1. (a) Suppose $\mathcal{S}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a set of non-zero orthogonal vectors, then prove that \mathcal{S} is linearly independent.

(b) Let V be a finite dimensional vector space with $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ being its orthonormal basis vectors. If for some $\mathbf{v} \in \mathrm{V}$, we have $\mathbf{v}=\sum_{i=1}^{k} a_{i} \mathbf{u}_{i}$, then find an expression for the scalars a_{i} 's in terms of $\mathbf{u}_{i}{ }^{\prime} \mathrm{s}$ and \mathbf{v}.

(c) Using Gram-Schmidt procedure find orthonormal vectors $\mathbf{q}_{1}, \mathbf{q}_{2}$ and \mathbf{q}_{3} corresponding to the vectors $[1100]^{T},\left[\begin{array}{lll}1 & 1\end{array}\right]^{T}$ and $[0111]^{T}$.
әәпрәәолд әчł мопІОд : :ии! H
(d) Suppose $\mathcal{S}=\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$ is a set of $n \times 1$ orthonormal vectors. Prove that GramSchmidt procedure when applied to \mathcal{S} leads to \mathcal{S} itself. Further if \mathbf{a}_{i} is the $i^{\text {th }}$ column of matrix \mathbf{A}, then show that \mathbf{R} matrix in the $Q R$-factorization of \mathbf{A} is an identity matrix.

Solution:

(a) Assume that \mathcal{S} is linearly dependent. Then there exists scalars a_{1}, \ldots, a_{n} s.t. $\sum_{i=1}^{n} a_{i} \mathbf{v}_{i}=$ $\mathbf{0}$, with not all scalars being equal to zero. Now, $\mathbf{v}_{1}^{T}\left(\sum_{i=1}^{n} a_{i} \mathbf{v}_{i}\right)=\mathbf{v}_{1}^{T} \mathbf{0} \Rightarrow a_{1} \mathbf{v}_{1}^{T} \mathbf{v}_{1}=\mathbf{0}$. The above equation is due to orthogonality between \mathbf{v}_{i} 's. Since \mathbf{v}_{i} 's are non-zero $\mathbf{v}_{1}^{T} \mathbf{v}_{1}>0 \Rightarrow a_{1}=0$. By this procedure, we can obtain that $a_{i}=0, \forall i=1,2, \ldots, n$. Arrived at a contradiction. Thus, our assumption is incorrect $\Rightarrow \mathcal{S}$ is linearly independent.
(b) For some $i=1, \ldots, k, \mathbf{v}^{T} \mathbf{u}_{i}=\sum_{j=1}^{k} a_{j} \mathbf{u}_{j}^{T} \mathbf{u}_{i}=a_{i} \mathbf{u}_{i}^{T} \mathbf{u}_{i}=a_{i} .1=a_{i}$. Thus, $a_{i}=\mathbf{v}^{T} \mathbf{u}_{i}, \forall i=$ $1, \ldots, n$.
(c) The orthonormal vectors are: $\left[\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} 0\right]^{T},\left[\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} 0\right]^{T}$ and $[001]^{T}$.
(d) Let $\left\{\mathbf{q}_{i}\right\}_{i=1}^{n}$ be the result of Gram-Schmidt procedure. We prove the result by mathematical induction on the i. For $i=1, \mathbf{q}_{1}$ is equal to \mathbf{a}_{1} since \mathbf{a}_{1} is s.t. $\mathbf{a}_{1}^{T} \mathbf{a}_{1}=$ 1. Hence the result holds true for $i=1$. Let it hold true for first $i-1$ vectors, i.e., $\mathbf{q}_{j}=\mathbf{a}_{j}, \forall j=1, \ldots, i-1$. In the $i^{\text {th }}$ step of Gram-Schmidt algorithm, $\mathbf{q}_{i}=$ $\mathbf{a}_{i}-\sum_{k=1}^{i-1} \mathbf{a}_{i}^{T} \mathbf{q}_{k} \mathbf{q}_{k}=\mathbf{a}_{i}-\sum_{k=1}^{i-1}\left(\mathbf{a}_{i}^{T} \mathbf{a}_{k}\right) \mathbf{a}_{k}=\mathbf{a}_{i}-\sum_{k=1}^{i-1}(0) \mathbf{a}_{k}=\mathbf{a}_{i}$ [By orthogonality of \mathbf{a}_{j} 's]. Thus, it is true for all $i=1, \ldots, n$. Further, \mathbf{R} matrix in $Q R$-factorization of $\mathbf{A}=\left[\mathbf{a}_{1} \ldots \mathbf{a}_{n}\right]$ is an upper triangular matrix whose non-zero entries are $[\mathbf{R}]_{i j}=$ $\mathbf{q}_{i}^{T} \mathbf{a}_{j}, i, j=1, \ldots, n$ and $j \geq i$. Hence, $[\mathbf{R}]_{i j}=\mathbf{a}_{i}^{T} \mathbf{a}_{j}=1$, if $i=j$ and zero if $i \neq j$. Thus, \mathbf{R} is an $n \times n$ identity matrix.
2. (a) Suppose V is a vector space and W is a sub-space. If $U=\left\{\mathbf{v} \in V \mid \mathbf{v}^{T} \mathbf{w}=0, \forall \mathbf{w} \in W\right\}$, prove that U is a sub-space.
(b) Let $\mathbf{u} \in \mathbb{R}^{n}$ is s.t. $\mathbf{u}^{T} \mathbf{u}=1$ and $\mathbf{Q}=\mathbf{I}-2 \mathbf{u} \mathbf{u}^{T}$, where \mathbf{I} is an $n \times n$ identity matrix.
(i) Prove that \mathbf{Q} is an orthogonal matrix.
(ii) If $\mathbf{w} \in \mathbb{R}^{n}$ is s.t. $\mathbf{Q w}=\mathbf{w}$, compute the relation between \mathbf{w} and \mathbf{u}.

Solution:

(a) Since $\mathbf{0}^{T} \mathbf{w}=0, \forall \mathbf{w} \in \mathrm{~W}, \mathbf{0} \in U$. Suppose $\mathbf{a}, \mathbf{b} \in U$, then $\mathbf{a}^{T} \mathbf{w}=0=\mathbf{b}^{T} \mathbf{w}, \forall \mathbf{w} \in$ W. Now, $(\mathbf{a}+\mathbf{b})^{T} \mathbf{w}=\left(\mathbf{a}^{T} \mathbf{w}+\mathbf{b}^{T} \mathbf{w}\right)=0+0=0 \Rightarrow \mathbf{a}+\mathbf{b} \in \mathrm{U}$. Lastly, if $\mathbf{a} \in \mathrm{U} \Rightarrow$ $\mathbf{a}^{T} \mathbf{w}=0, \forall \mathbf{w} \in \mathrm{~W}$, then for any scalar $c,(c \mathbf{a})^{T} \mathbf{w}=c^{T} \mathbf{a}^{T} \mathbf{w}=c .0=0 \Rightarrow c \mathbf{a} \in U$. Hence, U is a sub-space.
(b) (i) Note that $\mathbf{Q}^{T}=\left(\mathbf{I}-2 \mathbf{u} \mathbf{u}^{T}\right)^{T}=\mathbf{I}^{T}-2\left(\mathbf{u}^{T}\right)^{T} \mathbf{u}^{T}=\mathbf{Q}$. Thus, $\mathbf{Q} \mathbf{Q}^{T}=\mathbf{Q}^{T} \mathbf{Q}=$ $\left(\mathbf{I}-2 \mathbf{u} \mathbf{u}^{T}\right)\left(\mathbf{I}-2 \mathbf{u} \mathbf{u}^{T}\right)=\mathbf{I}-2 \mathbf{u} \mathbf{u}^{T}-2 \mathbf{u} \mathbf{u}^{T}+4 \mathbf{u} \mathbf{u}^{T} \mathbf{u} \mathbf{u}^{T}=\mathbf{I}-4 \mathbf{u} \mathbf{u}^{T}+4 \mathbf{u}\left(\mathbf{u}^{T} \mathbf{u}\right) \mathbf{u}^{T}=$ $\mathbf{I}-4 \mathbf{u u}^{T}+4 \mathbf{u}(1) \mathbf{u}^{T}=\mathbf{I}$.
(b) $\mathbf{Q w}=\mathbf{w}-2 \mathbf{u} \mathbf{u}^{T} \mathbf{w}=\mathbf{w} \Rightarrow \mathbf{u}^{T} \mathbf{w}=0$, i.e., \mathbf{w} should be orthogonal to \mathbf{u}.
3. (a) Square the matrix $P=a a^{T} /\left(a^{T} a\right)$, which projects onto a line, and show that $P^{2}=P$.

(b) Find the matrix P that projects every vector b in R^{3} onto the line in the direction of a and the projection p. Check that error $e=b-p$ is perpendicular to a for the following:
(i) $b=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $a=\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$ (ii) $b=\left[\begin{array}{l}1 \\ 3 \\ 6\end{array}\right]$ and $a=\left[\begin{array}{c}-1 \\ -3 \\ 1\end{array}\right]$ $\cdot 0=v_{L^{\text {a }}}$ еечł мочs pue $q_{d}=d: \nexists \cup!H$
(c) Is the projection matrix P invertible? Why or why not?

Solution:

(a) $P^{2}=\left[a a^{T} /\left(a^{T} a\right)\right] \times\left[a a^{T} /\left(a^{T} a\right)\right]=a\left(a^{T} a\right) a^{T} /\left[\left(a^{T} a\right)\left(a^{T} a\right)\right]=a a^{T} /\left(a^{T} a\right)=P$. ($a^{T} a$ is a scalar)
(b) (i) $P=\frac{1}{14}\left[\begin{array}{lll}4 & 2 & 6 \\ 2 & 1 & 3 \\ 6 & 3 & 9\end{array}\right], p=P b=\frac{1}{14}\left[\begin{array}{c}12 \\ 6 \\ 18\end{array}\right], e=\frac{1}{14}\left[\begin{array}{c}2 \\ 8 \\ -4\end{array}\right]$, and $e^{T} a=\frac{1}{14}\left[\begin{array}{lll}2 & 8 & -4\end{array}\right]\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]=0$.
(ii) $P=\frac{1}{11}\left[\begin{array}{ccc}1 & 3 & -1 \\ 3 & 9 & -3 \\ -1 & -3 & 1\end{array}\right], p=P b=\frac{1}{11}\left[\begin{array}{c}4 \\ 12 \\ -4\end{array}\right], e=\frac{1}{11}\left[\begin{array}{c}7 \\ 21 \\ 70\end{array}\right]$, and $e^{T} a=\frac{1}{11}\left[\begin{array}{lll}7 & 21 & 70\end{array}\right]\left[\begin{array}{c}-1 \\ -3 \\ 1\end{array}\right]=0$.
(c) We have proved in tutorial4, that $\operatorname{rank}(A B) \leq \min (\operatorname{rank}(A), \operatorname{rank}(B))$.

So, $\operatorname{rank}(P) \leq \min \left(\operatorname{rank}(a), \operatorname{rank}\left(a^{T}\right)\right) \leq 1$. As matrix P is not a full rank matrix. It is not invertible.
4. A Middle-Aged man was stretched on a rack to lengths $L=5,6$, and 7 feet under applied forces of $F=1,2$, and 4 tons. Assuming Hooke's law $L=a+b F$, find his normal length a by least squares.

Solution: $\left[\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 1 & 4\end{array}\right]\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{l}5 \\ 6 \\ 7\end{array}\right]$ which is of the form $A x=y$.
Least square solution is given by:
$\left(A^{T} A\right)^{-1} A^{T} y=\left[\begin{array}{cc}3 & 7 \\ 7 & 21\end{array}\right]^{-1}\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 4\end{array}\right]\left[\begin{array}{l}5 \\ 6 \\ 7\end{array}\right]=\frac{1}{14}\left[\begin{array}{cc}21 & -7 \\ -7 & 3\end{array}\right]\left[\begin{array}{c}18 \\ 45\end{array}\right]=\frac{1}{14}\left[\begin{array}{c}63 \\ 9\end{array}\right]$ $\Rightarrow\left[\begin{array}{l}a \\ b\end{array}\right]=\frac{1}{14}\left[\begin{array}{c}63 \\ 9\end{array}\right]$. So, The normal length a by least squares is 4.5 feet.
5. Let $\mathbf{W}=\operatorname{span}(\{(i, 0,1)\})$ be some subspace in a complex-valued vector space of dimension 3. Find orthonormal bases for \mathbf{W} and \mathbf{W}^{\perp}.

Solution: Since vector space \mathbf{W} is spanned by a single vector, $\operatorname{dim}(\mathbf{W})=1$. After normalizing, we get orthonormal basis for \mathbf{W} as $\left\{\frac{1}{\sqrt{2}}(i, 0,1)\right\}$. To find a basis for \mathbf{W}^{\perp} is to find a basis for null space of the following system of equations,

$$
(a, b, c) \cdot(i, 0,1)=a i+c=0
$$

Thus, $a i=-c$. Now, the basis would be $\{(i, 0,-1),(0,1,0)\}$. Notice that, they are already orthogonal ! Finally, normalizing to get orthonormal basis for \mathbf{W}^{\perp} as,

$$
\left\{\frac{1}{\sqrt{2}}(i, 0,-1),(0,1,0)\right\}
$$

6. Find the parabola $C+D t+E t^{2}$ that comes closest to the values $\mathbf{b}=(0,0,1,0,0)$ at the times $t=-2,-1,0,1,2$.

Solution: The five equations $\mathbf{A x}=\mathbf{b}$ have a rectangular 'Vandermonde' matrix \mathbf{A},

$$
A=\left[\begin{array}{ccc}
1 & -2 & 4 \\
1 & -1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 2 & 4
\end{array}\right], A^{T} A=\left[\begin{array}{ccc}
5 & 0 & 10 \\
0 & 10 & 0 \\
10 & 0 & 34
\end{array}\right]
$$

Note that, column 2 of A is orthogonal to column 1 and 3 . The best C, D, E in parabola comes from $\mathbf{A}^{T} \mathbf{A} \hat{\mathbf{x}}=\mathbf{A}^{T} \mathbf{b}$ and D is uncoupled because its the coefficient of symmetric
parameter t :

$$
\left[\begin{array}{ccc}
5 & 0 & 10 \\
0 & 10 & 0 \\
10 & 0 & 34
\end{array}\right]\left[\begin{array}{l}
C \\
D \\
E
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

leads to $C=34 / 70, E=-10 / 70$ and $D=0$ (as predicted).
7. If \mathbf{T} is a linear transformation on a vector space \mathbf{V} such that $\|\mathbf{T}(\mathbf{x})\|=\|\mathbf{x}\|$ for $\mathbf{x} \in \mathbf{V}$, prove that it is one to one

Solution: $\mathbf{x} \in \mathbf{N}(\mathbf{T}) \Rightarrow \mathbf{T}(\mathbf{x})=\mathbf{0}$. Given $\|\mathbf{T}(\mathbf{x})\|=\|\mathbf{x}\| \Rightarrow\|\mathbf{T}(\mathbf{x})\|=\|\mathbf{x}\|=\|\mathbf{0}\|=0$. Possible iff $\mathbf{x}=\mathbf{0}$. i.e, $\mathbf{N}(\mathbf{T})=0$ hence \mathbf{T} is one to one
8. Let \mathbf{V} be an innear product space and define for each pair of vectors \mathbf{x}, \mathbf{y}, the scalar $\mathbf{d}(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|$, called distance between \mathbf{x} and \mathbf{y}. Prove for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ that
(a) $\mathbf{d}(\mathbf{x}, \mathbf{y}) \geq 0$
(b) $\mathbf{d}(\mathbf{x}, \mathbf{y})=\mathbf{d}(\mathbf{y}, \mathbf{x})$
(c) $\mathbf{d}(\mathbf{x}, \mathbf{y}) \leq \mathbf{d}(\mathbf{x}, \mathbf{z})+\mathbf{d}(\mathbf{z}, \mathbf{y})$
(d) $\mathbf{d}(\mathbf{x}, \mathbf{x})=0$
(e) $\mathbf{d}(\mathbf{x}, \mathbf{y}) \neq 0$ if $\mathbf{x} \neq \mathbf{y}$

Solution:

(a) norm of a vector is non negative
(b) $\mathbf{d}(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|=|-1|\|\mathbf{x}-\mathbf{y}\|=\|(-1)(\mathbf{x}-\mathbf{y})\|=\|\mathbf{y}-\mathbf{x}\|=\mathbf{d}(\mathbf{y}, \mathbf{x})$
(c) $\mathbf{d}(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|=\|(\mathbf{x}-\mathbf{z})+(\mathbf{z}-\mathbf{y})\| \leq\|\mathbf{x}-\mathbf{z}\|+\|\mathbf{z}-\mathbf{y}\|=\mathbf{d}(\mathbf{x}, \mathbf{z})+\mathbf{d}(\mathbf{z}, \mathbf{y})$ by triangular inequality
(d) $\mathbf{d}(\mathbf{x}, \mathbf{x})=\|\mathbf{x}-\mathbf{x}\|=\|\mathbf{0}\|=0$
(e) Let $\mathbf{x}-\mathbf{y}=\mathbf{z},\|\mathbf{z}\|=0$ iff $\mathbf{z}=0 \Rightarrow \mathbf{x}=\mathbf{y}$
9. The fundamental theorem is often stated in the form of Fredholms alternative: For any A and \mathbf{b}, one and only one of the following systems has a solution:
(i) $A \mathbf{x}=\mathbf{b}$ (or)
(ii) $A^{T} \mathbf{y}=\mathbf{0}$ with $\mathbf{y}^{T} \mathbf{b} \neq 0$.

Either \mathbf{b} is in the column space $C(A)$ or there is a \mathbf{y} in $N\left(A^{T}\right)$ such that $\mathbf{y}^{T} \mathbf{b} \neq 0$. Show that it is contradictory for (i) and (ii) both to have solutions.

Solution: Method 1: Suppose we have both \mathbf{x} satisfies (i) and \mathbf{y} satisfies (ii), then $0=\mathbf{0}^{T} \mathbf{x}=\left(A^{T} \mathbf{y}\right)^{T} \mathbf{x}=\mathbf{y}^{T}(A \mathbf{x})=\mathbf{y}^{T} \mathbf{b} \neq 0$.
Therefore either only (i) has a solution or only (ii) has a solution.
Method 2: $C(A)$ and $N\left(A^{T}\right)$ are orthogonal complements in R^{m} and $C\left(A^{T}\right)$ (row space of A) and $N(A)$ are orthogonal complements in R^{n}. Now consider the system $A \mathbf{x}=\mathbf{b}$. If \mathbf{b} is in $C(A)$, then a vector \mathbf{x} can be found to satisfy this equation. If $C(A)=R^{m}$ (i.e. $\operatorname{rank}(A)=m$), then there is at least one solution \mathbf{x} for any \mathbf{b}. This would also imply that $N\left(A^{T}\right)$ was empty so there could not be a (non-trivial) solution to $A^{T} \mathbf{y}=\mathbf{0}$. So either there is a solution to $A \mathbf{x}=\mathbf{b}$ or to $A^{T} \mathbf{y}=\mathbf{0}$. Now given that $N\left(A^{T}\right)$ and $C(A)$ are orthogonal complements, then it is also true that $A \mathbf{x}=\mathbf{b}$ has a solution if and only if \mathbf{b} is not in $N\left(A^{T}\right)$, i.e. $\mathbf{y}^{T} \mathbf{b}=0$.
10. Why is each of these statements false?
(a) $(1,1,1)$ is perpendicular to $(1,1,-2)$, so the planes $x+y+z=0$ and $x+y-2 z=0$ are orthogonal subspaces.

(b) The subspace spanned by $(1,1,0,0,0)$ and $(0,0,0,1,1)$ is the orthogonal complement of the subspace spanned by $(1,-1,0,0,0)$ and $(2,-2,3,4,-4)$.
-sวodvsqns дчұ fo suо!sиаш!р уоги :ұи!Н
(c) Two subspaces that meet only in the zero vector are orthogonal.

Solution:

(a) Two planes in 3D can not be orthogonal to each other as the sum of their dimensions is greater than 3. (Note that perpendicularity does not automatically imply orthogonality.) These 2 planes meet at a line and if you take any 2 vectors on that line, they are not orthogonal to each other. Orthogonality requires that every vector in one subspace be orthogonal to every vector in the other subspace.
(b) The first subspace is a 2-D subspace in a 5-D space. Its orthogonal complement must be 3-D, so it cannot be spanned by two vectors.
(c) For example, consider two lines $x=0$ and $x+y=0$ on the 2-D plane. These are two lines that intersect at the zero vector, but they are not perpendicular to each other, so they are not orthogonal subspaces.

