EE5120 Linear Algebra: Tutorial 5, July-Dec 2017-18

1. (a) Suppose $S = {v_1, v_2, ..., v_n}$ is a set of non-zero orthogonal vectors, then prove that S is linearly independent.

Hint: Prove by contradiction.

(b) Let V be a finite dimensional vector space with $\{\mathbf{u}_1, ..., \mathbf{u}_k\}$ being its orthonormal basis vectors. If for some $\mathbf{v} \in V$, we have $\mathbf{v} = \sum_{i=1}^k a_i \mathbf{u}_i$, then find an expression for the scalars a_i 's in terms of \mathbf{u}_i 's and \mathbf{v} .

Hint: Multiply \mathbf{v}^{1} with \mathbf{u}_{i} 's & observe.

(c) Using Gram-Schmidt procedure find orthonormal vectors q₁, q₂ and q₃ corresponding to the vectors [110]^T, [101]^T and [011]^T.

Hint: Follow the procedure.

(d) Suppose $S = {a_1, a_2, ..., a_n}$ is a set of $n \times 1$ orthonormal vectors. Prove that Gram-Schmidt procedure when applied to S leads to S itself. Further if a_i is the *i*th column of matrix **A**, then show that **R** matrix in the *QR*-factorization of **A** is an identity matrix.

Hint: Mathematical induction.

Solution:

- (a) Assume that S is linearly dependent. Then there exists scalars $a_1, ..., a_n$ s.t. $\sum_{i=1}^n a_i \mathbf{v}_i = \mathbf{0}$, with not all scalars being equal to zero. Now, $\mathbf{v}_1^T(\sum_{i=1}^n a_i \mathbf{v}_i) = \mathbf{v}_1^T \mathbf{0} \Rightarrow a_1 \mathbf{v}_1^T \mathbf{v}_1 = \mathbf{0}$. The above equation is due to orthogonality between \mathbf{v}_i 's. Since \mathbf{v}_i 's are non-zero $\mathbf{v}_1^T \mathbf{v}_1 > 0 \Rightarrow a_1 = 0$. By this procedure, we can obtain that $a_i = 0$, $\forall i = 1, 2, ..., n$. Arrived at a contradiction. Thus, our assumption is incorrect $\Rightarrow S$ is linearly independent.
- (b) For some i = 1, ..., k, $\mathbf{v}^T \mathbf{u}_i = \sum_{j=1}^k a_j \mathbf{u}_j^T \mathbf{u}_i = a_i \mathbf{u}_i^T \mathbf{u}_i = a_i . 1 = a_i$. Thus, $a_i = \mathbf{v}^T \mathbf{u}_i$, $\forall i = 1, ..., n$.
- (c) The orthonormal vectors are: $\left[\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} 0\right]^T$, $\left[\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} 0\right]^T$ and $[0\,0\,1]^T$.
- (d) Let $\{\mathbf{q}_i\}_{i=1}^n$ be the result of Gram-Schmidt procedure. We prove the result by mathematical induction on the *i*. For i = 1, \mathbf{q}_1 is equal to \mathbf{a}_1 since \mathbf{a}_1 is s.t. $\mathbf{a}_1^T \mathbf{a}_1 = 1$. Hence the result holds true for i = 1. Let it hold true for first i 1 vectors, i.e., $\mathbf{q}_j = \mathbf{a}_j$, $\forall j = 1, ..., i 1$. In the *i*th step of Gram-Schmidt algorithm, $\mathbf{q}_i = \mathbf{a}_i \sum_{k=1}^{i-1} \mathbf{a}_i^T \mathbf{q}_k \mathbf{q}_k = \mathbf{a}_i \sum_{k=1}^{i-1} (\mathbf{a}_i^T \mathbf{a}_k) \mathbf{a}_k = \mathbf{a}_i \sum_{k=1}^{i-1} (0) \mathbf{a}_k = \mathbf{a}_i$ [By orthogonality of \mathbf{a}_j 's]. Thus, it is true for all i = 1, ..., n. Further, **R** matrix in *QR*-factorization of $\mathbf{A} = [\mathbf{a}_1 \dots \mathbf{a}_n]$ is an upper triangular matrix whose non-zero entries are $[\mathbf{R}]_{ij} = \mathbf{q}_i^T \mathbf{a}_j$, i, j = 1, ..., n and $j \ge i$. Hence, $[\mathbf{R}]_{ij} = \mathbf{a}_i^T \mathbf{a}_j = 1$, if i = j and zero if $i \ne j$. Thus, **R** is an $n \times n$ identity matrix.
- 2. (a) Suppose V is a vector space and W is a sub-space. If $U = {\mathbf{v} \in V | \mathbf{v}^T \mathbf{w} = 0, \forall \mathbf{w} \in W}$, prove that U is a sub-space.
 - (b) Let $\mathbf{u} \in \mathbb{R}^n$ is s.t. $\mathbf{u}^T \mathbf{u} = 1$ and $\mathbf{Q} = \mathbf{I} 2\mathbf{u}\mathbf{u}^T$, where \mathbf{I} is an $n \times n$ identity matrix. (i) Prove that \mathbf{Q} is an orthogonal matrix.

(ii) If $\mathbf{w} \in \mathbb{R}^n$ is s.t. $\mathbf{Q}\mathbf{w} = \mathbf{w}$, compute the relation between \mathbf{w} and \mathbf{u} .

Hint: Just follow the actual definitions.

Solution:

- (a) Since $\mathbf{0}^T \mathbf{w} = 0$, $\forall \mathbf{w} \in W$, $\mathbf{0} \in U$. Suppose $\mathbf{a}, \mathbf{b} \in U$, then $\mathbf{a}^T \mathbf{w} = 0 = \mathbf{b}^T \mathbf{w}$, $\forall \mathbf{w} \in W$. Now, $(\mathbf{a} + \mathbf{b})^T \mathbf{w} = (\mathbf{a}^T \mathbf{w} + \mathbf{b}^T \mathbf{w}) = 0 + 0 = 0 \Rightarrow \mathbf{a} + \mathbf{b} \in U$. Lastly, if $\mathbf{a} \in U \Rightarrow \mathbf{a}^T \mathbf{w} = 0$, $\forall \mathbf{w} \in W$, then for any scalar c, $(c\mathbf{a})^T \mathbf{w} = c^T \mathbf{a}^T \mathbf{w} = c.0 = 0 \Rightarrow c\mathbf{a} \in U$. Hence, U is a sub-space.
- (b) (i) Note that $\mathbf{Q}^T = (\mathbf{I} 2\mathbf{u}\mathbf{u}^T)^T = \mathbf{I}^T 2(\mathbf{u}^T)^T\mathbf{u}^T = \mathbf{Q}$. Thus, $\mathbf{Q}\mathbf{Q}^T = \mathbf{Q}^T\mathbf{Q} = (\mathbf{I} 2\mathbf{u}\mathbf{u}^T)(\mathbf{I} 2\mathbf{u}\mathbf{u}^T) = \mathbf{I} 2\mathbf{u}\mathbf{u}^T 2\mathbf{u}\mathbf{u}^T + 4\mathbf{u}\mathbf{u}^T\mathbf{u}\mathbf{u}^T = \mathbf{I} 4\mathbf{u}\mathbf{u}^T + 4\mathbf{u}(\mathbf{u}^T\mathbf{u})\mathbf{u}^T = \mathbf{I} 4\mathbf{u}\mathbf{u}^T + 4\mathbf{u}(1)\mathbf{u}^T = \mathbf{I}$.
 - (b) $\mathbf{Q}\mathbf{w} = \mathbf{w} 2\mathbf{u}\mathbf{u}^T\mathbf{w} = \mathbf{w} \Rightarrow \mathbf{u}^T\mathbf{w} = 0$, i.e., w should be orthogonal to \mathbf{u} .
- 3. (a) Square the matrix $P = aa^T/(a^Ta)$, which projects onto a line, and show that $P^2 = P$. $i_L vv_L vv$ xintem but to alppin but if $v_L v$ is a grant of N: uiH
 - (b) Find the matrix *P* that projects every vector *b* in \mathbb{R}^3 onto the line in the direction of *a* and the projection *p*. Check that error e = b p is perpendicular to *a* for the following:

(i)
$$b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 and $a = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$ (ii) $b = \begin{bmatrix} 1 \\ 3 \\ 6 \end{bmatrix}$ and $a = \begin{bmatrix} -1 \\ -3 \\ 1 \end{bmatrix}$
: $0 = v_{L}a$ tent moves pue $q_{d} = d$: u_{iH}

(c) Is the projection matrix *P* invertible? Why or why not?

Hint: Use the rank of P matrix to support your statement.

Solution:

- (a) $P^2 = [aa^T/(a^Ta)] \times [aa^T/(a^Ta)] = a(a^Ta)a^T/[(a^Ta)(a^Ta)] = aa^T/(a^Ta) = P.$ (a^Ta is a scalar)
- (b) (i) $P = \frac{1}{14} \begin{bmatrix} 4 & 2 & 6 \\ 2 & 1 & 3 \\ 6 & 3 & 9 \end{bmatrix}$, $p = Pb = \frac{1}{14} \begin{bmatrix} 12 \\ 6 \\ 18 \end{bmatrix}$, $e = \frac{1}{14} \begin{bmatrix} 2 \\ 8 \\ -4 \end{bmatrix}$, and $e^{T}a = \frac{1}{14} \begin{bmatrix} 2 & 8 & -4 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} = 0$. (ii) $P = \frac{1}{11} \begin{bmatrix} 1 & 3 & -1 \\ 3 & 9 & -3 \\ -1 & -3 & 1 \end{bmatrix}$, $p = Pb = \frac{1}{11} \begin{bmatrix} 4 \\ 12 \\ -4 \end{bmatrix}$, $e = \frac{1}{11} \begin{bmatrix} 7 \\ 21 \\ 70 \end{bmatrix}$, and $e^{T}a = \frac{1}{11} \begin{bmatrix} 7 & 21 & 70 \end{bmatrix} \begin{bmatrix} -1 \\ -3 \\ 1 \end{bmatrix} = 0$.
- (c) We have proved in tutorial4, that rank(AB) \leq min(rank(A),rank(B)). So, rank(P) \leq min(rank(a),rank(a^T)) \leq 1. As matrix P is not a full rank matrix. It is not invertible.

4. A Middle-Aged man was stretched on a rack to lengths L = 5, 6, and 7 feet under applied forces of F = 1, 2, and 4 tons. Assuming Hooke's law L = a + bF, find his normal length a by least squares.

. Hint: Least square solution of Ax = y is $\hat{x} = (A^T A)^{-1} A$. Find A, x, and b in the problem.

Solution:
$$\begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \\ 7 \end{bmatrix}$$
 which is of the form $Ax = y$.
Least square solution is given by:
$$(A^{T}A)^{-1}A^{T}y = \begin{bmatrix} 3 & 7 \\ 7 & 21 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} 5 \\ 6 \\ 7 \end{bmatrix} = \frac{1}{14} \begin{bmatrix} 21 & -7 \\ -7 & 3 \end{bmatrix} \begin{bmatrix} 18 \\ 45 \end{bmatrix} = \frac{1}{14} \begin{bmatrix} 63 \\ 9 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} a \\ b \end{bmatrix} = \frac{1}{14} \begin{bmatrix} 63 \\ 9 \end{bmatrix}$$
. So, The normal length *a* by least squares is 4.5 feet.

5. Let $\mathbf{W} = span(\{(i, 0, 1)\})$ be some subspace in a complex-valued vector space of dimension 3. Find orthonormal bases for \mathbf{W} and \mathbf{W}^{\perp} .

Hint: Treat complex-valued vector as any other vector and apply orthogonality principle.

Solution: Since vector space **W** is spanned by a single vector, $dim(\mathbf{W}) = 1$. After normalizing, we get orthonormal basis for **W** as $\{\frac{1}{\sqrt{2}}(i,0,1)\}$. To find a basis for **W**^{\perp} is to find a basis for null space of the following system of equations,

$$(a, b, c).(i, 0, 1) = ai + c = 0$$

Thus, ai = -c. Now, the basis would be $\{(i, 0, -1), (0, 1, 0)\}$. Notice that, they are already orthogonal ! Finally, normalizing to get orthonormal basis for **W**^{\perp} as,

$$\{\frac{1}{\sqrt{2}}(i,0,-1),(0,1,0)\}$$

6. Find the parabola $C + Dt + Et^2$ that comes closest to the values $\mathbf{b} = (0, 0, 1, 0, 0)$ at the times t = -2, -1, 0, 1, 2.

Hint: Here, best parabola is symmetric about time t. This directly tells about value of D.

Solution: The five equations Ax = b have a rectangular 'Vandermonde' matrix A,

$$A = \begin{bmatrix} 1 & -2 & 4 \\ 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix}, A^{T}A = \begin{bmatrix} 5 & 0 & 10 \\ 0 & 10 & 0 \\ 10 & 0 & 34 \end{bmatrix}$$

Note that, column 2 of *A* is orthogonal to column 1 and 3. The best *C*, *D*, *E* in parabola comes from $\mathbf{A}^T \mathbf{A} \hat{\mathbf{x}} = \mathbf{A}^T \mathbf{b}$ and *D* is uncoupled because its the coefficient of symmetric

parameter *t*: $\begin{bmatrix} 5 & 0 & 10 \\ 0 & 10 & 0 \\ 10 & 0 & 34 \end{bmatrix} \begin{bmatrix} C \\ D \\ E \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ leads to C = 34/70, E = -10/70 and D = 0 (as predicted).

7. If **T** is a linear transformation on a vector space **V** such that $||\mathbf{T}(\mathbf{x})|| = ||\mathbf{x}||$ for $\mathbf{x} \in \mathbf{V}$, prove that it is one to one

i T is shown when the matrix $\mathbf{V}(\mathbf{T})$ is the null space of \mathbf{T} ?

Solution: $\mathbf{x} \in \mathbf{N}(\mathbf{T}) \Rightarrow \mathbf{T}(\mathbf{x}) = \mathbf{0}$. Given $\|\mathbf{T}(\mathbf{x})\| = \|\mathbf{x}\| \Rightarrow \|\mathbf{T}(\mathbf{x})\| = \|\mathbf{x}\| = \|\mathbf{0}\| = 0$. Possible iff $\mathbf{x} = \mathbf{0}$. i.e, $\mathbf{N}(\mathbf{T}) = \mathbf{0}$ hence \mathbf{T} is one to one

- 8. Let **V** be an innear product space and define for each pair of vectors **x**, **y**, the scalar $\mathbf{d}(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} \mathbf{y}||$, called distance between **x** and **y**. Prove for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ that
 - (a) $d(x, y) \ge 0$ (b) d(x, y) = d(y, x)(c) $d(x, y) \le d(x, z) + d(z, y)$ (d) d(x, x)=0(e) $d(x, y) \ne 0$ if $x \ne y$

snoitinitab adt aeU :tniH

Solution:

- (a) norm of a vector is non negative
- (b) $\mathbf{d}(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} \mathbf{y}\| = |-1| \|\mathbf{x} \mathbf{y}\| = \|(-1)(\mathbf{x} \mathbf{y})\| = \|\mathbf{y} \mathbf{x}\| = \mathbf{d}(\mathbf{y}, \mathbf{x})$
- (c) $\mathbf{d}(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} \mathbf{y}\| = \|(\mathbf{x} \mathbf{z}) + (\mathbf{z} \mathbf{y})\| \le \|\mathbf{x} \mathbf{z}\| + \|\mathbf{z} \mathbf{y}\| = \mathbf{d}(\mathbf{x}, \mathbf{z}) + \mathbf{d}(\mathbf{z}, \mathbf{y})$ by triangular inequality

(d)
$$\mathbf{d}(\mathbf{x}, \mathbf{x}) = \|\mathbf{x} - \mathbf{x}\| = \|\mathbf{0}\| = 0$$

- (e) Let $\mathbf{x} \mathbf{y} = \mathbf{z}$, $\|\mathbf{z}\| = 0$ iff $\mathbf{z} = 0 \Rightarrow \mathbf{x} = \mathbf{y}$
- 9. The fundamental theorem is often stated in the form of *Fredholms alternative*: For any *A* and **b**, one and only one of the following systems has a solution:

(i) $A\mathbf{x} = \mathbf{b}$ (or)

(ii) $A^T \mathbf{y} = \mathbf{0}$ with $\mathbf{y}^T \mathbf{b} \neq 0$.

Either **b** is in the column space C(A) or there is a **y** in $N(A^T)$ such that $\mathbf{y}^T \mathbf{b} \neq 0$. Show that it is contradictory for (i) and (ii) both to have solutions.

.x¹0 as 0 gnisserget by expression. Start by expressing 0 as 0 the start by expression of the start by the

Solution: *Method* 1: Suppose we have both **x** satisfies (i) and **y** satisfies (ii), then $0 = \mathbf{0}^T \mathbf{x} = (A^T \mathbf{y})^T \mathbf{x} = \mathbf{y}^T (A\mathbf{x}) = \mathbf{y}^T \mathbf{b} \neq 0.$ Therefore either only (i) has a solution or only (ii) has a solution.

Method 2: C(A) and $N(A^T)$ are orthogonal complements in R^m and $C(A^T)$ (row space of A) and N(A) are orthogonal complements in R^n . Now consider the system $A\mathbf{x} = \mathbf{b}$. If **b** is in C(A), then a vector **x** can be found to satisfy this equation. If $C(A) = R^m$ (i.e. rank(A) = m), then there is at least one solution **x** for any **b**. This would also imply that $N(A^T)$ was empty so there could not be a (non-trivial) solution to $A^T\mathbf{y} = \mathbf{0}$. So either there is a solution to $A\mathbf{x} = \mathbf{b}$ or to $A^T\mathbf{y} = \mathbf{0}$. Now given that $N(A^T)$ and C(A)are orthogonal complements, then it is also true that $A\mathbf{x} = \mathbf{b}$ has a solution if and only if **b** is not in $N(A^T)$, i.e. $\mathbf{y}^T\mathbf{b} = \mathbf{0}$.

- 10. Why is each of these statements false?
 - (a) (1,1,1) is perpendicular to (1,1,-2), so the planes x + y + z = 0 and x + y 2z = 0 are orthogonal subspaces.

Hint: Check dimensions of the subsapces.

(b) The subspace spanned by (1,1,0,0,0) and (0,0,0,1,1) is the orthogonal complement of the subspace spanned by (1,-1,0,0,0) and (2,-2,3,4,-4).

Hint: Check dimensions of the subsapces.

(c) Two subspaces that meet only in the zero vector are orthogonal.

Hint: Take a simple example in 2D space to disprove.

Solution:

- (a) Two planes in 3D can not be orthogonal to each other as the sum of their dimensions is greater than 3. (Note that perpendicularity does not automatically imply orthogonality.) These 2 planes meet at a line and if you take any 2 vectors on that line, they are not orthogonal to each other. Orthogonality requires that *every* vector in one subspace be orthogonal to *every* vector in the other subspace.
- (b) The first subspace is a 2-D subspace in a 5-D space. Its orthogonal complement must be 3-D, so it cannot be spanned by two vectors.
- (c) For example, consider two lines x = 0 and x + y = 0 on the 2-D plane. These are two lines that intersect at the zero vector, but they are not perpendicular to each other, so they are not orthogonal subspaces.