EE5120 Linear Algebra: Tutorial 8, July-Dec 2017-18

Covers sec 6.1,6.2 (exclude law of inertia and generalized eigenvalue problem), 6.3 of GS

1. Compute the SVD of $A=\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]$.

Solution:

Let SVD of A be $U \lambda V^{T}$. We now need to find U, Λ and V. Note that $A A^{T}=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$ and $A^{T} A=\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]$. Eigenvalues of $A A^{T}$ are $\lambda_{1}=\lambda_{2}=2 \Rightarrow$ the singular values are $\sigma_{1}=\sigma_{2}=\sqrt{2}$. Orthonormal eigenvectors for $A A^{T}$ can be given by $\mathbf{u}_{1}=$ $[10]^{T}$ and $\mathbf{u}_{2}=[01]^{T}$. Thus, $U=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. Two orthonormal eigenvectors for $A^{T} A$ can be found immediately as $\mathbf{v}_{1}=\frac{1}{\sqrt{2}}[1010]^{T}$ and $\mathbf{v}_{2}=\frac{1}{\sqrt{2}}[0101]^{T}$. We need to find two more vectors \mathbf{v}_{3} and \mathbf{v}_{4} orthogonal to $\left\{\mathbf{v}_{i}\right\}_{i=1}^{2}$ such that $\left\{\mathbf{v}_{i}\right\}_{i=1}^{4}$ will form orthonormal basis for \mathbb{R}^{4}. Then, $\mathbf{v}_{3}=\frac{1}{\sqrt{2}}[10-10]^{T}$ and $\mathbf{v}_{4}=\frac{1}{\sqrt{2}}[010-1]^{T}$. Thus, $V=\frac{1}{\sqrt{2}}\left[\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1\end{array}\right]$.
2. (a) Prove that a symmetric matrix A is positive definite if and only if there exists a matrix B with independent columns such that $A=B^{T} B$.
(b) If A is written as its eigenvalue decomposition, what will B be ?

Solution: Part (a): For positive definiteness, $x^{T} A x>0$ should satisfy for all nonzero vectors x. Using $A=B^{T} B$, we get $x^{T} A x=x^{T} B^{T} B x=(B x)^{T}(B x)=\|B x\|^{2}$. This squared length is positive (unless $x=0$), because B has independent columns. (If x is nonzero then $B x$ is nonzero). Thus $B^{T} B$ is positive definite.
Part (b): Eigenvalue decomposition of A is $A=Q \Lambda Q^{T}=(Q \sqrt{\Lambda})\left(\sqrt{\Lambda} Q^{T}\right)$, so $B=$ $\sqrt{\Lambda} Q^{T}$
3. Suppose A is a 2 by 2 symmetric matrix with unit eigenvectors u_{1} and u_{2}. If its eigenvalues are $\lambda_{1}=3$ and $\lambda_{2}=-2$, what are U, Σ and V^{T} ?

Solution: Since $A=A^{T}, A^{T} A=A^{2}=V \Sigma U^{T} U \Sigma V^{T}=V \Sigma^{2} V^{T}=\left(V \Sigma V^{T}\right)^{2}$. Thus, $A=U \Sigma V^{T}=V \Sigma V^{T}$. This implies that matrices U and V will satisfy $U=V$ and the columns of U (or V) will consist u_{1} and u_{2}. Since, singular values are always nonnegative, we have $\sigma_{1}=\lambda_{1}=3$ and $\sigma_{2}=-\lambda_{2}=2$. So, $\Sigma=\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]$.
4. For what range of a and b are the matrices \mathbf{A}, \mathbf{B} positive definite

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{lll}
a & 2 & 2 \\
2 & a & 2 \\
2 & 2 & a
\end{array}\right] \\
& \mathbf{B}=\left[\begin{array}{lll}
1 & 2 & 4 \\
2 & b & 8 \\
4 & 8 & 7
\end{array}\right]
\end{aligned}
$$

Solution: A is Positive Definite when $a>2$, whereas B is never Positive Definite
5. Let \mathbf{A} and \mathbf{B} be real square symmetric Positive semi-definite matrices. Is $\mathbf{A B}+\mathbf{B} \mathbf{A}$ positive semi-definite always

Solution: consider following PSD matrices

$$
\mathbf{A}=\left[\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right]
$$

and

$$
\mathbf{B}=\left[\begin{array}{cc}
4 & -2 \\
-2 & 1
\end{array}\right]
$$

for $\mathbf{x}=(0,1)^{t}, \mathbf{x}^{t}(\mathbf{A B}+\mathbf{B A}) \mathbf{x}=-6<0$
6. Give a quick reason why each of these statements is true:
(a) Every positive definite matrix is invertible.
(b) The only positive definite projection matrix is $P=I$.
(c) A diagonal matrix with positive diagonal entries is positive definite.
(d) A symmetric matrix with a positive determinant might not be positive definite

Solution:

(a) The determinant is positive (not zero) as all eigenvalues are positive.
(b) All projection matrices except I are singular (non-invertible).
(c) The diagonal entries of a diagonal matrix are its eigenvalues.
(d) $A=-I$ has determinant equal to 1 when n is even, but it is not a positive-definite matrix.
7. Suppose $\mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathbf{n}}$ and $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}$ are orthonormal bases for R_{n}. Construct the matrix A that transforms each $\mathbf{v}_{\mathbf{j}}$ into $\mathbf{u}_{\mathbf{j}}$ to give $A \mathbf{v}_{\mathbf{1}}=\mathbf{u}_{\mathbf{1}}, \ldots, A \mathbf{v}_{\mathbf{n}}=\mathbf{u}_{\mathbf{n}}$.

Solution: Let U be the matrix whose columns are $\mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathbf{n}}$ and let V be the matrix whose columns are $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}$. Then, the condition $A \mathbf{v}_{\mathbf{1}}=\mathbf{u}_{1}, \ldots, A \mathbf{v}_{\mathbf{n}}=\mathbf{u}_{\mathbf{n}}$ can be written as

$$
A V=U
$$

Hence

$$
A=U V^{-1}=U V^{T}
$$

Now, A is an orthogonal matrix because

$$
A^{T} A=\left(U V^{T}\right)^{T} U V^{T}=V\left(U^{T} U\right) V^{T}=V V^{T}=I
$$

Note also that $A=U I V^{T}$ is the SVD for A, where the singular value matrix $\Sigma=I$.
8. Let A be an $n \times n$ hermitian matrix with n distinct eigenvalues. Prove that for any n length vector $\mathbf{x}, \lambda_{\text {min }}\|\mathbf{x}\|^{2} \leq \mathbf{x}^{H} A \mathbf{x} \leq \lambda_{\max }\|\mathbf{x}\|^{2}$, where $\|\mathbf{x}\|^{2}=\mathbf{x}^{H} \mathbf{x}, \lambda_{\text {min }}$ and $\lambda_{\text {max }}$ are the minimum and maximum eigenvalues of A.

Solution:

Since A is a hermitian matrix with all its eigenvalues to be distinct, the eigenvalue decomposition of A can be written as, $A=U \Lambda U^{H}$, where U is the eigenvector matrix which is unitary and Λ is a diagonal matrix containing eigenvalues of A as its diagonal entries (refer to Q3 of prev. tutorial). Let $\mathbf{y}=U^{H} \mathbf{x}$ and $\mathbf{y}(k)$ denote $k^{\text {th }}$ element of \mathbf{y}. Then, we have the following:

$$
\mathbf{x}^{H} A \mathbf{x}=\mathbf{x}^{H} U \Lambda U^{H} \mathbf{x}=\mathbf{y}^{H} \Lambda \mathbf{y}=\sum_{k=1}^{n} \lambda_{k}|\mathbf{y}(k)|^{2}
$$

where λ_{k} is the $k^{t h}$ diagonal entry in Λ. Now,

$$
\begin{aligned}
\sum_{k=1}^{n} \lambda_{k}|\mathbf{y}(k)|^{2} & \leq \sum_{k=1}^{n} \lambda_{\max }|\mathbf{y}(k)|^{2}=\lambda_{\max } \sum_{k=1}^{n}|\mathbf{y}(k)|^{2} \\
& =\lambda_{\max }\|\mathbf{y}\|^{2}=\lambda_{\max }\left\|U^{H} \mathbf{x}\right\|^{2}=\lambda_{\max }\|\mathbf{x}\|^{2}
\end{aligned}
$$

Similarly, we can get, $\sum_{k=1}^{n} \lambda_{k}|\mathbf{y}(k)|^{2} \geq \lambda_{\min }\|\mathbf{x}\|^{2}$. Hence, proved the result.
9. The graph of $F_{1}(x, y)=x^{2}+y^{2}$ is a bowl opening upward. The graph of $F_{3}(x, y)=x^{2}-y^{2}$ is a saddle. The graph of $F_{3}(x, y)=-x^{2}-y^{2}$ is a bowl opening downward. What is a test on $F(x, y)$ for having maxima, minima or saddle point at $(0,0)$?

Solution: First derivatives of the function $F(x, y)$ should be zero at $(0,0)$. It is satisfied for all the three functions at $(0,0)$. So, all are having a stationary point at $(0,0)$.

Second derivative matrices for $x^{2}+y^{2}, x^{2}-y^{2}$, and $-x^{2}-y^{2}$ are given below:

$$
F_{1}(x, y)=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right], F_{2}(x, y)=\left[\begin{array}{cc}
2 & 0 \\
0 & -2
\end{array}\right] \operatorname{and} F_{3}(x, y)=\left[\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right]
$$

At minima, the second derivative matrix will have all positive eigenvalues(positive definite matrix). So, $F_{1}(x, y)$ is having a minima.
At saddle, the second derivative matrix will have atleast one positve and one negative eigenvalue. So, $F_{2}(x, y)$ is a saddle.
At maxima, the second derivative matrix will have all negative eigenvalues(negative definite matrix). So, $F_{3}(x, y)$ is having a maxima.
10. (a) If A changes to $4 A$, what is the change in the SVD?
(b) What is the SVD for A^{T} and for A^{-1} ?
(c) Why doesn't the SVD for $A+I$ just use $\Sigma+I$?

Solution: Let $A=U \Sigma V^{T}$
(a) $4 A=4\left(U \Sigma V^{T}\right)=U(4 \Sigma) V^{T}$.
(b) $A^{T}=\left(U \Sigma V^{T}\right)^{T}=V^{T} \Sigma^{T} U^{T}=V \Sigma^{T} U^{T}$.
$A^{-1}=\left(U \Sigma V^{T}\right)^{-1}=V^{T^{-1}} \Sigma^{-1} U^{-1}=V \Sigma^{-1} U^{T}$.
Where Σ^{-1} is a Diagonal matrix of size Σ^{T} and Diagonal elements as $1 / \sigma_{i i}$.

If a singularvalue is zero, then we need to fix the corresponding singularvalue of A^{-1} to zero. But, We will have only a pseudo-inverse.

For non-square matrices will have leftside and rightside inverse.
(c)

$$
\begin{align*}
(A+I)(A+I)^{T} & =A A^{T}+A I^{T}+I A^{T}+I I^{T} \\
& =U \Sigma \Sigma^{T} U^{T}+U \Sigma V^{T} I^{T}+I\left(V \Sigma^{T} U^{T}\right)+U I I^{T} U^{T} \tag{1}
\end{align*}
$$

If $A+I=U(\Sigma+I) V^{T}$, where A and I are of size $M \times N$.

$$
\begin{align*}
\Rightarrow(A+I)(A+I)^{T} & =U(\Sigma+I)(\Sigma+I)^{T} U^{T} \\
& =U \Sigma \Sigma^{T} U^{T}+U \Sigma I^{T} U^{T}+U I \Sigma^{T} U^{T}+U I I^{T} U^{T} \tag{2}
\end{align*}
$$

$\Rightarrow \mathrm{Eq}(1) \neq(2)$.
Even if A is square, $\mathrm{Eq}(1) \neq \mathrm{Eq}(2)$ as $U \neq V$.

