EE5120 Linear Algebra: Tutorial 7, July-Dec 2017-18

Covers sec 5.3 (only powers of a matrix part), 5.5,5.6 of GS

1. Prove that the eigenvectors corresponding to different eigenvalues are orthonormal for unitary matrices.

Solution: See pg. 287 of GS
2. Suppose $A=\left[\begin{array}{ll}1 & b \\ 0 & c\end{array}\right]$, where b and c are some non-zero finite real numbers with $c \neq 1$. Compute the eigenvalues and eigenvectors of A. Further, if $X=\left[\begin{array}{ll}A & O \\ O & A\end{array}\right]$, which is a block diagonal matrix and O is an all-zero 2×2 matrix, then what are its eigenvalues and eigenvectors?

Solution:

A is upper triangular. So, diagonal entries are its eigenvalues, i.e., $\lambda_{A}=1, c$. Eigenvectors can be obtained as, $\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}$ and $\left[\frac{b}{c-1} 1\right]^{T}$ respectively.

X is block diagonal. Since A is upper triangular, so is X . Thus eigen values of X are: $\lambda_{X}=1,1, c, c$ and corresponding eigenvectors are $\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]^{T},\left[\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right]^{T},\left[\begin{array}{lll}\frac{b}{c-1} & 1 & 0\end{array} 0^{T}\right.$ and $\left[\begin{array}{lll}0 & 0 & \frac{b}{c-1}\end{array}\right]^{T}$ respectively.
3. Let A be an $n \times n$ hermitian matrix with n distinct positive eigen values and for any column vector \mathbf{x}, let $\mathbf{x}(k)$ denote the $k^{\text {th }}$ entry in \mathbf{x}.
(a) Prove that if $A=U \Lambda U^{-1}$ is the eigen decomposition of A, then (i) entries of Λ are real, and (ii) U is a unitary matrix.

(b) Let $\mathbf{u}_{2}=\mathbf{u}_{1}-a A \mathbf{u}_{1}, \mathbf{v}_{i}=U^{H} \mathbf{u}_{i}, i=1,2$ and a is a real positive number. If $\left|\mathbf{v}_{2}(k)\right|<$ $\left|\mathbf{v}_{1}(k)\right|, \forall k$, then prove that $a<\frac{2}{\lambda_{\max }}$, where $\lambda_{\max }$ is the maximum eigen value of A.

Solution:

(a) For any non-zero vector \mathbf{y} of appropriate dimension, note that $\mathbf{y}^{H} A \mathbf{y}$ is a scalar. Now, $\left(\mathbf{y}^{H} A \mathbf{y}\right)^{*}=\left(\mathbf{y}^{H}\right)^{*} A^{*} \mathbf{y}^{*}=\left(\mathbf{y}^{T} A^{*} \mathbf{y}^{*}\right)^{T}=\mathbf{y}^{H} A^{H} \mathbf{y}=\mathbf{y}^{H} A \mathbf{y}$, where the third equality is due to the fact that $\mathbf{y}^{H} A \mathbf{y}$ is a scalar. Since $\left(\mathbf{y}^{H} A \mathbf{y}\right)^{*}=\mathbf{y}^{H} A \mathbf{y}, \mathbf{y}^{H} A \mathbf{y}$ is a real number.
Now, let \mathbf{p} be a eigenvector corresponding to eigenvalue λ for A. Then, $\mathbf{p}^{H} \mathbf{A p}$ is real by above arguement. And, $\mathbf{p}^{H} \mathbf{A p}=\mathbf{p}^{H} \lambda \mathbf{p}=\lambda\|\mathbf{p}\|^{2}$. When LHS is real and $\|\mathbf{p}\|^{2}$ is real, λ must also be real. Hence, all eigen values of a hermitian matrix
are real.
Further, let λ_{1} and λ_{2} be two eigen values of A with eigenvectors \mathbf{p}_{1} and \mathbf{p}_{2} respectively. Now, since λ_{1} and λ_{2} are real and distinct, we have,

$$
\lambda_{1} \mathbf{p}_{1}^{H} \mathbf{p}_{2}=\left(\lambda_{1} \mathbf{p}_{1}\right)^{H} \mathbf{p}_{2}=\left(A \mathbf{p}_{1}\right)^{H} \mathbf{p}_{2}=\mathbf{p}_{1}^{H} A^{H} \mathbf{p}_{2}=\mathbf{p}_{1}^{H} A \mathbf{p}_{2}=\lambda_{2} \mathbf{p}_{1}^{H} \mathbf{p}_{2} .
$$

Since eigenvalues are distinct the above relation holds only if $\mathbf{p}_{1}^{H} \mathbf{p}_{2} \Rightarrow \frac{\mathbf{p}_{1}^{H}}{\left\|\mathbf{p}_{1}\right\|^{2}} \frac{\mathbf{p}_{2}}{\left\|\mathbf{p}_{2}\right\|^{2}}=$ 0 . Thus, eigen vectors are orthonormal, which implies U is unitary.
(b) Now,

$$
\mathbf{u}_{2}=\mathbf{u}_{1}-a A \mathbf{u}_{1}=\mathbf{u}_{1}-a U \Lambda U^{H} \mathbf{u}_{1}=\left(U U^{H}-a U \Lambda U^{H}\right) \mathbf{u}_{1}=U(I-a \Lambda) U^{H} \mathbf{u}_{1}
$$

Thus, $U^{H} \mathbf{u}_{2}=(I-a \Lambda) U^{H} \mathbf{u}_{2} \Rightarrow \mathbf{v}_{2}=(I-a \Lambda) \mathbf{v}_{1}$. Let $k^{\text {th }}$ diagonal entry in Λ be λ_{k}. Then, $\left|\mathbf{v}_{2}(k)\right|=\left|1-a \lambda_{k}\right|\left|\mathbf{v}_{1}(k)\right|, \forall k$. If we want $\left|\mathbf{v}_{2}(k)\right|<\left|\mathbf{v}_{1}(k)\right|, \forall k$, then we must have $\left|1-a \lambda_{k}\right|<1, \forall k \Rightarrow-1<1-a \lambda_{k}<1 \Rightarrow 0<a<\frac{2}{\lambda_{k}}$. Since, this is true for all k, we have $0<a<\frac{2}{\lambda_{\max }}$, where $\lambda_{\max }$ is the maximum eighen value of A.
4. Find a third column so that U is unitary. How much freedom in column 3 ?

$$
U=\left[\begin{array}{ccc}
1 / \sqrt{3} & i / \sqrt{2} & x \\
1 / \sqrt{3} & 0 & y \\
i / \sqrt{3} & 1 / \sqrt{2} & z
\end{array}\right]
$$

Solution: Given $U^{H} U=I$. On equating LHS and RHS, we get 9 equations of which 4 are redundant. The other 5 equations are given below,

$$
\begin{align*}
\frac{1}{3}+\frac{1}{2}+x \bar{x} & =1 \tag{1}\\
\frac{1}{3}+y \bar{y} & =1 \tag{2}\\
\frac{1}{3}+\frac{1}{2}+z \bar{z} & =1 \tag{3}\\
\frac{1}{3}+x \bar{y} & =0 \tag{4}\\
\frac{-i}{3}+\frac{i}{2}+x \bar{z} & =0 \tag{5}
\end{align*}
$$

From equations (1), (2) and (3),
$x=\frac{1}{\sqrt{6}} \exp \left(i \theta_{x}\right), y=\sqrt{\frac{2}{3}} \exp \left(i \theta_{y}\right)$ and $z=\frac{1}{\sqrt{6}} \exp \left(i \theta_{z}\right)$, respectively.
From euqations (4) and (5),
$\theta_{x}-\theta_{y}=(2 n+1) \pi$ and $\theta_{x}-\theta_{z}=\left(2 k-\frac{1}{2}\right) \pi$, respectively. So, $x=\frac{1}{\sqrt{6}} \exp \left(i \theta_{x}\right)$,
$y=\sqrt{\frac{2}{3}} \exp i\left(\theta_{x}-(2 n+1) \pi\right)=\sqrt{\frac{2}{3}} \exp i\left(\theta_{x}-\pi\right)$
and $z=\frac{1}{\sqrt{6}} \exp i\left(\theta_{x}-\left(2 k-\frac{1}{2}\right) \pi\right)=\frac{1}{\sqrt{6}} \exp i\left(\theta_{x}+\frac{\pi}{2}\right)$.

The third column is " $\exp \left(i \theta_{x}\right)\left[\begin{array}{c}\frac{1}{\sqrt{6}} \\ \sqrt{\frac{2}{3}} \exp (-i \pi) \\ \frac{1}{\sqrt{6}} \exp \left(i \frac{\pi}{2}\right)\end{array}\right]$ ", which has no degree of freedom.
5. Suppose each "Gibonacci" number G_{k+2} is the average of the two previous numbers G_{k+1} and G_{k}. Then $G_{k+2}=\frac{1}{2}\left(G_{k+1}+G_{k}\right):\left[\begin{array}{c}G_{k+2} \\ G_{k+1}\end{array}\right]=[A]\left[\begin{array}{c}G_{k+1} \\ G_{k}\end{array}\right]$
(a) Find the eigenvalues and eigenvectors of A.

(b) Find the limit as $n \rightarrow \infty$ of the matrices $A^{n}=S \Lambda^{n} S^{-1}$.
${ }_{\infty} \mathrm{V}$ әənduoว :ұи! H
(c) If $G_{0}=0$ and $G_{1}=1$, show that the Gibonacci numbers approach $\frac{2}{3}$.
$\cdot\left[\begin{array}{l}0 \\ 0 \\ I\end{array}\right] \infty \forall$ әұnduoว : :u! H

Solution:

(a) $A=\left[\begin{array}{cc}0.5 & 0.5 \\ 1 & 0\end{array}\right]$. Eigenvalues $(\lambda$, s.t. $\operatorname{det}(A-\lambda I)=0)$ are 1 and -0.5 , with eigenvectors $\left(v_{i}\right.$, s.t. $\left.A v_{i}=\lambda v_{i}\right)$ are $\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right]$ and $\left[\begin{array}{c}\frac{-1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}}\end{array}\right]$
(b) $S=\left[\begin{array}{ll}\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{5}} \\ \frac{1}{\sqrt{2}} & \frac{2}{\sqrt{5}}\end{array}\right], S^{-1}=\frac{\sqrt{10}}{3}\left[\begin{array}{ll}\frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{2}}\end{array}\right]$.

$$
A^{\infty}=S\left[\begin{array}{cc}
1 & 0 \\
0 & -0.5^{\infty}
\end{array}\right] S^{-1}=\left[\begin{array}{cc}
\frac{2}{3} & \frac{1}{3} \\
\frac{2}{3} & \frac{1}{3}
\end{array}\right] .
$$

(c) $\left[\begin{array}{c}G_{\infty} \\ G_{\infty-1}\end{array}\right]=A^{\infty}\left[\begin{array}{l}G_{1} \\ G_{0}\end{array}\right]=A^{\infty}\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{c}\frac{2}{3} \\ \frac{2}{3}\end{array}\right]$
6. Suppose there is an epidemic in which every month half of those who are well become sick, and a quarter of those who are sick become dead. Find the steady state for the corresponding Markov process:

$$
\left[\begin{array}{c}
d_{k+1} \\
s_{k+1} \\
w_{k+1}
\end{array}\right]=\left[\begin{array}{ccc}
1 & \frac{1}{4} & 0 \\
0 & \frac{3}{4} & \frac{1}{2} \\
0 & 0 & \frac{1}{2}
\end{array}\right]\left[\begin{array}{c}
d_{k} \\
s_{k} \\
w_{k}
\end{array}\right]
$$

Solution: Let us denote the given matrix equation as $\mathbf{u}_{\mathbf{k}+\boldsymbol{1}}=A \mathbf{u}_{\mathbf{k}}$ where $\mathbf{u}_{\mathbf{k}+\mathbf{1}}=\left[\begin{array}{c}d_{k+1} \\ s_{k+1} \\ w_{k+1}\end{array}\right], A=\left[\begin{array}{ccc}1 & \frac{1}{4} & 0 \\ 0 & \frac{3}{4} & \frac{1}{2} \\ 0 & 0 & \frac{1}{2}\end{array}\right]$ and $\mathbf{u}_{\mathbf{k}}=\left[\begin{array}{c}d_{k} \\ s_{k} \\ w_{k}\end{array}\right]$.

The seady state is given by $A \mathbf{u}_{\infty}=\mathbf{u}_{\infty}$, i.e., \mathbf{u}_{∞} is the eigenvector corresponding to eigenvalue 1 (A Markov matrix will always have one of the eigenvalues as 1 and the rest of magnitude ≤ 1). To find it, we equate $(A-1 I) \mathbf{u}_{\infty}=\mathbf{0}$.

$$
\left[\begin{array}{ccc}
0 & \frac{1}{4} & 0 \\
0 & -\frac{-1}{4} & \frac{1}{2} \\
0 & 0 & \frac{-1}{2}
\end{array}\right]\left[\begin{array}{c}
d_{\infty} \\
s_{\infty} \\
w_{\infty}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

This gives $\mathbf{u}_{\infty}=\left[\begin{array}{c}d_{\infty} \\ s_{\infty} \\ w_{\infty}\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$, in other words, everyone will die from the epidemic.
7. Show that every number is an eigenvalue for the transformation $T(f(x))=\frac{d f}{d x}$, but the transformation $T(f(x))=\int_{0}^{x} f(t) d t$ has no eigenvalues (here $-\infty<x<\infty$).

Solution: If $f(x)=e^{a x}$ for any real number a, for the first T,

$$
T(f(x))=\frac{d f}{d x}=a e^{a x}=a f(x)
$$

Hence, any number a is an eigenvalue of T. [Note: the eigenvalues of a linear transformation are not dependent on a basis, so if we have found them in one basis that is good enough. Why? Any change of basis is given by a similarity transform, and it is easy to prove that similar matrices have the same eigenvalues. In this case we chose $f(x)=e^{a x}$ because it was an easy to guess eigenfunction. Since the question is regarding eigenvalues, it is important to only choose those f that are eigenfunctions, not arbitrary functions.]
For the second T, suppose $T(f(x))=a f(x)$ for some number a and some function f, i.e.,

$$
\int_{0}^{x} f(t) d t=a f(x)
$$

Now, differentiate both sides to get

$$
f(x)=a f^{\prime}(x)
$$

Solving for f, we get

$$
\int \frac{f^{\prime}(x) d x}{f(x)}=\int \frac{1}{a} d x
$$

This gives

$$
\ln |f(x)|=\frac{x}{a}+C \quad \text { or } \quad|f(x)|=e^{\frac{x}{a}+C} \quad \text { or } \quad|f(x)|=e^{C} e^{\frac{x}{a}}
$$

We can get rid of the absolute value signs by substituting A for e^{C} (allowing A to possibly be negative):

$$
f(x)=A e^{\frac{x}{a}}
$$

Therefore we have

$$
T(f(x))=\int_{0}^{x} f(t) d t=\int_{0}^{x} A e^{\frac{t}{a}} d t=\left.a A e^{\frac{t}{a}}\right|_{o} ^{x}=a A e^{\frac{x}{a}}-a A=a\left(A e^{\frac{x}{a}}-A\right)=a(f(x)-A)
$$

But our initial assumption was that $T(f(x)=a f(x)$. For this either $a=0$ or $A=0$, either of which implies $f(x)=0$. Hence T has no eigenvalues.
8. Let \mathbf{A} be a square matrix. Define $\mathbf{B}_{\mathbf{1}}=\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{H}\right), \mathbf{B}_{\mathbf{2}}=\frac{1}{2 i}\left(\mathbf{A}-\mathbf{A}^{H}\right)$
(a) Prove that $\mathbf{B}_{1}, \mathbf{B}_{\mathbf{2}}$ are hermitian and $\mathbf{A}=\mathbf{B}_{\mathbf{1}}+i \mathbf{B}_{\mathbf{2}}$
(b) Suppose that $\mathbf{A}=\mathbf{C}_{\mathbf{1}}+i \mathbf{C}_{\mathbf{2}}$, where $\mathbf{C}_{\mathbf{1}}$ and $\mathbf{C}_{\mathbf{2}}$ are hermitian, then prove that $\mathbf{C}_{\mathbf{1}}=\mathbf{B}_{\mathbf{1}}$ and $\mathbf{C}_{2}=\mathbf{B}_{2}$
(c) What conditions of \mathbf{B}_{1} and \mathbf{B}_{2} make \mathbf{A} normal ?

Solution:

(a) $\mathbf{B}_{\mathbf{1}}{ }^{H}=\frac{1}{2}\left(\mathbf{A}^{H}+\mathbf{A}\right)=\mathbf{B}_{\mathbf{1}}$ similarly, $\mathbf{B}_{\mathbf{2}}{ }^{H}=\frac{-1}{2 i}\left(\mathbf{A}^{H}-\mathbf{A}\right)=\mathbf{B}_{\mathbf{2}}$ and $\mathbf{B}_{\mathbf{1}}+\mathrm{i} \mathbf{B}_{\mathbf{2}}=\frac{1}{2}(\mathbf{A}+$ $\left.\mathbf{A}^{H}\right)+\frac{1}{2}\left(\mathbf{A}-\mathbf{A}^{H}\right)=\mathbf{A}$
(b) $\mathbf{A}=\mathbf{C}_{\mathbf{1}}+i \mathbf{C}_{\mathbf{2}}, \Rightarrow \mathbf{A}^{H}=\mathbf{C}_{\mathbf{1}}{ }^{H}+i \mathbf{C}_{\mathbf{2}}{ }^{H}=\mathbf{C}_{\mathbf{1}}-i \mathbf{C}_{\mathbf{2}}$ using the exressions of \mathbf{A} and \mathbf{A}^{H}, we get $\mathbf{C}_{\mathbf{1}}=\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{H}\right)=\mathbf{B}_{1}$ and $\mathbf{C}_{\mathbf{2}}=\frac{1}{2 i}\left(\mathbf{A}-\mathbf{A}^{H}\right)=\mathbf{B}_{\mathbf{2}}$
(c) $\mathbf{A} \mathbf{A}^{H}=\mathbf{A}^{H} \mathbf{A} \Rightarrow\left(\mathbf{B}_{1}+i \mathbf{B}_{2}\right)\left(\mathbf{B}_{1}-i \mathbf{B}_{2}\right)=\left(\mathbf{B}_{1}-i \mathbf{B}_{2}\right)\left(\mathbf{B}_{1}+i \mathbf{B}_{\mathbf{2}}\right)$ simplification yields $\mathbf{B}_{\mathbf{1}} \mathbf{B}_{\mathbf{2}}=\mathbf{B}_{\mathbf{2}} \mathbf{B}_{\mathbf{1}}$
9. Let \mathbf{A} be a normal matrix. Prove the following:
(a) $\|\mathbf{A x}\|=\left\|\mathbf{A}^{\mathbf{H}} \boldsymbol{x}\right\|$ for every $\mathbf{x} \in \mathbb{C}^{n}$
(b) $\mathbf{A}-c \mathbf{I}$ is a normal operator for every $c \in \mathbb{C}$
(c) If \mathbf{x} is an eigen vector of \mathbf{A} with eigen value λ, then \mathbf{x} is also an eigen vector of \mathbf{A}^{H} with eigen value $\lambda^{*}\left(\lambda^{*}\right.$ is the complex conjugate of $\left.\lambda^{*}\right)$

Solution:

(a) $\|\mathbf{A x}\|^{2}=(\mathbf{A x})^{H} \mathbf{A} \mathbf{x}=\mathbf{x}^{H} \mathbf{A}^{H} \mathbf{A} \mathbf{x}=\mathbf{x}^{H} \mathbf{A} \mathbf{A}^{H} \mathbf{x}=\left(\mathbf{A}^{\mathrm{H}} \mathbf{x}\right)^{H} \mathbf{A}^{\mathrm{H}} \mathbf{x}=\left\|\mathbf{A}^{\mathbf{H}} \mathbf{x}\right\|^{2}$
(b) $(\mathbf{A}-c \mathbf{I})(\mathbf{A}-c \mathbf{I})^{H}=\mathbf{A} \mathbf{A}^{H}-c^{*} \mathbf{A}-c \mathbf{A}^{H}+|c|^{2} \mathbf{I}=\mathbf{A}^{H} \mathbf{A}-c^{*} \mathbf{A}-c \mathbf{A}^{H}+|c|^{2} \mathbf{I}=$ $(\mathbf{A}-c \mathbf{I})^{H}(\mathbf{A}-c \mathbf{I})$ therefore normal
(c) Let \mathbf{x} be an eigen vector of \mathbf{A} with eigen value $\lambda \Rightarrow \mathbf{A x}=\lambda \mathbf{x}$. Define $\mathbf{U}=\mathbf{A}-\lambda \mathbf{I}$. From part b, \mathbf{U} is normal. From part $\mathrm{a},\|\mathbf{U} \mathbf{x}\|=\left\|\mathbf{U}^{\mathbf{H}} \mathbf{x}\right\| \Rightarrow 0=\|(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}\|=$ $\left\|\mathbf{A}^{H} \mathbf{x}-\lambda^{*} \mathbf{x}\right\| \Rightarrow \mathbf{A}^{H} \mathbf{x}=\lambda^{*} \mathbf{x}$
10. If the transformation T is a reflection across the 45° line in the plane, find its matrix with respect to the standard basis $v_{1}=(1,0), v_{2}=(0,1)$, and also with respect to $V_{1}=(1,1)$, $V_{2}=(1,-1)$. Show that those matrices are similar.

Solution: Let T be the Transformation matrix for reflection across any θ line given by,

$$
T=\left[\begin{array}{cc}
2 c^{2}-1 & 2 c s \\
2 c s & 2 s^{2}-1
\end{array}\right]
$$

Here, $\theta=45^{\circ}$. Substituting this value, we get the transformation matrix wrt standard basis v_{1}, v_{2}. Lets call this matrix A, where $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. Now, we change the basis to $V_{1}=(1,1), V_{2}=(1,-1)$ and find the reflection transformation matrix (call it B). Observe where the new basis vectors land after reflection through the given line,

$$
\begin{gathered}
T V_{1}=V_{1} \\
T V_{2}=-V_{2}
\end{gathered}
$$

Thus, the transformation matrix wrt V_{1}, V_{2} will be $B=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$. Next, to show that A and B are similar matrices, we need to find a matrix M such that, $B=M^{-1} A M$. Matrix M is constructed by writing new basis vectors V_{1}, V_{2} as a linear combination of standard basis vectors v_{1}, v_{2}. Since $(1,1)=1(1,0)+1(0,1)$ and $(1,-1)=1(1,0)-$ $1(0,1)$, we get

$$
M=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

Using this M, it can be verified that $B=M^{-1} A M$. Note that, $(1,1)$ and $(1,-1)$ are also the eigenvectors of A (or T).

