$.
Substitute into eqn: $G^{\prime \prime}\left(x, x^{\prime}\right)=\delta\left(x, x^{\prime}\right)$
How to get a_{n} ? Orthogonality? $\int_{0}^{l} \sin \left(\frac{n \pi x}{l}\right) \sin \left(\frac{n \pi x}{l}\right) d x=\left\{\begin{array}{cc}l / 2, & m=n \\ 0, & m \neq n\end{array}\right.$

$$
-\frac{m^{2} \pi^{2}}{l^{2}} a_{m}\left(x^{\prime}\right) \times \frac{l}{2}=\sin \left(\frac{m \pi x^{\prime}}{l}\right)
$$

Finally we get $G\left(x, x^{\prime}\right)=-\frac{2 l}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \sin \left(\frac{n \pi x^{\prime}}{l}\right) \sin \left(\frac{n \pi x}{l}\right)$

Table of Contents
(1) Motivations for Green's functions
(2) A one-dimensional example
(3) Some general properties of Green's functions
(4) A two-dimensional example
(5) A three-dimensional example

Green's functions: general properties
Keep as template: $G\left(x, x^{\prime}\right)=\left\{\begin{array}{ll}\frac{\left(x^{\prime}-l\right)}{l} x & x<x^{\prime} \\ \frac{(x-l)}{l} x^{\prime} & x>x^{\prime}\end{array}\right\}$

Following properties are true of Green's functions in general:

1) Homogeneous diff eqn \rightarrow Satisfies it
2) Symmetric w.r.t. x, x^{\prime}
3) Satisfies Homogeneous boundary conds
4) It is continuous at $x=x^{\prime}$
5) G^{\prime} has a dis continuity at $x=x^{\prime}$.

Table of Contents

(1) Motivations for Green's functions
(2) A one-dimensional example
(3) Some general properties of Green's functions
(4) A two-dimensional example
(5) A three-dimensional example

2-D example: the wave equation

Already seen this wave equation:

$$
\begin{gathered}
\text { 又 } \nabla^{2} \phi(r)+k^{2} \phi(r)=f(r) \\
{\left[\phi(r)=-\int_{v^{\prime}} f\left(r^{\prime}\right) G\left(r, r^{\prime}\right) d r^{\prime}\right]}
\end{gathered}
$$

To solve, start with $r^{\prime}=0$ and consider $r>0$
w.l.o.g we have angular symmetry.

$$
\Rightarrow \text { No } \sigma \text { dep n. }
$$

$$
\rightarrow \quad \frac{\partial^{2}}{\partial r^{2}} G(r)+\frac{1}{r} \frac{\partial}{\partial r} G(r)+k^{2} \underset{\downarrow}{G}(r)=0
$$

implicit $\rightarrow G(r, 0)$.

Our eqn: $\underbrace{r^{2} \frac{d^{2} G(r)+r \frac{d}{d r} r^{2}}{d r}(r)+k_{r}^{2}{ }^{2} G(r)}_{\alpha=0, k r=x}=0$

$$
\alpha=0, k_{r}=x
$$

$$
\frac{d \psi}{d r}=\frac{d \psi}{d x} \frac{d x}{d r}=k \frac{d \psi}{d x}
$$

$$
\frac{x^{2}}{k^{2}} k^{2} \frac{\left.\left.d^{2} G\left(\frac{x}{d}\right)+\frac{x}{k} \cdot k \cdot \frac{d}{d x} G\left(\frac{x}{k}\right)+x^{2} G\left(\frac{x}{k}\right)=0,{ }_{k}\right)(x)+x^{2}\right)}{}
$$

$$
\begin{gathered}
x^{2} \frac{d^{2}}{d x^{2}} G\left(\frac{x}{k}\right)+x \frac{d}{d x} G\left(\frac{x}{k}\right)+x^{2} G\left(\frac{x}{k}\right)=0 \\
G\left(\frac{x}{k}\right)=a H_{0}^{H_{0}^{(1)}(x)+b H_{0}^{(2)}(x)} \\
J_{0}, Y_{0}
\end{gathered}
$$

General soln:
2) Also: $\quad H_{\alpha}^{(1)}(x)$

1) Solns are: \rightarrow Hankel for $J+j y \uparrow$

Second kind.

1) Solns are: $\rightarrow J_{\alpha}(x) \quad Y_{\alpha}(x)$

Hanked fo \downarrow

Which form of the solution to take, and why? What have we not considered so far?

$$
\begin{aligned}
& G(r)=a H_{0}^{(1)}(k r)+b H_{0}^{(2)}(k r) \curvearrowleft \text { general. But at large } r \text { ? } \\
& \begin{aligned}
H_{0}^{(1)}(x) \approx \sqrt{\frac{2}{\pi x}} \exp \left(j\left(x-\frac{\pi}{4}\right)\right) e^{j \omega t} & \rightarrow H_{0}^{(2)}(x) \approx \sqrt{\frac{2}{\pi x}} \exp \left(-j\left(x-\frac{\pi}{4}\right)\right) e^{j \omega t} \\
\text { incoming } j(x+\omega t) & \checkmark \checkmark \quad \text { outgoing }-j(x-\omega t)
\end{aligned}
\end{aligned}
$$

The observer only sees outgoing wave

$$
\Rightarrow a=0
$$

Finally, $G(r)=b H_{0}^{(2)}(k r)$

2-D example: evaluating constants
How do we evaluate b ?

$$
\nabla^{2} G=\nabla \cdot \nabla G
$$

$+\quad r d r d o$
Term (a): $\iint^{\nabla^{2} G(r) d s}=2 \pi \int \underbrace{\nabla^{2} G(r)} r d v$

$$
\begin{aligned}
& \nabla G=\nabla \cdot \nabla G \\
& \iint \nabla \cdot \nabla G d s=\oint \underline{\nabla G \cdot \hat{n} d l}=\oint\left(\frac{\partial G}{\partial r}\right)=\oint l \\
& =\oint \frac{\partial}{2}
\end{aligned}
$$

$$
\begin{aligned}
& H_{0}^{(2)}(x) \rightarrow J_{0}(x) \approx 1 \quad, x \ll 1 \\
& y_{0}(x) \approx \frac{2}{\pi} \ln x, x \ll 1
\end{aligned}
$$

$$
=\oint \frac{\partial}{\partial r}\left[1-j \frac{2}{\pi} \ln k r\right] b d l=\oint-\frac{2 j k}{\pi} \times \frac{1}{k r} \frac{d l}{}=-\frac{2 j k}{\pi} \times \frac{1}{k r} \times\left.\frac{2 \pi r}{\downarrow}\right|_{r=\varepsilon} ^{b}
$$

Term (b):

$$
\begin{aligned}
& k^{2} \iint G_{r}(r) \underset{\varepsilon}{r d r d \theta}=2 \pi k^{2} \int G_{i}(r) r d v=2 \pi k^{2} \int r\left(1-j \frac{2}{\pi} \ln k r\right) b d r \\
& =-4 j b \leftarrow(a) \\
& =2 \pi k^{2} b[\underbrace{\int_{0}^{\varepsilon} r d r-\frac{j 2}{\pi}} \int_{\varepsilon}^{\varepsilon} \underbrace{\varepsilon}_{\varepsilon} r \ln k r d r]] \\
& \rightarrow 0 \\
& \text { as } \varepsilon \rightarrow 0
\end{aligned}
$$

2-D example: evaluating constants

$$
\begin{aligned}
& \text { How do we evalua } \\
& \text { Term (c): }=-1
\end{aligned}
$$

$$
\underbrace{\int_{S_{\epsilon}}\left[\nabla^{2} G(r)\right.}+\underbrace{\left.k^{2} G(r)\right] d S}=\underbrace{\int_{S_{\epsilon}}-\delta(r) d S}
$$

$$
\iint \delta(x, y) d x d y
$$

$$
=1
$$

$$
-1
$$

$$
\iint \delta(r)
$$

Putting it all together:

$$
G(r)=
$$

$$
\begin{gathered}
-4 j b+0=-1 \\
b=\frac{1}{4 j}=\frac{-j}{4}
\end{gathered}
$$

$$
\begin{aligned}
& G(r)= \\
& \text { Finally, } \underbrace{G\left(r, r^{\prime}\right)}=\frac{-j}{4} H_{0}^{(2)}\left(k\left|\bar{r}-\bar{r}^{\prime}\right|\right)
\end{aligned}
$$

2-D example: visualizing the wave

$[\mathrm{X}, \mathrm{Y}]=$ meshgrid($-15: 0.25: 15,-15: 0.25: 15$);
$\underline{R}=\operatorname{sqrt}(X . \wedge 2+Y . \wedge 2) ; B J=\operatorname{besselj}(0, R) ;$
$\operatorname{surf}(X, Y, B \bar{J})$

Table of Contents

(1) Motivations for Green's functions
(2) A one-dimensional example
(3) Some general properties of Green's functions
(4) A two-dimensional example
(5) A three-dimensional example

3-D example: the wave equation
Same (wave) equation: $\nabla^{2} G(r)+k^{2} G(r)=-\delta(r) \quad$ Set $r^{\prime}=0$
In spherical polar coordinates, r-dep terms are: $\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)$
Simplifying for $r>0$: $\quad \nabla^{2} G+k^{2} G=0 \quad$ jut $\quad-j k r$
Solving:
Boundary conditions?

$$
\begin{array}{ll}
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d G}{d r}\right)+k^{2} G=0 \\
\frac{1}{r} \frac{d}{d r}\left(r^{2} \frac{d G}{d r}\right)+k^{2} r G=0= & 2 \frac{d G}{d r}+r \frac{d^{2} G}{d r^{2}}+k^{2} r G=0 \\
\text { Final form: } & \frac{d^{2}}{d r^{2}}(r G)+k^{2} r G=0
\end{array}
$$

$$
\left.\begin{array}{rl}
r G(r) & =a e^{j k r}+b e^{-j k r} \\
G \quad G(r) & =a \frac{e^{j k r}}{r}+b \frac{e^{-j k r}}{r}
\end{array}\right\} \text { Spherical plane } \begin{aligned}
& \text { waves. }
\end{aligned}
$$

$$
G=b \frac{e^{-j k r}}{r}
$$

3-D example: evaluating the constant
Integrate both sides: $\int_{v}\left(\nabla^{2} G(r)+k^{2} G(r)\right) d v=\int_{v}-\delta(r) d v$

Second term:

Final expression:

$$
G(r)=\frac{1}{4 \pi r} e^{-j k r}
$$

$$
\begin{aligned}
& G(r)=\frac{1}{4 \pi r} e^{-j k r} \\
& \left.G\left(\bar{r}, \bar{r}^{\prime}\right)=\frac{1}{4 \pi} \frac{e^{-j k\left|\bar{r}^{\prime}-\bar{r}^{\prime}\right|}}{\left|\bar{r}-\bar{r}^{\prime}\right|}\right\} 30
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{\varepsilon} k^{2} b \frac{e^{-j k r}}{r} r^{2} 4 \pi d r=4 \pi k^{2} b \underbrace{\int_{0}^{\varepsilon} r e^{-j k r} d r}_{\text {as }}= \\
& -4 \pi b=-1, b=\frac{1}{4 \pi} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { First term: } \\
& \begin{array}{l}
\text { First term: } \quad C=b \oint\left[\frac{-j k e^{-j k r}}{r}-\frac{e^{-j k r}}{\nabla^{2} G=\nabla \cdot \nabla a}\right] r^{2} \underbrace{\sin \theta d \sigma d \phi}_{=-4}
\end{array} \\
& \int_{V} \nabla \cdot \nabla G d v=\oint \nabla G \cdot \hat{n} d s \\
& \nabla G=\frac{\partial G}{\partial r} \hat{r}_{\varepsilon} \\
& =-4 \pi b\left[j \frac{k e^{-j k r}}{r}+\frac{e^{j k r}}{r^{2}}\right]_{r=\varepsilon}^{r^{2}} \\
& =-4 \pi b \quad \varepsilon \rightarrow 0
\end{aligned}
$$

Topics that were covered in this module

(1) Motivations for Green's functions
(2) A one-dimensional example
(3) Some general properties of Green's functions
(4) A two-dimensional example
(5) A three-dimensional example

Reference: Ch 14 of Advanced Engineering Electromagnetics, Balanis

