
EE5120 Linear Algebra: Tutorial 8, July-Dec 2017-18
Covers sec 6.1,6.2 (exclude law of inertia and generalized eigenvalue problem),6.3 of GS

1. Compute the SVD of A =

[
1 0 1 0
0 1 0 1

]
.

Solution:

Let SVD of A be UλVT. We now need to find U, Λ and V. Note that AAT =

[
2 0
0 2

]

and AT A =


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

. Eigenvalues of AAT are λ1 = λ2 = 2 ⇒ the singular

values are σ1 = σ2 =
√

2. Orthonormal eigenvectors for AAT can be given by u1 =

[1 0]T and u2 = [0 1]T. Thus, U =

[
1 0
0 1

]
. Two orthonormal eigenvectors for AT A

can be found immediately as v1 = 1√
2
[1 0 1 0]T and v2 = 1√

2
[0 1 0 1]T. We need to

find two more vectors v3 and v4 orthogonal to {vi}2
i=1 such that {vi}4

i=1 will form
orthonormal basis for R4. Then, v3 = 1√

2
[1 0 − 1 0]T and v4 = 1√

2
[0 1 0 − 1]T. Thus,

V = 1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

.

2. (a) Prove that a symmetric matrix A is positive definite if and only if there exists a matrix
B with independent columns such that A = BTB.

(b) If A is written as its eigenvalue decomposition, what will B be ?

Hint:SubstituteAinxTAxandsolve.

Solution: Part (a): For positive definiteness, xT Ax > 0 should satisfy for all nonzero
vectors x. Using A = BTB, we get xT Ax = xTBTBx = (Bx)T(Bx) = ‖Bx‖2. This
squared length is positive (unless x = 0), because B has independent columns. (If x is
nonzero then Bx is nonzero). Thus BTB is positive definite.

Part (b): Eigenvalue decomposition of A is A = QΛQT = (Q
√

Λ)(
√

ΛQT), so B =√
ΛQT

3. Suppose A is a 2 by 2 symmetric matrix with unit eigenvectors u1 and u2. If its eigenvalues
are λ1 = 3 and λ2 = −2, what are U, Σ and VT ?

Hint:Usepropertyofsymmetricmatricestofindsingularvalues.

Solution: Since A = AT, AT A = A2 = VΣUTUΣVT = VΣ2VT = (VΣVT)2. Thus,
A = UΣVT = VΣVT. This implies that matrices U and V will satisfy U = V and
the columns of U (or V) will consist u1 and u2. Since, singular values are always non-

negative, we have σ1 = λ1 = 3 and σ2 = −λ2 = 2. So, Σ =

[
3 0
0 2

]
.



4. For what range of a and b are the matrices A,B positive definite

A =

 a 2 2
2 a 2
2 2 a



B =

 1 2 4
2 b 8
4 8 7



Hint:Usedefinitions.

Solution: A is Positive Definite when a > 2, whereas B is never Positive Definite

5. Let A and B be real square symmetric Positive semi-definite matrices. Is AB+BA positive
semi-definite always

Hint:Counterexamples?.

Solution: consider following PSD matrices

A =

[
4 2
2 1

]
and

B =

[
4 −2
−2 1

]
for x = (0, 1)t, xt(AB+BA)x = −6 < 0

6. Give a quick reason why each of these statements is true:

(a) Every positive definite matrix is invertible.

(b) The only positive definite projection matrix is P = I.

(c) A diagonal matrix with positive diagonal entries is positive definite.

(d) A symmetric matrix with a positive determinant might not be positive definite

Solution:

(a) The determinant is positive (not zero) as all eigenvalues are positive.

(b) All projection matrices except I are singular (non-invertible).

(c) The diagonal entries of a diagonal matrix are its eigenvalues.

(d) A = −I has determinant equal to 1 when n is even, but it is not a positive-definite
matrix.

7. Suppose u1, ..., un and v1, ..., vn are orthonormal bases for Rn. Construct the matrix A that
transforms each vj into uj to give Av1 = u1, ..., Avn = un.

Hint:WritetheequationsinmatrixformtofindexpressionforA.
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Solution: Let U be the matrix whose columns are u1, ..., un and let V be the matrix
whose columns are v1, ..., vn. Then, the condition Av1 = u1, ..., Avn = un can be
written as

AV = U.

Hence

A = UV−1 = UVT.

Now, A is an orthogonal matrix because

AT A = (UVT)TUVT = V(UTU)VT = VVT = I.

Note also that A = UIVT is the SVD for A, where the singular value matrix Σ = I.

8. Let A be an n× n hermitian matrix with n distinct eigenvalues. Prove that for any n length
vector x, λmin||x||2 ≤ xH Ax ≤ λmax||x||2, where ||x||2 = xHx, λmin and λmax are the
minimum and maximum eigenvalues of A.

Hint:UseeigendecompositionofAanditsproperties(refertoQ3ofprev.tutorial).

Solution:

Since A is a hermitian matrix with all its eigenvalues to be distinct, the eigenvalue
decomposition of A can be written as, A = UΛUH, where U is the eigenvector matrix
which is unitary and Λ is a diagonal matrix containing eigenvalues of A as its diagonal
entries (refer to Q3 of prev. tutorial). Let y = UHx and y(k) denote kth element of y.
Then, we have the following:

xH Ax = xHUΛUHx = yHΛy =
n

∑
k=1

λk|y(k)|2,

where λk is the kth diagonal entry in Λ. Now,

n

∑
k=1

λk|y(k)|2 ≤
n

∑
k=1

λmax|y(k)|2 = λmax

n

∑
k=1
|y(k)|2

= λmax||y||2 = λmax||UHx||2 = λmax||x||2.

Similarly, we can get,
n
∑

k=1
λk|y(k)|2 ≥ λmin||x||2. Hence, proved the result.

9. The graph of F1(x, y) = x2 + y2 is a bowl opening upward. The graph of F3(x, y) = x2− y2

is a saddle. The graph of F3(x, y) = −x2 − y2 is a bowl opening downward. What is a test
on F(x, y) for having maxima, minima or saddle point at (0, 0)?

Hint:Usesecondderivativematrixofthefunction.
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Solution: First derivatives of the function F(x,y) should be zero at (0, 0). It is satisfied
for all the three functions at (0, 0). So, all are having a stationary point at (0, 0).

Second derivative matrices for x2 + y2, x2 − y2, and − x2 − y2 are given below:

F1(x, y) =
[

2 0
0 2

]
, F2(x, y) =

[
2 0
0 −2

]
andF3(x, y) =

[
−2 0
0 −2

]
At minima, the second derivative matrix will have all positive eigenvalues(positive
definite matrix). So, F1(x, y) is having a minima.
At saddle, the second derivative matrix will have atleast one positve and one negative
eigenvalue. So, F2(x, y) is a saddle.
At maxima, the second derivative matrix will have all negative eigenvalues(negative
definite matrix). So, F3(x, y) is having a maxima.

10. (a) If A changes to 4A, what is the change in the SVD?

(b) What is the SVD for AT and for A−1?

(c) Why doesn’t the SVD for A + I just use Σ + I?

Hint:CalculateSVDof(A+I)intermsofSVDofA.

Solution: Let A = UΣVT

(a) 4A = 4(UΣVT) = U(4Σ)VT.

(b) AT = (UΣVT)T = VTTΣTUT = VΣTUT.
A−1 = (UΣVT)−1 = VT−1Σ−1U−1 = VΣ−1UT.
Where Σ−1 is a Diagonal matrix of size ΣT and Diagonal elements as 1/σii.

If a singularvalue is zero, then we need to fix the corresponding singularvalue of
A−1 to zero. But, We will have only a pseudo-inverse.

For non-square matrices will have leftside and rightside inverse.

(c)

(A + I)(A + I)T = AAT + AIT + IAT + I IT

= UΣΣTUT + UΣVT IT + I(VΣTUT) + UIITUT (1)

If A + I = U(Σ + I)VT, where A and I are of size M× N.

⇒ (A + I)(A + I)T = U(Σ + I)(Σ + I)TUT

= UΣΣTUT + UΣITUT + UIΣTUT + UIITUT (2)

⇒ Eq (1) 6= (2).
Even if A is square, Eq(1) 6= Eq(2) as U 6= V.
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