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Maxwell’s equations + continuity relation

Consider real valued physical quantities: E(~r, t), H(~r, t), etc

∇× E(~r, t) = −∂B(~r, t)
∂t

−M(~r, t), Faraday, 1843 (1)

∇×H(~r, t) = ∂D(~r, t)
∂t

+ J (~r, t), Ampere, 1823 (2)

∇ · D(~r, t) = ρe, Coulomb, 1785 (3)

∇ · B(~r, t) = ρm, Gauss, 1841 (4)

∇ · J (~r, t) = −∂ρe
∂t

ρm,M(~r, t) →
• Not physical

• Mathematical
convenience

• Makes symmetric
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Maxwell’s equations: a wave example

Let’s apply the equations in source/charge free vacuum

∇× E(~r, t) = −∂B(~r, t)
∂t

∇×H(~r, t) = ∂D(~r, t)
∂t

∇ · D(~r, t) = 0, D(~r, t) = εoE(~r, t)
∇ · B(~r, t) = 0, B(~r, t) = µ0H(~r, t)

Take a curl of first eqn:
∇× (∇× E(~r, t)) =
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Time Harmonic form

Electrical Engineers prefer phasors! e.g. E(~r, t) = Re[ ~E(~r)ejωt]

∇× ~E(~r) = −jω ~B(~r)− ~M(~r) (5)

∇× ~H(~r) = jω ~D(~r) + ~J(~r) (6)

∇ · ~D(~r) = ρe (7)

∇ · ~B(~r) = ρm (8)

Constitutive relations:

~D(~r) = ε(~r) ~E(~r), ~B(~r) = µ(~r) ~H(~r), ~J(~r) = σ(~r) ~E(~r)

• ~E(~r) → complex

• EE / Phy
conventions
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Tangential Boundary Conditions

Start with ∇× ~E(~r) = −jω ~B(~r)− ~M(~r)

n̂× ( ~E2 − ~E1) = − ~Ms. Similarly n̂× ( ~H2 − ~H1) = ~Js.
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Normal Boundary Conditions

Start with ∇ · ~D(~r) = −ρe

n̂ · ( ~D2 − ~D1) = ρes. Similarly n̂ · ( ~B2 − ~B1) = ρms.
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Power in a field

Instantaneous Poynting vector defined as S(~r, t) = E(~r, t)×H(~r, t)

Use E(~r, t) = Re[ ~E(~r)ejωt] =

Sav(~r, t) = 1
2 [Re(

~E(~r)× ~H(~r)∗]
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Uniqueness theorem

Statement: The field ( ~E(~r), ~H(~r)) created by some sources ~J(~r)
in a lossy volume V are unique if any one of these are true;

1 ~E(~r)tan over S is known

2 ~H(~r)tan over S is known

3 ~E(~r)tan known over some part,
~H(~r)tan known over remaining part of S.
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Volume Equivalence Theorem

Say we have some sources in vacuum

∇× ~E0(~r) = −jωµ0 ~H0(~r)− ~M(~r)

∇× ~H0(~r) = jωε0 ~E0(~r) + ~J(~r)

· · · now place an obstacle in the medium

∇× ~E(~r) = −jωµ(r) ~H(~r)− ~M(~r)

∇× ~H(~r) = jωε(r) ~E(~r) + ~J(~r)

Subtract the two sets of Eqns

∇× ( ~E(~r)− ~E0(~r)) =

∇× ( ~H(~r)− ~H0(~r)) =

Define: ~Es(~r) ~Hs(~r)
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Volume Equivalence Theorem (contd.)

∇× ( ~E(~r)− ~E0(~r)) = −jω(µ ~H(~r)− µ0 ~H0(~r)) =

∇× ( ~H(~r)− ~H0(~r)) = −jω(ε ~E(~r)− ε0 ~E0(~r)) =

Define ~Meq(~r) = ~Jeq(~r) =

Finally gives
∇× ~Es(~r) =

∇× ~Hs(~r) =

Have replaced obstacle by
equivalent volume sources
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Surface Equivalence Principle

Recall tangential boundary conditions: n̂× ( ~E2− ~E1) = − ~Ms, n̂× ( ~H2− ~H1) = − ~Js.

The discontinuity of fields is saved by the presence of surface currents

Surface Eqv: Replace object by tangential surface currents
Volume Eqv: Replace object by volume currents
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Reference: Chapter 7 of Advanced Engineering Electromagnetics - C A Balanis
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