EE5120 Linear Algebra: Tutorial 8, July-Dec 2017-18

Covers sec 6.1,6.2 (exclude law of inertia and generalized eigenvalue problem), 6.3 of GS

1. Compute the SVD of $A=\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]$.
2. (a) Prove that a symmetric matrix A is positive definite if and only if there exists a matrix B with independent columns such that $A=B^{T} B$.
(b) If A is written as its eigenvalue decomposition, what will B be ?
-әл[os pue $x_{V_{L}} x$ u! \forall әłnł!̣sqns :łu!H
3. Suppose A is a 2 by 2 symmetric matrix with unit eigenvectors u_{1} and u_{2}. If its eigenvalues are $\lambda_{1}=3$ and $\lambda_{2}=-2$, what are U, Σ and V^{T} ?

4. For what range of a and b are the matrices \mathbf{A}, \mathbf{B} positive definite

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{lll}
a & 2 & 2 \\
2 & a & 2 \\
2 & 2 & a
\end{array}\right] \\
& \mathbf{B}=\left[\begin{array}{lll}
1 & 2 & 4 \\
2 & b & 8 \\
4 & 8 & 7
\end{array}\right]
\end{aligned}
$$

5. Let \mathbf{A} and \mathbf{B} be real square symmetric Positive semi-definite matrices. Is $\mathbf{A B}+\mathbf{B} \mathbf{A}$ positive semi-definite always

6. Give a quick reason why each of these statements is true:
(a) Every positive definite matrix is invertible.
(b) The only positive definite projection matrix is $P=I$.
(c) A diagonal matrix with positive diagonal entries is positive definite.
(d) A symmetric matrix with a positive determinant might not be positive definite
7. Suppose $\mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathbf{n}}$ and $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}$ are orthonormal bases for R_{n}. Construct the matrix A that transforms each $\mathbf{v}_{\mathbf{j}}$ into $\mathbf{u}_{\mathbf{j}}$ to give $A \mathbf{v}_{\mathbf{1}}=\mathbf{u}_{\mathbf{1}}, \ldots, A \mathbf{v}_{\mathbf{n}}=\mathbf{u}_{\mathbf{n}}$.

8. Let A be an $n \times n$ hermitian matrix with n distinct eigenvalues. Prove that for any n length vector $\mathbf{x}, \lambda_{\min }\|\mathbf{x}\|^{2} \leq \mathbf{x}^{H} A \mathbf{x} \leq \lambda_{\max }\|\mathbf{x}\|^{2}$, where $\|\mathbf{x}\|^{2}=\mathbf{x}^{H} \mathbf{x}, \lambda_{\text {min }}$ and $\lambda_{\text {max }}$ are the minimum and maximum eigenvalues of A.

9. The graph of $F_{1}(x, y)=x^{2}+y^{2}$ is a bowl opening upward. The graph of $F_{3}(x, y)=x^{2}-y^{2}$ is a saddle. The graph of $F_{3}(x, y)=-x^{2}-y^{2}$ is a bowl opening downward. What is a test on $F(x, y)$ for having maxima, minima or saddle point at $(0,0)$?

10. (a) If A changes to $4 A$, what is the change in the SVD?
(b) What is the SVD for A^{T} and for A^{-1} ?
(c) Why doesn't the SVD for $A+I$ just use $\Sigma+I$?

