1. (a) Suppose $\mathcal{S}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a set of non-zero orthogonal vectors, then prove that \mathcal{S} is linearly independent.

(b) Let V be a finite dimensional vector space with $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ being its orthonormal basis vectors. If for some $\mathbf{v} \in \mathrm{V}$, we have $\mathbf{v}=\sum_{i=1}^{k} a_{i} \mathbf{u}_{i}$, then find an expression for the scalars $a_{i}{ }^{\prime}$ s in terms of $\mathbf{u}_{i}{ }^{\prime} \mathrm{s}$ and \mathbf{v}.

(c) Using Gram-Schmidt procedure find orthonormal vectors $\mathbf{q}_{1}, \mathbf{q}_{2}$ and \mathbf{q}_{3} corresponding to the vectors $[110]^{T},[101]^{T}$ and $[011]^{T}$.

(d) Suppose $\mathcal{S}=\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$ is a set of $n \times 1$ orthonormal vectors. Prove that GramSchmidt procedure when applied to \mathcal{S} leads to \mathcal{S} itself. Further if \mathbf{a}_{i} is the $i^{\text {th }}$ column of matrix \mathbf{A}, then show that \mathbf{R} matrix in the $Q R$-factorization of \mathbf{A} is an identity matrix.

2. (a) Suppose V is a vector space and W is a sub-space. If $U=\left\{\mathbf{v} \in V \mid \mathbf{v}^{T} \mathbf{w}=0, \forall \mathbf{w} \in W\right\}$, prove that U is a sub-space.
(b) Let $\mathbf{u} \in \mathbb{R}^{n}$ is s.t. $\mathbf{u}^{T} \mathbf{u}=1$ and $\mathbf{Q}=\mathbf{I}-2 \mathbf{u} \mathbf{u}^{T}$, where \mathbf{I} is an $n \times n$ identity matrix.
(i) Prove that \mathbf{Q} is an orthogonal matrix.
(ii) If $\mathbf{w} \in \mathbb{R}^{n}$ is s.t. $\mathbf{Q w}=\mathbf{w}$, compute the relation between \mathbf{w} and \mathbf{u}.

3. (a) Square the matrix $P=a a^{T} /\left(a^{T} a\right)$, which projects onto a line, and show that $P^{2}=P$.

(b) Find the matrix P that projects every vector b in R^{3} onto the line in the direction of a and the projection p. Check that error $e=b-p$ is perpendicular to a for the following:
(i) $b=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $a=\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$ (ii) $b=\left[\begin{array}{l}1 \\ 3 \\ 6\end{array}\right]$ and $a=\left[\begin{array}{c}-1 \\ -3 \\ 1\end{array}\right]$

(c) Is the projection matrix P invertible? Why or why not?

4. A Middle-Aged man was stretched on a rack to lengths $L=5,6$, and 7 feet under applied forces of $F=1,2$, and 4 tons. Assuming Hooke's law $L=a+b F$, find his normal length a by least squares.

5. Let $\mathbf{W}=\operatorname{span}(\{(i, 0,1)\})$ in complex-valued vector space of dimension 3 . Find orthonormal bases for \mathbf{W} and \mathbf{W}^{\perp}.

6. Find the parabola $C+D t+E t^{2}$ that comes closest to the values $\mathbf{b}=(0,0,1,0,0)$ at the times $t=-2,-1,0,1,2$.

7. If \mathbf{T} is a linear transformation on a vector space \mathbf{V} such that $\|\mathbf{T}(\mathbf{x})\|=\|\mathbf{x}\|$ for $\mathbf{x} \in \mathbf{V}$, prove that it is one to one

8. Let \mathbf{V} be an innear product space and define for each pair of vectors \mathbf{x}, \mathbf{y}, the scalar $\mathbf{d}(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|$, called distance between \mathbf{x} and \mathbf{y}. Prove for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ that
(a) $\mathbf{d}(\mathbf{x}, \mathrm{y}) \geq 0$
(b) $\mathbf{d}(\mathbf{x}, \mathrm{y})=\mathbf{d}(\mathbf{y}, \mathbf{x})$
(c) $\mathbf{d}(\mathbf{x}, \mathbf{y}) \leq \mathbf{d}(\mathbf{x}, \mathbf{z})+\mathbf{d}(\mathbf{z}, \mathbf{y})$
(d) $\mathbf{d}(\mathbf{x}, \mathbf{x})=0$
(e) $\mathbf{d}(\mathbf{x}, \mathbf{y}) \neq 0$ if $\mathbf{x} \neq \mathbf{y}$

9. The fundamental theorem is often stated in the form of Fredholms alternative: For any A and \mathbf{b}, one and only one of the following systems has a solution:
(i) $A \mathbf{x}=\mathbf{b}$ (or)
(ii) $A^{T} \mathbf{y}=\mathbf{0}$ with $\mathbf{y}^{T} \mathbf{b} \neq 0$.

Either \mathbf{b} is in the column space $C(A)$ or there is a \mathbf{y} in $N\left(A^{T}\right)$ such that $\mathbf{y}^{T} \mathbf{b}=0$. Show that it is contradictory for (i) and (ii) both to have solutions.

10. Why is each of these statements false?
(a) $(1,1,1)$ is perpendicular to $(1,1,-2)$, so the planes $x+y+z=0$ and $x+y-2 z=0$ are orthogonal subspaces.

(b) The subspace spanned by $(1,1,0,0,0)$ and $(0,0,0,1,1)$ is the orthogonal complement of the subspace spanned by $(1,-1,0,0,0)$ and $(2,-2,3,4,-4)$.

(c) Two subspaces that meet only in the zero vector are orthogonal.

