EE5120 Linear Algebra: Tutorial 7, July-Dec 2017-18

Covers sec 5.3 (only powers of a matrix part), 5.5,5.6 of GS

1. Prove that the eigenvectors corresponding to different eigenvalues are orthonormal for unitary matrices.

2. Suppose $A=\left[\begin{array}{ll}1 & b \\ 0 & c\end{array}\right]$, where b and c are some non-zero finite real numbers with $c \neq 1$. Compute the eigenvalues and eigenvectors of A. Further, if $X=\left[\begin{array}{ll}A & O \\ O & A\end{array}\right]$, which is a block diagonal matrix and O is an all-zero 2×2 matrix, then what are its eigenvalues and eigenvectors?

3. Let A be an $n \times n$ hermitian matrix with n distinct positive eigen values and for any column vector \mathbf{x}, let $\mathbf{x}(k)$ denote the $k^{\text {th }}$ entry in \mathbf{x}.
(a) Prove that if $A=U \Lambda U^{-1}$ is the eigen decomposition of A, then (i) entries of Λ are real, and (ii) U is a unitary matrix.

(b) Let $\mathbf{u}_{2}=\mathbf{u}_{1}-a A \mathbf{u}_{1}, \mathbf{v}_{i}=U^{H} \mathbf{u}_{i}, i=1,2$ and a is a real positive number. If $\left|\mathbf{v}_{2}(k)\right|<$ $\left|\mathbf{v}_{1}(k)\right|, \forall k$, then prove that $a<\frac{2}{\lambda_{\max }}$, where $\lambda_{\max }$ is the maximum eigen value of A.

4. Find a third column so that U is unitary. How much freedom in column 3 ?

$$
U=\left[\begin{array}{ccc}
1 / \sqrt{3} & i / \sqrt{2} & x \\
1 / \sqrt{3} & 0 & y \\
i / \sqrt{3} & 1 / \sqrt{2} & z
\end{array}\right]
$$

5. Suppose each "Gibonacci" number G_{k+2} is the average of the two previous numbers G_{k+1} and G_{k}. Then $G_{k+2}=\frac{1}{2}\left(G_{k+1}+G_{k}\right):\left[\begin{array}{c}G_{k+2} \\ G_{k+1}\end{array}\right]=[A]\left[\begin{array}{c}G_{k+1} \\ G_{k}\end{array}\right]$
(a) Find the eigenvalues and eigenvectors of A.

(b) Find the limit as $n \rightarrow \infty$ of the matrices $A^{n}=S \Lambda^{n} S^{-1}$.

(c) If $G_{0}=0$ and $G_{1}=1$, show that the Gibonacci numbers approach $\frac{2}{3}$.
6. Suppose there is an epidemic in which every month half of those who are well become sick, and a quarter of those who are sick become dead. Find the steady state for the corresponding Markov process:

$$
\left[\begin{array}{c}
d_{k+1} \\
s_{k+1} \\
w_{k+1}
\end{array}\right]=\left[\begin{array}{ccc}
1 & \frac{1}{4} & 0 \\
0 & \frac{3}{4} & \frac{1}{2} \\
0 & 0 & \frac{1}{2}
\end{array}\right]\left[\begin{array}{c}
d_{k} \\
s_{k} \\
w_{k}
\end{array}\right]
$$

7. Show that every number is an eigenvalue for the transformation $T(f(x))=\frac{d f}{d x}$, but the transformation $T(f(x))=\int_{0}^{x} f(t) d t$ has no eigenvalues (here $-\infty<x<\infty$).

8. Let \mathbf{A} be a square matrix. Define $\mathbf{B}_{1}=\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{H}\right), \mathbf{B}_{2}=\frac{1}{2 i}\left(\mathbf{A}-\mathbf{A}^{H}\right)$
(a) Prove that $\mathbf{B}_{1}, \mathbf{B}_{\mathbf{2}}$ are hermitian and $\mathbf{A}=\mathbf{B}_{\mathbf{1}}+i \mathbf{B}_{\mathbf{2}}$
(b) Suppose that $\mathbf{A}=\mathbf{C}_{\mathbf{1}}+i \mathbf{C}_{\mathbf{2}}$, where $\mathbf{C}_{\mathbf{1}}$ and $\mathbf{C}_{\mathbf{2}}$ are hermitian, then prove that $\mathbf{C}_{\mathbf{1}}=\mathbf{B}_{\mathbf{1}}$ and $\mathbf{C}_{2}=\mathbf{B}_{2}$
(c) What conditions of \mathbf{B}_{1} and $\mathbf{B}_{\mathbf{2}}$ make \mathbf{A} normal ?

9. Let \mathbf{A} be a normal matrix. Prove the following:
(a) $\|\mathbf{A} \boldsymbol{x}\|=\left\|\mathbf{A}^{\mathbf{H}}\right\|$ for every $\mathbf{x} \in \mathbb{C}^{n}$
(b) $\mathbf{A}-c \mathbf{I}$ is a normal operator for every $c \in \mathbb{C}$
(c) If \mathbf{x} is an eigen vector of \mathbf{A} with eigen value λ, then \mathbf{x} is also an eigen vector of \mathbf{A}^{H} with eigen value $\lambda^{*}\left(\lambda^{*}\right.$ is the complex conjugate of $\left.\lambda^{*}\right)$

10. If the transformation T is a reflection across the 45° line in the plane, find its matrix with respect to the standard basis $v_{1}=(1,0), v_{2}=(0,1)$, and also with respect to $V_{1}=(1,1)$, $V_{2}=(1,-1)$. Show that those matrices are similar.

