Computational Electromagnetics : Introduction to Integral Equations

Uday Khankhoje

Electrical Engineering, IIT Madras

Topics in this module

1 A simple line charge problem

2 Solving the Integral Equation

Table of Contents

1 A simple line charge problem

2 Solving the Integral Equation

$$\frac{2}{2} \frac{1}{2} \frac{1}$$

^{3/7}
Fig^{val}
$$\mu^{\pm} \gamma^{\star}$$

Aside : Types of Integral Equations
Fixed limits of integration: Fredholm Integral Eqn
 $f(x) = \int_{a}^{b} K(x,t) \psi(t) dt$
 $f(x) = \int_{a}^{b} K(y,y)$
 $f(y,y)$
 $f(y)$
 $f(y$

1 $f(x) = \int_a^{\infty} K(x,t) \psi(t) dt$ 2 $\psi(x) = f(x) + \lambda \int_a^{\infty} K(x,t) \psi(t) dt$

Table of Contents

1 A simple line charge problem

2 Solving the Integral Equation

Numerical aspects: how to choose N?

6/7

Improving accuracy by changing basis functions

Topics that were covered in this module

1 A simple line charge problem

2 Solving the Integral Equation

Reference: Ch 8.2 of Antenna Theory & Design by Balanis