Computational Electromagnetics : Review of Vector Calculus

Uday Khankhoje

Electrical Engineering, IIT Madras

Topics in this module

(1) Chain rule of differentiation and the gradient
(2) Gradient, Divergence, and Curl operators
(3) Common theorems in vector calculus
(4) Corollaries of these theorems; miscellaneous results

Table of Contents

(1) Chain rule of differentiation and the gradient
(2) Gradient, Divergence, and Curl operators
(3) Common theorems in vector calculus
(4) Corollaries of these theorems; miscellaneous results

Chain rule of differentiation

- Consider a scalar function of several variables, $f(\underline{x, y, z})$

- Want to calculate a small change in f, i.e. (dff) $\begin{aligned} & y \rightarrow y+d y \\ & z \rightarrow z+d z\end{aligned}$ Say each variable has changed, e.g. $\underline{x} \rightarrow \underline{x+d x}$
- Chain rule tells us:

$$
\xrightarrow{d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z} \stackrel{\rightharpoonup}{v} \cdot \vec{u} \longrightarrow \frac{\downarrow f}{}+\frac{\partial f}{\partial x} \hat{x}+\frac{\partial f}{\partial y} \hat{y}+\frac{\partial f \hat{z}}{\partial z}
$$

Working with the gradient

- Compact way to write change $d f=\nabla f \cdot \overrightarrow{d l}$

$$
\int_{\vec{a}}^{\vec{b}} d f=\frac{f(\vec{b})}{\text { final }}-\frac{f(\vec{a})}{\text { initial. }}
$$

- Now we want the total change going from \vec{a} to \vec{b}

$$
\int_{\vec{a}}^{\vec{b}} d f
$$

$\cdot\left(\int_{\vec{a}}^{\vec{b}} \nabla f \cdot \overrightarrow{\vec{d}^{a}}\right)=f(\vec{b})-f(\vec{a})$ is path independent.
Corollary: $\nabla f \cdot \overrightarrow{d l}=0$
conservative

Table of Contents

(1) Chain rule of differentiation and the gradient
(2) Gradient, Divergence, and Curl operators
(3) Common theorems in vector calculus
(4) Corollaries of these theorems; miscellaneous results

Gradient as the 'Del' operator

- Saw that $\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)=-\hat{x} \frac{\partial f}{\partial z}+\hat{y} \frac{\partial f}{\partial y}+\hat{z} \frac{\partial f}{\partial z}$
- Generalize a 'Del' operator as $\nabla=\hat{x} \frac{\partial}{\partial x}+\hat{y} \frac{\partial}{\partial y}+\hat{z} \frac{\partial}{\partial z}$
- Acts in three ways (like an ordinary vector)

∇f	$\vec{\nabla} \cdot \vec{A} \leftarrow$	$\nabla \times \vec{A}$
(gradient)	dot (divergence)	$\sum_{\text {(curl) }}$
vectlol	sealal	vetol

$$
\text { Divergence: } \begin{aligned}
& \frac{\nabla \cdot \vec{A}}{T}=\frac{x}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z} \\
&\left(A_{x}, A_{y}, A_{z}\right)
\end{aligned}
$$

- Geometrically: measures how much a vector 'diverges' at a pt

> - Examples
> $\vec{A}=(x, y, z)$
> $=\vec{r}$
> $\nabla \cdot A^{-1}=\frac{\partial}{\partial x} x+\frac{\partial}{\partial y} y+\frac{\partial}{\partial z}$
> $=3$

$\uparrow \uparrow \uparrow \uparrow$

$$
\left.\stackrel{\left(\frac{\partial}{\partial y} A_{z}-\frac{\partial}{\partial z} A_{y}, \frac{\partial}{\partial z} A_{x}-\frac{\partial}{\partial z} A_{z}\right.}{2}, \frac{\partial}{\partial x} A_{y}-\frac{\partial}{\partial y} A_{x}\right)
$$

- Geometrically: measures how much a vector 'swirls' around a pt

Table of Contents

(1) Chain rule of differentiation and the gradient
(2) Gradient, Divergence, and Curl operators
(3) Common theorems in vector calculus

4 Corollaries of these theorems; miscellaneous results

- Line integrals: $\int \vec{A} \cdot \overrightarrow{d l}$

Integrals in vector calculus

$$
\oint_{\Gamma} \vec{A} \cdot \overrightarrow{d l}
$$

- Surface integrals: $\int \vec{A} \cdot \underline{\overrightarrow{d s}}$
~

- Volume integrals: $\int_{V} f d v \quad \iiint_{-}$

$$
\int \vec{A} d v=\hat{x} \underbrace{\int A_{x} d v}_{\rightarrow \text { vector }}+\hat{y} \int \underbrace{}_{y} d v+\hat{z} \int \underbrace{A_{2} d v}
$$

Divergence (a.k.a. Gauss's / Green's) Theorem

Geometrically:
steady stote

$$
\left.\left.\begin{array}{rl}
(\oint \vec{A} \cdot \overrightarrow{d s})_{\hat{x}} & =\left[A_{x}\left(x_{0}+\frac{\Delta x}{2}, y_{0}, z_{0}\right)-A_{x}\left(x_{0}-\frac{\Delta x}{2}, y_{0}, z_{0}\right)\right] \Delta y \Delta z \\
\text { surjaces } & =\underbrace{\Delta x \Delta_{y} \Delta z}\left[A_{x}\left(x_{0}+\frac{\Delta x}{2},\right)-A_{x}\left(x_{0}-\frac{\Delta x}{2}\right.\right.
\end{array}\right)\right]
$$

CEM : Helps reduce dimensionality of problem

Curl (a.k.a Stoke's) Theorem
Geometrically:

$$
\rightarrow \underbrace{\int_{S}(\nabla \times \vec{A}) \cdot \overrightarrow{d s}}=\oint_{\Gamma} \frac{\vec{A} \cdot \overrightarrow{d l}}{\bar{T}}
$$

$$
=\left[\Delta x A_{x}\left(x_{0}, y_{0}-\frac{\Delta y}{2}\right)-\Delta x A_{x}\left(x_{0}, y_{0}+\frac{\Delta y}{2}\right)\right]^{\top}
$$

$$
+\Delta y A_{y}\left(x_{0}+\frac{\Delta x}{2}, y_{0}\right)-\Delta y A_{y}\left(x_{0}-\frac{\Delta x}{2}, y_{0}\right)
$$

$$
=(1)+(3)+(2)+(4)
$$

Proof sketch:

$$
>=
$$

$$
=\Delta x \Delta y\left[\frac{A_{x}\left(x_{0}, y_{0}-\frac{\Delta y}{2}\right)-A_{x}\left(x_{0}, y_{0}+\frac{\Delta y}{2}\right)}{\Delta y}\right]
$$

$\left(x_{0}, y_{0}\right)$

$$
+\Delta x \Delta y\left[A_{y}\left(x_{0}+\frac{\Delta x}{2}, y_{0}\right)-A_{y}\left(x_{0}-\frac{\Delta x}{2}, y_{0}\right)\right]
$$

$$
=d s\left[-\frac{\partial A_{x}}{\partial y}+\frac{\partial}{\partial z} A_{y}\right]
$$

Corollary: $\oint_{S}(\nabla \times \vec{A}) \cdot \overrightarrow{d s}=0$

$$
(\nabla \times \vec{A})_{z}
$$

Stoke's Theorem in a multiply connected region

Geometrically: surface + hole

CEM : Helps reduce domain of computation

Table of Contents

(1) Chain rule of differentiation and the gradient
(2) Gradient, Divergence, and Curl operators
(3) Common theorems in vector calculus
(4) Corollaries of these theorems; miscellaneous results

- Two scalar functions, f, g. Know that: $\frac{d(f g)}{d x}=f \frac{d g}{d x}+g \frac{d f}{d x}$

Rearranging, integrating: $\int_{a}^{b} f \frac{d}{d x} d x=\int_{a}^{b} \frac{d(f g)}{d x} d x-\int_{a}^{b} \frac{d f}{d x} g d x$

$$
\int_{a}^{b} f g^{\prime} d x=\left.f g\right|_{a} ^{b}-\int_{a}^{b} f^{\prime} g d x
$$

- Extend to vector calculus: scalar f, vector \vec{A} functions

Volume integration: $\left(\int_{V}(\downarrow)\right)=\oint_{S}(f \vec{A}) \cdot \overrightarrow{d s} \quad$ [Ding. the]
Rearranging: $\int_{V} f(\underbrace{\nabla \cdot \vec{A}}) d v=\oint_{S}(f \vec{A}) \cdot \overrightarrow{d s}-\int_{V} \vec{A} \cdot \nabla f d v$

Miscellaneous: Some vector calculus identities

$$
\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) \quad \underline{\hat{x}}\left(\frac{\partial}{\partial y} \frac{\partial f}{\partial z}-\frac{\partial}{\partial z} \frac{\partial f}{\partial} y\right)=0
$$

- $\stackrel{\downarrow}{\nabla} \times \nabla f=\overrightarrow{0}$ for any scalar function f
- $\nabla \cdot(\nabla \times \vec{A})=0$ for any vector field \vec{A}
- Vector field is specified upto a constant: if curl $(\nabla \times \vec{A})$ and divergence $(\nabla \cdot \vec{A})$ are specified

Miscellaneous: Getting the normal to a curve

Vector along the tangent at some point: $\vec{v}=\left(1, \frac{d f}{d x}\right) \alpha$
What is $\vec{v} \cdot(\nabla g) \quad 1 \times \frac{-\partial f}{d x}+1 \times \frac{d f}{d x}=0$
Thus $\underline{\hat{n}}$ is along $\underline{\nabla g}$. Useful for boundary conditions in Electromagnetics.

Topics that were covered in this module

(1) Chain rule of differentiation and the gradient
(2) Gradient, Divergence, and Curl operators
(3) Common theorems in vector calculus
(4) Corollaries of these theorems; miscellaneous results

Reference: Chapter 1 of David Griffiths: Introduction to Electrodynamics, 4rth Ed., Pearson

