1. Prove that the eigenvectors corresponding to different eigenvalues are orthonormal for unitary matrices.

Hint: Use properties of unitary matrices

2. Suppose $A = \begin{bmatrix} 1 & b \\ 0 & c \end{bmatrix}$, where *b* and *c* are some non-zero finite real numbers with $c \neq 1$.

Compute the eigenvalues and eigenvectors of *A*. Further, if $X = \begin{bmatrix} A & O \\ O & A \end{bmatrix}$, which is a block diagonal matrix and *O* is an all-zero 2 × 2 matrix, then what are its eigenvalues and eigenvectors?

Hint: Use basic procedure for finding eigenvalues and eigenvectors.

- 3. Let *A* be an $n \times n$ hermitian matrix with *n* distinct positive eigen values and for any column vector **x**, let **x**(k) denote the k^{th} entry in **x**.
 - (a) Prove that if $A = U\Lambda U^{-1}$ is the eigen decomposition of A, then (i) entries of Λ are real, and (ii) U is a unitary matrix.

. First prove that (i) $\mathbf{y}^{H}\mathbf{x}$ is real for any \mathbf{y} , (ii) columns of U can be orthonormal.

- (b) Let $\mathbf{u}_2 = \mathbf{u}_1 aA\mathbf{u}_1$, $\mathbf{v}_i = U^H \mathbf{u}_i$, i = 1, 2 and a is a real positive number. If $|\mathbf{v}_2(k)| < |\mathbf{v}_1(k)|$, $\forall k$, then prove that $a < \frac{2}{\lambda_{\max}}$, where λ_{\max} is the maximum eigen value of A. . pappoid uppe n pue V to suited upper λ_{\max} is the maximum eigenvalue of A.
- 4. Find a third column so that *U* is unitary. How much freedom in column 3?

$$U = \begin{bmatrix} 1/\sqrt{3} & i/\sqrt{2} & x \\ 1/\sqrt{3} & 0 & y \\ i/\sqrt{3} & 1/\sqrt{2} & z \end{bmatrix}$$

Hint: Use the definition of unitary matrix.

- 5. Suppose each "Gibonacci" number G_{k+2} is the average of the two previous numbers G_{k+1} and G_k . Then $G_{k+2} = \frac{1}{2}(G_{k+1} + G_k) : \begin{bmatrix} G_{k+2} \\ G_{k+1} \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} G_{k+1} \\ G_k \end{bmatrix}$
 - (a) Find the eigenvalues and eigenvectors of *A*.

Hint: Use basic procedure for finding eigenvalues and eigenvectors.

(b) Find the limit as $n \to \infty$ of the matrices $A^n = S \Lambda^n S^{-1}$.

 $\cdot^{\infty}\Lambda$ stuqmo \Im :tniH

- (c) If $G_0 = 0$ and $G_1 = 1$, show that the Gibonacci numbers approach $\frac{2}{3}$. $\cdot \begin{bmatrix} 0 \\ J \end{bmatrix}_{\infty} \forall \forall \forall H$
- 6. Suppose there is an epidemic in which every month half of those who are well become sick, and a quarter of those who are sick become dead. Find the steady state for the corresponding Markov process:

$$\begin{bmatrix} d_{k+1} \\ s_{k+1} \\ w_{k+1} \end{bmatrix} = \begin{bmatrix} 1 & \frac{1}{4} & 0 \\ 0 & \frac{3}{4} & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} d_k \\ s_k \\ w_k \end{bmatrix}$$

Hint: Steady state is the eigen vector corresponding eigen value 1.

- 7. Show that every number is an eigenvalue for the transformation $T(f(x)) = \frac{df}{dx}$, but the transformation $T(f(x)) = \int_0^x f(t)dt$ has no eigenvalues (here $-\infty < x < \infty$). • ολιος pue *v* ιοquinu μeoi λue log $_{xv} \partial = (x) f$ oper : μu_{iH}
- 8. Let **A** be a square matrix. Define $\mathbf{B}_1 = \frac{1}{2}(\mathbf{A} + \mathbf{A}^H)$, $\mathbf{B}_2 = \frac{1}{2i}(\mathbf{A} \mathbf{A}^H)$
 - (a) Prove that \mathbf{B}_1 , \mathbf{B}_2 are hermitian and $\mathbf{A}=\mathbf{B}_1+i\mathbf{B}_2$
 - (b) Suppose that $A=C_1{+}iC_2,$ where C_1 and C_2 are hermitian, then prove that $C_1{=}B_1$ and $C_2{=}B_2$
 - (c) What conditions of B_1 and B_2 make A normal ?

.enoitinitab aeU :tniH

- 9. Let **A** be a normal matrix. Prove the following:
 - (a) $\|\mathbf{A}\mathbf{x}\| = \|\mathbf{A}^{\mathsf{H}}\mathbf{x}\|$ for every $\mathbf{x} \in \mathbb{C}^n$
 - (b) $\mathbf{A} c\mathbf{I}$ is a normal operator for every $c \in \mathbb{C}$
 - (c) If **x** is an eigen vector of **A** with eigen value λ , then **x** is also an eigen vector of \mathbf{A}^H with eigen value λ^* (λ^* is the complex conjugate of λ^*)
 - Hint: Use part (a) and part (b) to solve part (c)
- 10. If the transformation *T* is a reflection across the 45° line in the plane, find its matrix with respect to the standard basis $v_1 = (1,0)$, $v_2 = (0,1)$, and also with respect to $V_1 = (1,1)$, $V_2 = (1,-1)$. Show that those matrices are similar.

Mint: Use Change of basis or Similarity transformation <math>B = MAI.