Computational Electromagnetics : Surface Integral Equations

Uday Khankhoje

Electrical Engineering, IIT Madras
(1) Motivation: Bending Waves
(2) Setting up the Helmholtz Equation
(3) Solving the Helmholtz Equation: Green's functions
(4) Huygen's principle \& the Extinction theorem
(5) Formulating the integral equations

Table of Contents
(1) Motivation: Bending Waves
(2) Setting up the Helmholtz Equation
(3) Solving the Helmholtz Equation: Green's functions
(4) Huygen's principle \& the Extinction theorem
(5) Formulating the integral equations

Observations of waves bending
(7) Slit-light interference

Huygen's principle in school

$$
\begin{aligned}
& \text { yen's principle in school } \\
& \text { •) } \left.) \left\lvert\, \begin{array}{l}
\downarrow(,)) \\
\left.(,)^{\prime}\right)
\end{array}\right.\right) \mid
\end{aligned}
$$

(1)

Top

Table of Contents

(1) Motivation: Bending Waves
(2) Setting up the Helmholtz Equation
(3) Solving the Helmholtz Equation: Green's functions
(4) Huygen's principle \& the Extinction theorem
(5) Formulating the integral equations

A two region problem：a source and an object

Region 1
Polarizations
1）$T M \rightarrow\left(E_{z}, H_{x}, H_{y}\right) \rightarrow H_{z}=0$
2）$T E \rightarrow\left(H_{z}, E_{x}, E_{y}\right) \rightarrow E_{z}=0$
c^{6}

$$
\begin{array}{rlr}
\nabla \cdot \bar{E} & =\frac{\partial E_{x}}{\partial z}+\frac{\partial}{\partial y} E_{y}+\frac{\partial E_{2}}{\partial z} & \text { Assumptions } \\
& =0+0+0 \quad & \text { Non magnetic } \\
& 2 D \text { problem } \rightarrow
\end{array}
$$

Maxwell＇s equations（any volume）：

$$
\begin{aligned}
& ノ \nabla \times \vec{E}(\vec{r})=-j \omega \mu_{0} \vec{H}(\vec{r}) \rightarrow \nabla \times(\nabla \times \bar{E})=\nabla(\nabla \cdot \bar{E})-\nabla^{2} E=-\nabla^{2} \bar{E} \\
& ノ \nabla \times \vec{H}(\vec{r})=j \omega \epsilon(\vec{r}) \vec{E}(\vec{r})+\vec{J}(\vec{r}) \\
& -\nabla^{2} \bar{E}=-j \omega \mu_{0}(j \omega \varepsilon(r) \bar{E}+\bar{j}) \downarrow \\
& \Longrightarrow \vec{\nabla}^{2} \vec{E}(\vec{r})+\left(\omega^{\prime} \mu_{0} \epsilon(\vec{r}) \vec{E}(\vec{r})=j \omega \mu_{0} \vec{J}(\vec{r})\right.
\end{aligned}
$$

Helmholtz equation

Geometry:

Equations:

$$
\left.\begin{array}{l}
\operatorname{Reg} 1: \nabla^{2} \phi_{1}(r)+k_{1}^{2} \phi_{1}(r)=j \omega \mu_{0} J_{2}(r) \\
\operatorname{Reg} 2: \\
\nabla^{2} \phi_{2}(r)+k_{2}^{2} \phi_{2}(r)=0
\end{array}\right]
$$

$$
\omega^{2} \mu_{0} \varepsilon(r)=k^{2}
$$

Material properties:

$$
\varepsilon(\gamma) \rightarrow \varepsilon(x, y)
$$

Fields, currents: TM pol: E_{2}, H_{x}, H_{y}

$$
\begin{aligned}
& E_{2} \rightarrow \operatorname{Reg} 1 \rightarrow \phi_{1}(r) \\
& \longrightarrow \operatorname{Reg} 2 \rightarrow \phi_{2}(\gamma) \\
& J^{\prime}=J_{2} \hat{z}
\end{aligned}
$$

Table of Contents
(1) Motivation: Bending Waves
(2) Setting up the Helmholtz Equation
(3) Solving the Helmholtz Equation: Green's functions
(4) Huygen's principle \& the Extinction theorem
(5) Formulating the integral equations

Introduce a new "Green's" function

$$
\int_{v_{1}} d v\left(g_{1} \nabla^{2} \phi_{1}-\phi_{1} \nabla^{2} g_{1}=g_{1} Q+\phi_{1} \delta\left(r-r^{\prime}\right)^{b}\right)
$$

\leftarrow integrate over $\underline{V_{1}}$: volume of Region 1

Vector calculus results;
$\stackrel{\rightharpoonup}{ } \quad(g \nabla \phi)=\overline{\nabla g} \cdot \overline{\nabla \phi}+\bar{g} \overline{\nabla^{2} \phi}$

$$
\Longrightarrow g_{1} \nabla^{2} \phi_{1}-\phi_{1} \nabla^{2} g_{1}=\nabla \cdot\left(g_{1} \nabla \phi_{1}-\phi_{1} \nabla g_{1}\right)<
$$

> Want to solve:
> Some algebra:
... some more vector calculus

Reviewing the derivation so far
(1) Motivation: Bending Waves
(2) Setting up the Helmholtz Equation
(3) Solving the Helmholtz Equation: Green's functions
(4) Huygen's principle \& the Extinction theorem
(5) Formulating the integral equations

Huygen's principle \& the Extinction theorem

$$
\begin{aligned}
& \text { Q, ৯ } \downarrow \text { ~ } \\
& \phi_{i}\left(r^{\prime}\right)-\oint\left[g_{1}\left(r, r^{\prime}\right) \nabla \phi_{1}(r)-\overparen{\phi_{1}(r)} \nabla g_{1}\left(r, r^{\prime}\right)\right] \cdot \hat{n} d l
\end{aligned}
$$

$$
\begin{aligned}
& \text { Similarly for region } 2 \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& \oint\left[g_{2}\left(r, r^{\prime}\right) \nabla \phi_{2}(r)-\phi_{2}(r) \nabla g_{2}\left(r, r^{\prime}\right)\right] \cdot \hat{n} d l \\
& \rightarrow \rightarrow\left\{\begin{array}{lll}
\phi_{2}\left(r^{\prime}\right) & r^{\prime} \in V_{2} \\
0 & \underline{r^{\prime} \in V_{1}} & \rightarrow E_{\text {rt }}
\end{array}\right.
\end{aligned}
$$

Table of Contents

(1) Motivation: Bending Waves
(2) Setting up the Helmholtz Equation
(3) Solving the Helmholtz Equation: Green's functions
(4) Huygen's principle \& the Extinction theorem
(5) Formulating the integral equations

Formulating the integral equations - 1
If we pick the bottom equations of each pair from before:

Boundary conditions?

$$
\left\{\begin{aligned}
\vec{E}_{\tan 1}=\vec{E}_{\tan 2} & , \vec{H}_{\tan 1}=\vec{H}_{\tan 2} . \\
\overrightarrow{T M: \vec{E}=E_{2}} \hat{z} & =\phi \hat{z} \\
\phi_{1}\left(r^{\prime}\right) & =\phi_{2}\left(r^{\prime}\right) \text { on } \underline{S} . \\
& =\phi\left(r^{\prime}\right) \text { on } S .
\end{aligned}\right.
$$

How many variables?
$\underbrace{\phi_{1}, \phi_{\phi_{2}}, \nabla \phi_{1} \cdot \hat{n}, \nabla \phi_{2} \cdot \hat{n}}_{\downarrow} 4$

$$
\begin{gathered}
\nabla \phi \cdot \hat{n}=\left(n_{x} \frac{\partial \phi}{\partial x}+n_{y} \frac{\partial \phi}{\partial y}\right) \quad \hat{n}=\left(n_{x}, n_{y}, 0\right) \rightarrow \hat{t}=\left(-n_{y}, n_{x}, 0\right) \leftarrow \Rightarrow \nabla \phi_{1} \cdot \hat{n}=\nabla \phi_{2} \cdot \hat{n} \text { on } S . \\
\text { Formulating the integral equations }-2
\end{gathered}
$$

If we pick the bottom equations of each pair from before:

$$
\begin{aligned}
& \phi_{i}\left(r^{\prime}\right)=\oint\left[g_{1}\left(r, r^{\prime}\right) \nabla \phi_{1}(r)-\phi_{1}(r) \nabla g_{1}\left(r, r^{\prime}\right)\right] \cdot \hat{n} d l \quad \forall \quad\left(n_{y}^{2} \frac{\partial \phi}{\partial y}+n_{x} n_{y} \frac{\partial \phi}{\partial x},\right. \\
& 0=\oint\left[g_{2}\left(r, r^{\prime}\right) \nabla \phi_{2}(r) \underset{\rightarrow}{-\phi_{2}}(r) \nabla g_{2}\left(r, r^{\prime}\right)\right] \cdot \hat{n} d / l \\
& \left.v_{1}^{-} \hat{1}^{n} v_{2}-n_{x}^{2} \frac{\partial b}{\partial x}-n_{x} n_{y} \frac{\partial \phi}{\partial y}, 0\right) \\
& \text { (ven } 1=\left(\begin{array}{l}
\partial x \\
n_{y} \\
\nabla \phi \cdot \hat{n},-n_{x} \nabla \phi \cdot \hat{n}, 0
\end{array}\right) \\
& =(\nabla \phi \cdot \hat{n})\left(n_{y},-n_{x}, 0\right)=(\nabla \phi \cdot \hat{n}) \\
& \rangle \quad \nabla \times \bar{E}=-j \omega \mu_{0} \bar{H}
\end{aligned}
$$

$$
\begin{aligned}
& (\vec{u} \cdot \hat{n})
\end{aligned}
$$

How many variables?

The final set of equations

$$
\begin{aligned}
& \oint[\underbrace{g_{1}\left(r, r^{\prime}\right.}) \underbrace{(\nabla \phi(r) \cdot \hat{n})}-\underbrace{\phi(r)} \nabla \underbrace{g_{1} \stackrel{\imath}{\left(r, r^{\prime}\right)} \cdot \hat{n}}] d l=\phi_{i}\left(r^{\prime}\right) \\
& \oint\left[g_{2}\left(r, r^{\prime}\right)\right. \\
& (\nabla \phi(r) \cdot \hat{n}) \\
& \left.-\phi(r) \nabla g_{2}\left(r, r^{\prime}\right) \cdot \hat{n}\right] d l=0
\end{aligned}
$$

2 Eqns /
2 variables.

Fredholm, $\left.\right|^{\text {st }}$ kind, coupled, boundary integrals
discretization
basis frs.

Generalizing the idea
Q1: What about a magnetic medium, $\mu=\mu(r)$?
Maxwell's equations:

Q2: What about a Helmholtz like eq in $\vec{H}(\vec{r})$? μ_{0}

$$
=-j \omega[j \omega \varepsilon(r) \bar{E}+\bar{j}]
$$

$$
\underset{\varepsilon(1)}{\perp} \nabla \times \vec{H}=j w \vec{E}+\underset{\frac{J(1)}{\varepsilon(1)}}{\stackrel{\swarrow}{l}}
$$

photonic crystals.

Topics that were covered in this module

(1) Motivation: Bending Waves
(2) Setting up the Helmholtz Equation
(3) Solving the Helmholtz Equation: Green's functions
(4) Huygen's principle \& the Extinction theorem
(5) Formulating the integral equations

Reference: Chapter 8 of W C Chew: Waves and fields in inhomogeneous media

