EE5120 Linear Algebra: Tutorial 6, July-Dec 2017-18

Covers sec 4.2, 5.1, 5.2 of GS

1. State True or False with proper explanation:
(a) All vectors are eigenvectors of the Identity matrix.
(b) Any matrix can be diagonalized.
(c) Eigenvalues must be nonzero scalars.
(d) A and B are said to be Similar matrices if there exists an invertible matrix P such that $P^{-1} A P=B . A$ and B always have the same eigenvalues.
(e) The sum of two eigenvectors of an operator \mathbf{T} is always an eigenvector of \mathbf{T}.
2. Let \mathbf{T} be the linear operator on $n \times n$ real matrices defined by $\mathbf{T}(A)=A^{t}$. Show that ± 1 are the only eigenvalues of \mathbf{T}. Describe the eigenvectors corresponding to each eigenvalue of \mathbf{T}.

3. Prove that the geometric multiplicity of an eigenvalue, $\mu_{A}\left(\lambda_{i}\right)$, can not exceed its algebraic multiplicity, $\gamma_{A}\left(\lambda_{i}\right)$. Thus, from here conclude (and prove that) $1 \leq \gamma_{A}\left(\lambda_{i}\right) \leq \mu_{A}\left(\lambda_{i}\right) \leq n$
4. Consider the following $N \times N$ matrix:

$$
\mathbf{A}=\left[\begin{array}{cccccccccc}
x & -x & 0 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 \\
x & x & -x & 0 & 0 & 0 & \ldots & 0 & 0 & 0 \\
0 & x & x & -x & 0 & 0 & \ldots & 0 & 0 & 0 \\
0 & 0 & x & x & -x & 0 & \ldots & 0 & 0 & 0 \\
\ldots & \ldots \\
0 & 0 & 0 & \ldots & \ldots & \ldots & \ldots & x & x & -x \\
0 & 0 & 0 & \ldots & \ldots & \ldots & \ldots & 0 & x & x
\end{array}\right]
$$

This implies for $N=1,2,3$, matrix A looks like,

$$
[x] \quad\left[\begin{array}{cc}
x & -x \\
x & x
\end{array}\right] \quad\left[\begin{array}{ccc}
x & -x & 0 \\
x & x & -x \\
0 & x & x
\end{array}\right]
$$

Show that the determinant of \mathbf{A} is $\left(F_{N-1}+F_{N-2}\right) x^{N}$, where $F_{1}=1, F_{2}=2$ and $F_{N}=$ $F_{N-1}+F_{N-2}$.

5. Let $p(\lambda)=\prod_{i=1}^{n}\left(\lambda_{i}-\lambda\right)$ be the characteristic polynomial of the $n \times n$ matrix A. Derive the characteristic polynomial of $\mathbf{A}^{2}-\mathbf{I}$, where \mathbf{I} is an identity matrix of appropriate dimension. ‘ге!
6. Prove that a linear transformation \mathbf{T} on a finite dimensional vector space is inverible iff zero is not an eigen value of \mathbf{T}

7. (a) What is wrong with this proof that projection matrices have $\operatorname{det} P=1$?

$$
P=A\left(A^{T} A\right)^{-1} A^{T} \quad \text { so } \quad|P|=|A| \frac{1}{\left|A^{T}\right||A|}\left|A^{T}\right|=1
$$

-Kч!!!q!̣дәлиі: :ұи! $Н$
(b) Suppose the 4 by 4 matrix M has four equal rows all containing a, b, c, d. We know that $\operatorname{det}(M)=0$. Find the $\operatorname{det}(I+M)$ by any method?

$$
\operatorname{det}(I+M)=\left[\begin{array}{cccc}
1+a & b & c & d \\
a & 1+b & c & d \\
a & b & 1+c & d \\
a & b & c & 1+d
\end{array}\right]
$$

8. Find the eigenvalues and eigenvectors for both of these Markov matrices A and A^{∞}. Expain why A^{100} is close to A^{∞} :

$$
A=\left[\begin{array}{ll}
.6 & .2 \\
.4 & .8
\end{array}\right] \quad A^{\infty}=\left[\begin{array}{ll}
1 / 3 & 1 / 3 \\
2 / 3 & 2 / 3
\end{array}\right]
$$

-иоп̣ег!!еиове!̣р әs \cap :ұи! $Н$
9. When $a+b=c+d$, show that $(1,1)$ is an eigenvector and find both eigenvalues:

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

10. EXTRA: Find $u(t)$ that satisfies the differential equation $d u / d t=P u$, when P is a projection:

$$
\frac{d u}{d t}=\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right] u \quad \text { with } \quad u(0)=\left[\begin{array}{l}
5 \\
3
\end{array}\right]
$$

Here $u(t)$ is a vector of time-varying functions, i.e., we can write $u(t)=\left[\begin{array}{c}v(t) \\ w(t)\end{array}\right]$. You will find that a part of u increases exponentially while another part stays constant.

