
EE5120 Linear Algebra: Tutorial 6, July-Dec 2017-18
Covers sec 4.2, 5.1, 5.2 of GS

1. State True or False with proper explanation:

(a) All vectors are eigenvectors of the Identity matrix.

(b) Any matrix can be diagonalized.

(c) Eigenvalues must be nonzero scalars.

(d) A and B are said to be Similar matrices if there exists an invertible matrix P such that
P−1AP = B. A and B always have the same eigenvalues.

(e) The sum of two eigenvectors of an operator T is always an eigenvector of T.

Solution:

(a) True. We know, S−1AS = Λ. If A = I, S−1 IS is always diagonal (Λ is just I). The
only requirement is that S should be invertible.

(b) False. Any matrix with distinct eigenvalues can be diagonalized.

(c) False. They can be zero as well. But, eigenvectors have to be nonzero. Having
zero eigenvalue implies that the matrix is non-invertible.

(d) True. If A and B are similar, there is some invertible matrix P such that P−1AP =
B. Thus, P−1A = BP−1 or AP = PB.
If Av = λv, we have B(P−1v) = λP−1v. Similarly, if Bv = λv, then we have
A(Pv) = λPv. Thus both have same eigenvalues λ.

(e) False. For example, vectors (1,−1)t and (0, 1)t are eigenvectors of the matrix[
1 0
−1 0

]
But the sum of them (1, 0)t is not an eigenvector of the same matrix.

2. Let T be the linear operator on n x n real matrices defined by T(A) = At. Show that ±1
are the only eigenvalues of T. Describe the eigenvectors corresponding to each eigenvalue
of T.

Hint:WritetheEigenvalueequationasT(A)=At=λAandproceed.

Solution: If T(A) = At = λA for some λ and some nonzero matrix A, say Aij 6= 0, we
have

Aij = λAji

and
Aji = λAij

and so
Aij = λ2Aij

This means that λ can be only 1 or -1. And these two values are eigenvalues due to the
existence of symmetric and skew-symmetric matrices.



The set of nonzero symmetric matrices are the eigenvectors corresponding to eigen-
value 1, while the set of nonzero skew-symmetric matrices are the eigenvectors corre-
sponding to eigenvalue -1.

3. Prove that the geometric multiplicity of an eigenvalue, γA(λi), can not exceed its algebraic
multiplicity, µA(λi). Thus, from here conclude (and prove that) 1 ≤ γA(λi) ≤ µA(λi) ≤ n

Solution: See http://www.ee.iitm.ac.in/uday/2017b-EE5120/multiplicity.pdf

4. Consider the following N × N matrix:

A =



x −x 0 0 0 0 ... 0 0 0
x x −x 0 0 0 ... 0 0 0
0 x x −x 0 0 ... 0 0 0
0 0 x x −x 0 ... 0 0 0
... ... ... ... ... ... ... ... ... ...
0 0 0 ... ... ... ... x x −x
0 0 0 ... ... ... ... 0 x x


This implies for N = 1, 2, 3, matrix A looks like,

[
x
] [

x −x
x x

] x −x 0
x x −x
0 x x


Show that the determinant of A is (FN−1 + FN−2)xN , where F1 = 1, F2 = 2 and FN =
FN−1 + FN−2.

Hint:UseMathematicalInduction.

Solution: (Use Mathematical Induction) It can be easily verified that the result is true
for N = 1, 2, 3. Let us assume that it is true upto dimension N − 1× N − 1, where
N > 4. If we prove that the result holds for when the matrix dimension is N× N, then
we are done. Carefully observe that the determinant of the N × N matrix A is given
by,

x(det. of N − 1× N − 1 matrix)− (−x)
(

x(det. of N − 2× N − 2 matrix)
)

= x
(
(FN−2 + FN−3)xN−1

)
+ x2

(
(FN−3 + FN−4)xN−2

)
= FN−1xN + FN−2xN .

Hence proved.

Alt proof: Partition An as An =

x −x . . .
x An−1
...

. . .

.
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OR

(Using row transformations) Using the property that subtracting a multiple of one row
from another row leaves the same determinant.
Subtracting Row2 = Row2− Row1, followed by Row3 = Row3− Row2

2 , and soon to
matrix A to get a upper triangular matrix as shown below,

det(A) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −x 0 0 0 0 ... 0 0 0
0 2

1 x −x 0 0 0 ... 0 0 0
0 0 3

2 x −x 0 0 ... 0 0 0
0 0 0 5

3 x −x 0 ... 0 0 0
0 0 0 0 8

5 x −x ... 0 0 0
... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
It can be observed that the diagonal elements are of the following form aii =

Fii−1
Fii−2

x.

det(A) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −x 0 0 0 0 ... 0 0 0
0 F2

F1
x −x 0 0 ... 0 0 0 0

0 0 F3
F2

x −x 0 ... 0 0 0 0
0 0 0 F4

F3
x −x ... 0 0 0 0

... ... ... ... ... ... ... ... ... ...
0 0 0 ... ... ... ... 0 FN−1

FN−2
x −x

0 0 0 ... ... ... ... 0 0 FN
FN−1

x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
As the matrix is upper triangular, determinant is product of diagonal elements,
i.e. det(A) = F1

F0
x× F1

F2
x.... FN−1

FN−2
x× FN

FN−1
x = FNxN = (FN−1 + FN−2)xN

5. Let p(λ) =
n
∏
i=1

(λi − λ) be the characteristic polynomial of the n× n matrix A. Derive the

characteristic polynomial of A2− I, where I is an identity matrix of appropriate dimension.

Hint:Usepropertiesofeigenvaluesanddefinitionofacharacteristicpolynomial.

Solution:

Let Λ be such that,

Λ =


λ1 0 0 ... 0
0 λ2 0 ... 0
... ... ... ... ...
0 0 0 ... λn


Then, there exists an invertible matrix B such that A = BΛB−1. Further, we get A2 =
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BΛB−1BΛB−1 = BΛ2B−1. Now, the characteristic polynomial of A2 − I is given by,

det
(
(A2 − I)− λI

)
= det(BΛ2B−1 − (λ + 1)I) = det(BΛ2B−1 − (λ + 1)BB−1)

= det
(

B(Λ2 − (λ + 1)I)B−1
)
= det(B)det(Λ2 − (λ + 1)I)det(B−1)

= det(Λ2 − (λ + 1)I).

Note that Λ2 − (λ + 1)I is a diagonal matrix. Hence, the characteristic polynomial is
n
∏
i=1

(λ2
i − (λ + 1)).

6. Prove that a linear transformation T on a finite dimensional vector space is inverible iff
zero is not an eigen value of T

Hint:Usepropertiesofeigenvalues.

Solution: T is invertible iff det(T) 6= 0. det(T)=product of eigen values. det(T) 6= 0⇒
eigen values are non zero

7. (a) What is wrong with this proof that projection matrices have det P = 1?

P = A(AT A)−1AT so |P| = |A| 1
|AT||A| |A

T| = 1
Hint:Invertibility.

(b) Suppose the 4by4 matrix M has four equal rows all containing a, b, c, d. We know that
det(M) = 0. Find the det(I + M) by any method?

det(I + M) =


1 + a b c d

a 1 + b c d
a b 1 + c d
a b c 1 + d



Hint:Usepropertiesofdeterminants.

Solution:

(a) The proof is valid only if A is square and invertible, which is not the case every-
time. If A is not invertible, then (AT A)−1 6= A−1AT−1 ⇒ |(AT A)−1| 6= 1

|A||AT | .

(b) Using the property that subtracting a multiple of one row from another row leaves
the same determinant.

det(I + M) =


1 + a b c d
−1 1 0 0
−1 0 1 0
−1 0 0 1
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Using the property that subtracting a multiple of one column from another col-
umn leaves the same determinant.

det(I + M) =


1 + a + b + c + d b c d

0 1 0 0
0 0 1 0
0 0 0 1

 = 1 + a + b + c + d

8. Find the eigenvalues and eigenvectors for both of these Markov matrices A and A∞. Ex-
pain why A100 is close to A∞:

A =

[
.6 .2
.4 .8

]
A∞ =

[
1/3 1/3
2/3 2/3

]

Hint:Usediagonalization.

Solution: Eigen values and eigenvectors of A are 0.4, 1 and
[
−1/
√

2
1/
√

2

]
,
[

1/
√

5
2/
√

5

]
, respec-

tively.

Eigen values and eigenvectors of A∞ are 0, 1 and
[
−1/
√

2
1/
√

2

]
,
[

1/
√

5
2/
√

5

]
, respectively.

We could see that the eigenvectors are linearly independent for A. So, matrix A can be
diagonalizable as shown below.

A = SΛS−1

where S =

[
−1/
√

2 1/
√

5
1/
√

2 2/
√

5

]
and Λ =

[
0.4 0
0 1

]
.

⇒ A2 = SΛS−1SΛS−1 = SΛ2S−1

Similarly,
⇒ An = SΛnS−1 and A∞ = SΛ∞S−1 = SΛ∞S−1

where Λ∞ =

[
0.4∞ 0

0 1∞

]
=

[
0 0
0 1

]
. So, the eigen values with magnitude less than the

one, will have less significance at higher powers. 0.4100 = 1.6069× 10−40 ≈ 0.

9. When a + b = c + d, show that (1,1) is an eigenvector and find both eigenvalues:

A =

[
a b
c d

]

Hint:Usedefinitionofeigenvector,Ax=λxandsubstitutegivenvectorforx.

Solution: Let a + b = c + d = f . Eigen vector is the solution to the equation Ax = λx.
If (1,1) is an eigen vector, then[

a b
c d

] [
1
1

]
=

[
a + b
c + d

]
=

[
f
f

]
= f

[
1
1

]
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which satisfies the equation Ax = λx with eigen value λ = f = a + b = c + d.

10. EXTRA: Find u(t) that satisfies the differential equation du/dt = Pu, when P is a projec-
tion:

du
dt =

[ 1
2

1
2

1
2

1
2

]
u with u(0) =

[
5
3

]

Here u(t) is a vector of time-varying functions, i.e., we can write u(t) =
[

v(t)
w(t)

]
. You will

find that a part of u increases exponentially while another part stays constant.

Hint:FindeigenvaluesandeigenvectorsofPandsubstitutegiveninitialcondition.

Solution: Solving det(P− λI) = 0 gives the eigen values of P as λ1 = 1 and λ2 = 0
(This is true for all projection matrices).
Solving Px = λx for each of the eigen values gives the corresponding eigen vectors as

x1 =

[
1
1

]
and x2 =

[
1
−1

]
.

In the differential equation, this produces the special solutions u = eλtx . They are the
pure exponential solutions to du/dt = Pu. Let these be u1 = eλ1tx1 and u2 = eλ2tx2.
Any linear combinations of u1 and u2 will also be solutions to the differential equation.
The complete solution is given by u(t) = c1eλ1tx1 + c2eλ2tx2. We now find c1 and c2

using the initial condition u(0) =
[

5
3

]
, i.e.,

c1

[
1
1

]
+ c2

[
1
−1

]
=

[
5
3

]
or [

1 1
1 −1

] [
c1
c2

]
=

[
5
3

]

This gives c1 = 4 and c2 = 1. Therefore the complete solution is u(t) = 4et
[

1
1

]
+

[
1
−1

]
.

Here, the first part of u increases exponentially while the nullspace part (corresponding
to eigen value 0) remains fixed.
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