Computational Electromagnetics : Numerical Integration

Uday Khankhoje

Electrical Engineering, IIT Madras
(1) Simple Numerical Integration
(2) Interpolating a Function
(3) Advanced Numerical Integration

Table of Contents

(1) Simple Numerical Integration
(2) Interpolating a Function
(3) Advanced Numerical Integration

Simple numerical integration

Take a function $f(x)$ that has no analytical integral, want: $\int_{a}^{b} f(x) d x$ ↔

Rules: Rectangle $\sqrt{ }$
Trapezoidal $\frac{h}{2}[f(a)+f(b)]$ $I \approx h f\left(\frac{a+b}{2}\right)$

Simpson's

$$
\frac{h}{3}\left[\widetilde{f(a)+4} f\left(\frac{a+b}{2}\right)+f(b)\right]
$$

Simple Numerical Integration (contd.)
What was the basis of these simple rules? Taylor's theorem:

$$
\begin{aligned}
& f(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} f^{\prime \prime}\left(x-x_{0}\right)+\cdots \\
& { }^{\prime \prime} \\
& { }^{\prime \prime} \\
& t_{0}^{\prime \prime}
\end{aligned} \quad\left[f(x)=f(0)+x f^{\prime}+x^{2} / 2 f^{\prime \prime}+\cdots\right] f^{\prime} \rightarrow f^{\prime}\left(x_{0}\right)=f^{\prime}(0)
$$

Now, $\left.\left.\int_{0}^{h} \frac{f(x) d x}{I}=h f(0)+\frac{x^{2}}{2}\right]_{0}^{h} f^{\prime}+\frac{x^{3}}{6}\right]_{0}^{h} f^{\prime \prime}+\cdots$
$\begin{aligned} & =h f(0)+\frac{h^{2}}{2} f^{\prime}+\frac{h^{3}}{6} f^{\prime \prime}+\cdots \\ \text { Rectangle } \quad I & =h f(0)+0\left(h^{2} f^{\prime}\right) \quad f^{\prime}(0)=\frac{f(h)-f(0)}{h}\end{aligned}$
Trapezoidal $I=h f(0)+\frac{h^{2}}{2}\left(\frac{f(h)-f(0)}{h}\right)+O\left(h^{3} f^{\prime \prime}\right)$
[called Newton-Cotes formulas]

$$
=\frac{h}{2}[f(0)+f(h)]^{h}+0\left(h^{3} f^{\prime \prime}\right)
$$

Extended rules - idea of 'quadrature rule'
Extend trapezoidal rule $\int_{0}^{h} f(x) d x \approx \underline{\underline{h}}[f(0)+f(h)]$ for $\int_{x_{1}}^{x_{N}} f(x) d x$

$$
S=h\left[\frac{1}{2} f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots,\right.
$$

$\rightarrow ん \leqslant$

$$
\begin{aligned}
& \int_{x_{1}}^{x_{N}} f(x) d x=\sum_{i=1}^{N} f\left(x_{i}\right) w_{i} \longrightarrow_{x_{1}}^{\int_{N}} g(x) d x= \begin{cases}w_{2}, & i=1, N \\
h & \text { else }\end{cases} \\
& \sum_{i=1}^{N} g\left(x_{i}\right) w_{i}
\end{aligned}
$$

Quadrature rule - a formula in terms of:

* weights, $\leftarrow \omega_{i} / /$
* function evaluation points $\leftarrow x_{i}$
'nodes'

Table of Contents

(1) Simple Numerical Integration
(2) Interpolating a Function
(3) Advanced Numerical Integration

Interpolating a function
Many functions we want to integrate can't be done analytically.

- What can be done? Weierstrass Approximation Theorem:

If f is a continuous real-valued function on $[a, b]$ and if any $\epsilon>0$ is given, then there exists a polynomial p on $[a, b]$ such that $|f(x)-p(x)|<\epsilon$ for all $x \in[a, b]$.

- Fin known at few points - interpolate a polynomial tn: 2, 3,

$$
\begin{aligned}
& x_{0}, x_{1}, x_{2} . p(x)=a_{0}+a_{1} x+a_{2} x^{2} \text { parabola line }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Lagrange polynomials } \\
& \text { order } N-1 \\
& f_{N-1}^{\text {order }}\left(x_{i}\right)=f\left(x_{i}\right) \quad \underset{N \text { nodes } x_{1}, x_{2} \ldots, x_{N}}{N-1=1 \quad, ~}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
=\sum_{i=1}^{N} f\left(x_{i}\right) \int_{x_{1}}^{x_{N}} L_{i}(x) d x \\
=\sum_{i}^{N} f\left(x_{i}\right) \underline{\omega}_{i}
\end{array} \quad \text { precomputed. }
\end{aligned}
$$

Another kind of quadrature rule
Accurate to polynomial order $N-1$, needing N points

Table of Contents

(1) Simple Numerical Integration
(2) Interpolating a Function
(3) Advanced Numerical Integration

Summary: Clever math gives poly accuracy of order $2 N-1$ using N points
0 . We know the inner product of vectors .. . but functions?
$a^{\top} b$

$$
\begin{aligned}
& f(x), g(x) \rightarrow(f, g)=\int_{a}^{b} f(x) g(x) d x . \\
& \text { if }(f, g)=0 \text { then } f, g \text { are orthogonal. }
\end{aligned}
$$

1. Construct a polynomial $p_{N}(x)$ (order N) s.t. $\int_{a}^{b} x_{N}^{n}(x) d x=0, k \in[0, N-1]$

$$
\begin{aligned}
& 1, x, x^{2},[-1,1] \begin{array}{l}
f_{0}(x)=1 \\
f_{2}(x)
\end{array}=x^{2}
\end{aligned}
$$

$$
\int_{-1}^{1} f_{0}(x) f_{2}(x) d x=\int_{-1}^{f_{2}(x)=x^{2}} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{-1} ^{1}=\frac{2}{3}
$$

Gram-Schmidt \rightarrow Legendre Polynomials

Gaussian quadrature (contd.)

2. Roots of $p_{N}(x)$?

$$
\begin{aligned}
\text { N roots. orthogonal } \rightarrow & \rightarrow \text { real, distinct } \\
& \text { roots. }
\end{aligned}
$$

$$
P_{N}\left(x_{i}\right)=0
$$

3. Approximate $\underline{f(x)}$ to poly order $(2 N-1)$ using $p_{N}(x)$
(Euclidean division)
$\rightarrow \frac{f_{2 N-1}(x)}{p_{N}(x)}=q(x)+\frac{r(x)}{P_{N}(x)} \quad q, r:$ order $<N$.
e.g. $\frac{3 x^{3}-2 x^{2}+4 x-3}{x^{2}+3 x+3}=(3 x-11)+\frac{28 x+30}{x^{2}+3 x+3}$.
$\Longrightarrow f_{2 N-1}(x)=q(x) P_{N}(x)+r(x) \leftarrow$

$$
\begin{aligned}
& \text { e on both sides of: }\left(f_{2 N-1}(x)=q(x) P_{N}(x)+r(x)\right) d x \int_{x_{1}}^{x_{N}} L_{i}(x) d x \\
& \int\left(\alpha_{0}+a_{x_{N}}+\cdots+a_{N} / x_{1}^{N-1}\right) p_{N}(x) d x \\
& \rightarrow \int_{x_{1}}^{x_{2 N-1}}(x) d x=\int_{x_{1}}^{x_{N}} r(x) d x=\sum_{i=1}^{N} r\left(x_{i}\right) w_{i}^{\leftarrow} \leftarrow \\
& \text { meals for } r(x)
\end{aligned}
$$

$$
\rightarrow f_{2 N-1}\left(x_{i}\right)=0+r\left(x_{i}\right) \approx f\left(x_{i}\right) \longleftarrow
$$

5. If the $\left[N\right.$ points are chosen as roots of $p_{N}(x)$?]

$$
\int_{x_{1}}^{x_{N}} f_{2 N-1}(x) d x \approx \sum_{i=1}^{N} f\left(x_{i}\right) \omega_{i}
$$

Called Gauss-Lengedre quadrature rule, accurate to order $2 N-1$.

Gaussian quadrature (contd.)
Take an example, $f(x)=(x+1))^{3}$ over $[-1,1]$

$$
\left(P_{0}, P_{1}\right)=\int_{-1}^{1} x d x=0 \int_{-1}^{1}\left(\frac{\left.3 x^{2}-1\right)}{2} d x=\frac{1}{2}\left[\left.\frac{3 x^{3}}{3}\right|_{-1} ^{1}-\left.\frac{x}{2}\right|_{-1} ^{1}\right]=0\right.
$$

Exact calculation $\rightarrow \int_{-1}^{1} f(x) d x=\left.\frac{(x+1)^{4}}{4}\right|_{-1} ^{4}=\frac{2^{4}}{4}-0=4$

$$
\begin{aligned}
\text { 3-pt trapezoidal rule } & =1 \times\left[\frac{f(-1)}{2}+f(0)+\frac{f(1)}{2}\right] \\
h=1 & =1 \times\left[0+1+\frac{2^{3}}{2}\right]=5
\end{aligned}
$$

$$
\begin{aligned}
& \rangle=\sum \omega_{i} f\left(x_{i}\right) \\
& =1 \times f\left(\frac{-1}{\sqrt{3}}\right)+1 \times f\left(\frac{1}{\sqrt{3}}\right) \\
& =\left(1-\frac{1}{\sqrt{3}}\right)^{3}+\left(1+\frac{1}{\sqrt{3}}\right)^{3} \\
& =[2]\left[\left(1-\frac{1}{\sqrt{2}}\right)^{2}-\left(1-\frac{1}{3}\right)+\left(1+\frac{1}{\sqrt{2}}\right)^{2}\right] \\
& w_{i}=1=4 . \\
& 2 N r I=3 \text {. }
\end{aligned}
$$

Topics that were covered in this module

(1) Simple Numerical Integration
(2) Interpolating a Function
(3) Advanced Numerical Integration

Reference: Chapter 4 of Numerical recipes in C++ - Brian P. Flannery, Saul Teukolsky, William H. Press, and William T. Vetterling

