EE5120 Linear Algebra: Tutorial 5, July-Dec 2017-18

1. (a) Suppose $S = {v_1, v_2, ..., v_n}$ is a set of non-zero orthogonal vectors, then prove that S is linearly independent.

Hint: Prove by contradiction.

(b) Let V be a finite dimensional vector space with $\{\mathbf{u}_1, ..., \mathbf{u}_k\}$ being its orthonormal basis vectors. If for some $\mathbf{v} \in V$, we have $\mathbf{v} = \sum_{i=1}^k a_i \mathbf{u}_i$, then find an expression for the scalars a_i 's in terms of \mathbf{u}_i 's and \mathbf{v} .

Hint: Multiply \mathbf{v}^{T} with \mathbf{u}_{i} 's & observe.

(c) Using Gram-Schmidt procedure find orthonormal vectors **q**₁, **q**₂ and **q**₃ corresponding to the vectors $[110]^T$, $[101]^T$ and $[011]^T$.

Hint: Follow the procedure.

(d) Suppose $S = {a_1, a_2, ..., a_n}$ is a set of $n \times 1$ orthonormal vectors. Prove that Gram-Schmidt procedure when applied to S leads to S itself. Further if a_i is the i^{th} column of matrix **A**, then show that **R** matrix in the *QR*-factorization of **A** is an identity matrix.

Hint: Mathematical induction.

- 2. (a) Suppose V is a vector space and W is a sub-space. If $U = {\mathbf{v} \in V | \mathbf{v}^T \mathbf{w} = 0, \forall \mathbf{w} \in W}$, prove that U is a sub-space.
 - (b) Let $\mathbf{u} \in \mathbb{R}^n$ is s.t. $\mathbf{u}^T \mathbf{u} = 1$ and $\mathbf{Q} = \mathbf{I} 2\mathbf{u}\mathbf{u}^T$, where \mathbf{I} is an $n \times n$ identity matrix.
 - (i) Prove that **Q** is an orthogonal matrix.
 - (ii) If $\mathbf{w} \in \mathbb{R}^n$ is s.t. $\mathbf{Q}\mathbf{w} = \mathbf{w}$, compute the relation between \mathbf{w} and \mathbf{u} .

Hint: Just follow the actual definitions.

- 3. (a) Square the matrix $P = aa^T/(a^Ta)$, which projects onto a line, and show that $P^2 = P$. $i_I vv_I vv$ xintem and $i_I v$ approximation of $i_I v$ is a property of $i_I v$.
 - (b) Find the matrix *P* that projects every vector *b* in R^3 onto the line in the direction of *a* and the projection *p*. Check that error e = b p is perpendicular to *a* for the following:

(i)
$$b = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
 and $a = \begin{bmatrix} 2\\1\\3 \end{bmatrix}$ (ii) $b = \begin{bmatrix} 1\\3\\6 \end{bmatrix}$ and $a = \begin{bmatrix} -1\\-3\\1 \end{bmatrix}$
:0 = $v_1 a$ text mous pue $q_d = d$: u_{iH}

(c) Is the projection matrix *P* invertible? Why or why not?

Hint: Use the rank of P matrix to support your statement.

4. A Middle-Aged man was stretched on a rack to lengths L = 5, 6, and 7 feet under applied forces of F = 1, 2, and 4 tons. Assuming Hooke's law L = a + bF, find his normal length a by least squares.

. The problem is the problem. Find A, x, and b in the problem. Find A, x, and b in the problem.

5. Let $\mathbf{W} = span(\{(i, 0, 1)\})$ in complex-valued vector space of dimension 3. Find orthonormal bases for \mathbf{W} and \mathbf{W}^{\perp} .

Hint: Treat complex-valued vector as any other vector and apply orthogonality principle.

6. Find the parabola $C + Dt + Et^2$ that comes closest to the values $\mathbf{b} = (0, 0, 1, 0, 0)$ at the times t = -2, -1, 0, 1, 2.

Hint: Here, best parabola is symmetric about time t. This directly tells about value of D.

7. If **T** is a linear transformation on a vector space **V** such that $||\mathbf{T}(\mathbf{x})|| = ||\mathbf{x}||$ for $\mathbf{x} \in \mathbf{V}$, prove that it is one to one

i T fo space all in white $\mathbf{N}(\mathbf{T})$, where $\mathbf{N}(\mathbf{T})$ is the null space of \mathbf{T} ?

- 8. Let **V** be an innear product space and define for each pair of vectors **x**, **y**, the scalar $\mathbf{d}(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} \mathbf{y}||$, called distance between **x** and **y**. Prove for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ that
 - (a) $d(x, y) \ge 0$
 - (b) $\mathbf{d}(\mathbf{x},\mathbf{y}) = \mathbf{d}(\mathbf{y},\mathbf{x})$
 - (c) $\mathbf{d}(\mathbf{x},\mathbf{y}) \leq \mathbf{d}(\mathbf{x},\mathbf{z}) + \mathbf{d}(\mathbf{z},\mathbf{y})$
 - (d) d(x, x) = 0
 - (e) $\mathbf{d}(\mathbf{x}, \mathbf{y}) \neq 0$ if $\mathbf{x} \neq \mathbf{y}$

suoitinitab sht seU :tniH

9. The fundamental theorem is often stated in the form of *Fredholms alternative*: For any *A* and **b**, one and only one of the following systems has a solution:

(1)
$$A\mathbf{x} = \mathbf{b}$$
 (or)

(ii) $A^T \mathbf{y} = \mathbf{0}$ with $\mathbf{y}^T \mathbf{b} \neq 0$. Either **b** is in the column space C(A) or there is a **y** in $N(A^T)$ such that $\mathbf{y}^T \mathbf{b} = 0$. Show that it is contradictory for (i) and (ii) both to have solutions.

. **1** Int: Proof by contradiction. Start by expressing 0 as 0 **.**

- 10. Why is each of these statements false?
 - (a) (1,1,1) is perpendicular to (1,1,-2), so the planes x + y + z = 0 and x + y 2z = 0 are orthogonal subspaces.

Hint: Check dimensions of the subsapces.

(b) The subspace spanned by (1,1,0,0,0) and (0,0,0,1,1) is the orthogonal complement of the subspace spanned by (1,-1,0,0,0) and (2,-2,3,4,-4).

Hint: Check dimensions of the subsapces.

(c) Two subspaces that meet only in the zero vector are orthogonal. •aoudsip of abuds TZ ui alduuxa alduis v ayvL :iuiH