1. State True or False for each of the following with proper justification:
(a) Let matrix A be a transformation from \mathbb{R}^{m} to \mathbb{R}^{n}, then dimension of left nullspace of A, i.e. $N\left(A^{T}\right)$ is $m-r$.
(b) The pseudoinverse $\left(A^{t} A\right)^{-1} A$ of any linear operator A exists even if the operator is not invertible.
(c) Let V and W be vector spaces, and let $T: V \rightarrow W$ be linear. The T is one-to-one iff $N(T)=\{0\}$.
(d) Let $v \in \mathbb{R}^{n}$. The nullity of matrix $v v^{t}$ is n.
(e) $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ is a rotation matrix and $B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ is a reflection matrix.
2. In \mathbb{R}^{2}, let L be the line $y=2 x$. Find an expression for $\mathbf{T}(x, y)$, where \mathbf{T} is the reflection of \mathbb{R}^{2} about L.
3. Prove that for two matrices, A, B, the following holds: $\operatorname{rank}(A B) \leq \min (\operatorname{rank}(A), \operatorname{rank}(B))$.
4. Let T be a linear transformation from R^{3} into R^{2} and U be a linear transformation from R^{2} into R^{3}. Prove that the transformation UT is not invertible. Generalize the theorem. (Can you relate this to question no. 7 of the previous tutorial?)
5. What 3 by 3 matrices represent the transformations that,
(a) project every vector onto the $x-y$ plane?
(b) reflect every vector through the $x-y$ pane?
(c) rotate the $x-y$ plane through 90°, leaving the z-axis alone?
(d) rotate the $x-y$ plane, then $x-z$, then $y-z$ through 90° ?
(e) carry out the same three rotations, but each one through 180° ?
6. Let $\alpha_{1}=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]\right\}$ be the (ordered) basis for the vector space $M_{2 \times 2}$, which is the set of all real valued 2×2 matrices. Also, let $\alpha_{2}=\left\{x^{2}, x, 1\right\}$ be the basis for the vector space P_{2}, which is the set of all real polynomials (with real co-efficients) with minimum degree 2 . Compute the matrix representations for the following linear transformations:
(a) $T_{1}: M_{2 \times 2} \rightarrow M_{2 \times 2}$ with $T_{1}(\mathbf{A})=\mathbf{A}^{T}$, for every $\mathbf{A} \in M_{2 \times 2}$.
(b) $T_{2}: P_{2} \rightarrow M_{2 \times 2}$ with $T_{2}(f(x))=\left[\begin{array}{cc}f^{\prime}(0) & 2 f(1) \\ 0 & f^{\prime \prime}(3)\end{array}\right]$. Here, $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ are the $1^{\text {st }}$ and $2^{\text {nd }}$ derivatives of $f(x) \in \mathrm{P}_{2}$.
7. Let V be a vector space and $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ be a linear transformation. Suppose $\mathrm{x} \in \mathrm{V}$ is such that $\mathrm{T}^{k}(\mathbf{x})=\mathbf{0}, \mathrm{T}^{m}(\mathbf{x}) \neq \mathbf{0}, \forall 1 \leq m<k$ and $k>1$, then prove that the set of vectors $\left\{\mathbf{x}, \mathrm{T}(\mathbf{x}), \mathrm{T}^{2}(\mathbf{x}), \ldots, \mathrm{T}^{k-1}(\mathbf{x})\right\}$ is linearly independent.
8. BONUS question: Definition: Let V be a vector space and $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ be a linear transformation on V. A subspace $W \subset V$ is said to be T-invariant if for every $\mathbf{w} \in W, T(\mathbf{w}) \in W$. Further, if W is T -invariant, define restriction of T on W as, $\mathrm{T}_{\mathrm{W}}: \mathrm{W} \rightarrow \mathrm{W}$ such that $\mathrm{T}_{\mathrm{W}}(\mathbf{w})=\mathrm{T}(\mathbf{w}), \forall \mathbf{w} \in \mathrm{W}$. Then, prove the following results:
(a) Subspaces $\{\mathbf{0}\}, \mathrm{V}, \mathrm{N}(\mathrm{T})$ and $\mathrm{R}(\mathrm{T})$ are T -invariant. Here, $\mathrm{N}(\mathrm{T})=\{\mathbf{v} \in \mathrm{V} \mid \mathrm{T}(\mathbf{v})=\mathbf{0}\}$, and $R(T)=\left\{\mathbf{u} \in V \mid \exists \mathbf{x}_{\mathbf{u}} \in \mathrm{V}\right.$ s.t $\left.\mathrm{T}\left(\mathbf{x}_{\mathbf{u}}\right)=\mathbf{u}\right\}$ (The choice of $\mathbf{x}_{\mathbf{u}}$ depends on \mathbf{u}).
(b) For a T-invariant subspace W, the transformation T_{W} is linear, and $N\left(T_{W}\right)=N(T) \cap$ W.
