EE5120 Linear Algebra: Tutorial 4, July-Dec 2017-18

1. State True or False for each of the following with proper justification:
(a) Let matrix A be a transformation from \mathbb{R}^{m} to \mathbb{R}^{n}, then dimension of left nullspace of A, i.e. $N\left(A^{T}\right)$ is $m-r$.
(b) The pseudoinverse $\left(A^{t} A\right)^{-1} A$ of any linear operator A exists even if the operator is not invertible.
(c) Let V and W be vector spaces, and let $T: V \rightarrow W$ be linear. The T is one-to-one iff $N(T)=\{0\}$.
(d) Let $v \in \mathbb{R}^{n}$. The nullity of matrix $v v^{t}$ is n.
(e) $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ is a rotation matrix and $B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ is a reflection matrix.

Solution:

(a) False. Dimension will be $n-r$.
(b) False. $A^{t} A$ needs to be invertible.
(c) True. Suppose that \mathbf{T} is one-to-one and $x \in N(\mathbf{T})$. Then $\mathbf{T}(x)=0=\mathbf{T}(0)$. Hence, $N(T)=\{0\}$.
(d) False. $v v^{t}$ is a rank 1 matrix. By rank-nullity theorem, nullity $=n-1$.
(e) True.
2. In \mathbb{R}^{2}, let L be the line $y=2 x$. Find an expression for $\mathbf{T}(x, y)$, where \mathbf{T} is the reflection of \mathbb{R}^{2} about L.

Solution: Refer section 2.6 of Gilbert Strang. The matrix for reflection about θ line is $H=\left[\begin{array}{cc}2 c^{2}-1 & 2 c s \\ 2 c s & 2 s^{2}-1\end{array}\right]$, where $c=\cos \theta$ and $s=\sin \theta$. For line $y=2 x, \theta=\tan ^{-1}(2)$. Substitute these values in H and you get, $\mathbf{T}(x, y)=(1 / 5)\left[\begin{array}{c}-3 x+4 y \\ 4 x+3 y\end{array}\right]$.
3. Prove that for two matrices, A, B, the following holds: $\operatorname{rank}(A B) \leq \min (\operatorname{rank}(A), \operatorname{rank}(B))$.

Solution: Step 1 (col picture): Consider the product $A B$ in the following way: $A B=$ $A\left[b_{1} \ldots b_{n}\right]=\left[A b_{1} \ldots A b_{n}\right]$, where b_{i} is a column of B. Each of these $A b_{i}$ is a linear combination of the columns of A, hence, $A b_{i} \in C(A)$ (col space of A), thus $C(A B) \in$ $C(A)$. This implies that the rank of $A B$ can not exceed that of A.
Step 2 (row picture): In the product $A B$, every row is a linear combination* of the rows of B. We know that linear combinations of rows don't change the rank of a matrix, thus, the rank of $A B$ can not exceed that of B. Putting the two steps together, we get the desired result.
*: To see this, $(A B)_{i j}=\sum_{k} a_{i k} b_{k j}$. So the $i^{\text {th }}$ row of $(A B)$ is:
$\left[\begin{array}{llll}\sum_{k} a_{i k} b_{k 1} & \sum_{k} a_{i k} b_{k 2} & \ldots & \left.\sum_{k} a_{i k} b_{k n}\right]=\sum_{k} a_{i k}\left[\begin{array}{llll}b_{k 1} & b_{k 2} & \ldots & b_{k n}\end{array}\right]=\sum_{k} a_{i k}\left[b_{k}\right] \text { where }\end{array}\right.$ [b_{k}] is the $k^{t h}$ row of B, i.e. a linear combination of the rows.
4. Let T be a linear transformation from R^{3} into R^{2} and U be a linear transformation from R^{2} into R^{3}. Prove that the transformation $U T$ is not invertible. Generalize the theorem. (Can you relate this to question no. 7 of the previous tutorial?)

Solution: Since U, T are linear transformations, they must have matrix representations. T is 2×3, and U is 2×3, thus both their ranks can be at most 2 . Using the result above, even though the size of $U T$ is 3×3, it can have rank at most 2 . Thus, UT is not invertible.
Alt proof: For a transformation to be invertible, it should be both one-to-one and onto. In this case, T is not one-to-one and therefore $U T$ is not one-to-one. Hence it is not invertible. Any transformation from a higher dimensional space to a lower dimensional space leads to loss of information in one or more dimensions and hence is not invertible.
5. What 3 by 3 matrices represent the transformations that,
(a) project every vector onto the $x-y$ plane?
(b) reflect every vector through the $x-y$ pane?
(c) rotate the $x-y$ plane through 90°, leaving the z-axis alone?
(d) rotate the $x-y$ plane, then $x-z$, then $y-z$ through 90° ?
(e) carry out the same three rotations, but each one through 180° ?

Solution:

(a) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$
(b) $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]$
(c) $\left[\begin{array}{ccc}\cos (\pi / 2) & -\sin (\pi / 2) & 0 \\ \sin (\pi / 2) & \cos (\pi / 2) & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
(d) $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{ccc}0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$
(e) $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
6. Let $\alpha_{1}=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]\right\}$ be the (ordered) basis for the vector space $M_{2 \times 2}$, which is the set of all real valued 2×2 matrices. Also, let $\alpha_{2}=\left\{x^{2}, x, 1\right\}$ be the basis for the vector space P_{2}, which is the set of all real polynomials (with real co-efficients) with minimum degree 2. Compute the matrix representations for the following linear transformations:
(a) $\mathrm{T}_{1}: \mathrm{M}_{2 \times 2} \rightarrow \mathrm{M}_{2 \times 2}$ with $\mathrm{T}_{1}(\mathbf{A})=\mathbf{A}^{T}$, for every $\mathbf{A} \in \mathrm{M}_{2 \times 2}$.
(b) $\mathrm{T}_{2}: \mathrm{P}_{2} \rightarrow \mathrm{M}_{2 \times 2}$ with $\mathrm{T}_{2}(f(x))=\left[\begin{array}{cc}f^{\prime}(0) & 2 f(1) \\ 0 & f^{\prime \prime}(3)\end{array}\right]$. Here, $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ are the $1^{\text {st }}$ and $2^{\text {nd }}$ derivatives of $f(x) \in \mathrm{P}_{2}$.

Solution:

(a) We have the following:

$$
T_{1}\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\right)=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+(0)\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]+(0)\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+(0)\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] .
$$

We take the co-efficients present in the linear combination shown above to construct the first column in the matrix representation of T_{1} will be $[1000]^{T}$. Similarly,

$$
\begin{aligned}
& \mathrm{T}_{1}\left(\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=(0)\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+(1)\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]+(0)\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+(0)\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \\
& \mathrm{T}_{1}\left(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\right)=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]=(0)\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+(0)\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]+(0)\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+(1)\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] \\
& \mathrm{T}_{1}\left(\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\right)=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=(0)\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+(0)\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]+(1)\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+(0)\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] .
\end{aligned}
$$

Thus, matrix representation of T_{1} is given by $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$.
(b) Following the same procedure as discussed above, we get,

$$
\begin{aligned}
& \mathrm{T}_{2}\left(x^{2}\right)=\left[\begin{array}{cc}
2(0) & 2\left(1^{2}\right) \\
0 & 2
\end{array}\right]=\left[\begin{array}{ll}
0 & 2 \\
0 & 2
\end{array}\right]=(0)\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+(2)\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]+(2)\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+(0)\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \\
& \mathrm{T}_{2}(x)=\left[\begin{array}{cc}
1 & 2(1) \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]=(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+(0)\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]+(2)\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+(0)\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \\
& \mathrm{T}_{2}(1)=\left[\begin{array}{cc}
0 & 2(1) \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right]=(0)\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+(0)\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]+(2)\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+(0)\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] . \\
& \text { The matrix representation for } \mathrm{T}_{2} \text { is given by }\left[\begin{array}{lll}
0 & 1 & 0 \\
2 & 0 & 0 \\
2 & 2 & 2 \\
0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

7. Let V be a vector space and $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ be a linear transformation. Suppose $\mathbf{x} \in \mathrm{V}$ is such that $\mathrm{T}^{k}(\mathbf{x})=\mathbf{0}, \mathrm{T}^{m}(\mathbf{x}) \neq \mathbf{0}, \forall 1 \leq m<k$ and $k>1$, then prove that the set of vectors $\left\{\mathbf{x}, \mathbf{T}(\mathbf{x}), \mathrm{T}^{2}(\mathbf{x}), \ldots, \mathrm{T}^{k-1}(\mathbf{x})\right\}$ is linearly independent.

Solution: Given $k>1$. Thus, $\mathbf{T}(\mathbf{x}) \neq \mathbf{0} \Rightarrow \mathbf{x} \neq \mathbf{0}$. Since $\mathrm{T}^{k}(\mathbf{x})=\mathbf{0}$, for all $p \geq 1$,

$$
\begin{equation*}
\mathrm{T}^{k+p}(\mathbf{x})=\mathrm{T}^{p}\left(\mathrm{~T}^{k}(\mathbf{x})\right)=\mathrm{T}^{p}(\mathbf{0})=\mathbf{0} . \tag{1}
\end{equation*}
$$

Assume that $\left\{\mathbf{x}, \mathrm{T}(\mathbf{x}), \mathrm{T}^{2}(\mathbf{x}), \ldots, \mathrm{T}^{k-1}(\mathbf{x})\right\}$ is linearly dependent. Then,

$$
\left.a_{1} \mathbf{x}+a_{2} \top(\mathbf{x})+\ldots+a_{k} \mathrm{~T}^{k-1}(\mathbf{x})\right\}=0,
$$

with not all a_{i} s being zero, i.e., some $a_{i} \mathrm{~s}$ are not equal to zero. Now, consider the following:

$$
\begin{aligned}
& \left.\mathrm{T}^{k-1}\left(a_{1} \mathbf{x}+a_{2} \mathrm{~T}(\mathbf{x})+\ldots+a_{k} \top^{k-1}(\mathbf{x})\right\}\right)=\mathrm{T}^{k-1}(\mathbf{0}) \\
\Rightarrow & a_{1} \mathrm{~T}^{k-1}(\mathbf{x})+a_{2} \mathrm{~T}^{k}(\mathbf{x})+a_{3} \mathrm{~T}^{k+1}(\mathbf{x})+\ldots+a_{k} \mathrm{~T}^{2(k-1)}(\mathbf{x})=\mathbf{0} \\
\Rightarrow & a_{1} \mathrm{~T}^{k-1}(\mathbf{x})+\mathbf{0}+\mathbf{0}+\ldots+\mathbf{0}=\mathbf{0}
\end{aligned}
$$

The above result is a consequence of equation (1) and other given information. Since $\mathrm{T}^{k-1}(\mathbf{x}) \neq \mathbf{0}, a_{1}=0$. Now,

$$
\begin{aligned}
& \left.\mathrm{T}^{k-2}\left(a_{1} \mathbf{x}+a_{2} \mathrm{~T}(\mathbf{x})+\ldots+a_{k} \mathrm{~T}^{k-1}(\mathbf{x})\right\}\right)=\mathrm{T}^{k-2}(\mathbf{0}) \\
\Rightarrow & a_{1} \mathrm{~T}^{k-2}(\mathbf{x})+a_{2} \mathrm{~T}^{k-1}(\mathbf{x})+a_{3} \mathrm{~T}^{k}(\mathbf{x})+\ldots+a_{k} \mathrm{~T}^{2 k-3}(\mathbf{x})=\mathbf{0} \\
\Rightarrow & \mathbf{0}+a_{2} \mathrm{~T}^{k-1}(\mathbf{x})+\mathbf{0}+\ldots+\mathbf{0}=\mathbf{0} .
\end{aligned}
$$

Again, since $\mathrm{T}^{k-1}(\mathbf{x}) \neq \mathbf{0}$, we get $a_{2}=0$. On repeating this procedure, we get $a_{i}=$ $0, \forall i=1,2, \ldots, k$, which is contradicting to the initial assumption. Hence, the initial assumption of the set $\left\{\mathbf{x}, \mathrm{T}(\mathbf{x}), \mathrm{T}^{2}(\mathbf{x}), \ldots, \mathrm{T}^{k-1}(\mathbf{x})\right\}$ being linearly dependent is incorrect. Thus, the above set is linearly independent.
8. BONUS question: Definition: Let V be a vector space and $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ be a linear transformation on V . A subspace $\mathrm{W} \subset \mathrm{V}$ is said to be T -invariant if for every $\mathbf{w} \in \mathrm{W}, \mathrm{T}(\mathbf{w}) \in \mathrm{W}$. Further, if W is T -invariant, define restriction of T on W as, $\mathrm{T}_{\mathrm{W}}: \mathrm{W} \rightarrow \mathrm{W}$ such that $\mathrm{T}_{\mathrm{W}}(\mathbf{w})=\mathrm{T}(\mathbf{w}), \forall \mathbf{w} \in \mathrm{W}$. Then, prove the following results:
(a) Subspaces $\{\mathbf{0}\}, \mathrm{V}, \mathrm{N}(\mathrm{T})$ and $\mathrm{R}(\mathrm{T})$ are T -invariant. Here, $\mathrm{N}(\mathrm{T})=\{\mathbf{v} \in \mathrm{V} \mid \mathrm{T}(\mathbf{v})=\mathbf{0}\}$, and $R(T)=\left\{\mathbf{u} \in V \mid \exists \mathbf{x}_{\mathbf{u}} \in \mathrm{V}\right.$ s.t $\left.\mathrm{T}\left(\mathbf{x}_{\mathbf{u}}\right)=\mathbf{u}\right\}$ (The choice of $\mathbf{x}_{\mathbf{u}}$ depends on \mathbf{u}).
(b) For a T-invariant subspace W, the transformation T_{W} is linear, and $N\left(T_{W}\right)=N(T) \cap$ W.

Solution:

(a) (i) Let $U=\{\mathbf{0}\}$. Its a singleton set. Since T is linear $T(\mathbf{0})=\mathbf{0} \Rightarrow T(\mathbf{0}) \in U$. Hence, $\mathrm{U}=\{\mathbf{0}\}$ is T -invariant.
(ii) Since T is defined from V to V, for every $\mathbf{v} \in \mathrm{V}, \mathrm{T}(\mathbf{v}) \in \mathrm{V} \Rightarrow \mathrm{V}$ is T -invariant.
(iii) Since T is linear $T(\mathbf{0})=\mathbf{0}$. Thus, $\mathbf{0} \in N(T)$ by the definition of $N(T)$. Further, $T(\mathbf{v})=\mathbf{0} \in N(T)$, for all $\mathbf{v} \in N(T)$. Hence, $N(T)$ is T-invariant.
(iv) Let $\mathbf{u} \in R(T)$. Since, $R(T) \subset V$ (by definition), $\mathbf{u} \in V$. Thus, $T(\mathbf{u}) \in R(T) \Rightarrow$ $R(T)$ is T-invariant.
(b) (i) Let $\mathbf{x}, \mathbf{y} \in \mathrm{W}$. Then, $c_{1} \mathbf{x}+c_{2} \mathbf{y} \in \mathrm{~W}$, for some scalars c_{1}, c_{2} as W is a subspace. W is T -invariant $\Rightarrow \mathrm{T}(\mathbf{x}) \in \mathrm{W}, \mathrm{T}(\mathbf{y}) \in \mathrm{W}, \mathrm{T}\left(c_{1} \mathbf{x}+c_{2} \mathbf{y}\right) \in \mathrm{W}$. Thus, $\mathrm{T}_{\mathrm{W}}(\mathbf{x})=$ $\mathrm{T}(\mathbf{x}), \mathrm{T}_{\mathrm{W}}(\mathbf{y})=\mathrm{T}(\mathbf{y})$ and $\mathrm{T}_{\mathrm{W}}\left(c_{1} \mathbf{x}+c_{2} \mathbf{y}\right)=\mathrm{T}\left(c_{1} \mathbf{x}+c_{2} \mathbf{y}\right)$. Now, we have the following:

$$
\mathrm{T}_{\mathrm{W}}\left(c_{1} \mathbf{x}+c_{2} \mathbf{y}\right)=\mathrm{T}\left(c_{1} \mathbf{x}+c_{2} \mathbf{y}\right)=c_{1} \mathrm{~T}(\mathbf{x})+c_{2} \mathrm{~T}(\mathbf{y})=c_{1} \mathrm{~T}_{\mathrm{W}}(\mathbf{x})+c_{2} \mathrm{~T}_{\mathrm{W}}(\mathbf{y})
$$

The above is true for any scalars c_{1}, c_{2} and for any $\mathbf{x}, \mathbf{y} \in \mathrm{W}$. Thus, T_{W} is linear.
(ii) Let $\mathbf{w} \in N\left(T_{W}\right)$. Since $N\left(T_{W}\right) \subset W, \mathbf{w} \in W$. Further, $T_{W}(\mathbf{w})=0$. But by definition, $\mathrm{T}_{\mathrm{W}}(\mathbf{w})=\mathrm{T}(\mathbf{w}) \Rightarrow \mathrm{T}(\mathbf{w})=\mathbf{0} \Rightarrow \mathbf{w} \in \mathrm{N}(\mathrm{T})$. Thus, $\mathbf{w} \in$ $N(T) \cap W \Rightarrow N\left(T_{W}\right) \subset N(T) \cap W$.
Let $\mathbf{u} \in N(T) \cap W$. Then, $\mathbf{u} \in N(T) \Rightarrow T(\mathbf{u})=\mathbf{0}$. Since $\mathbf{u} \in W$ and W is T-invariant, $\mathrm{T}_{\mathrm{W}}(\mathbf{u})=\mathrm{T}(\mathbf{u})=\mathbf{0} \in \mathrm{W} \Rightarrow \mathbf{u} \in \mathrm{N}\left(\mathrm{T}_{\mathrm{W}}\right)$. Hence, $\mathrm{N}(\mathrm{T}) \cap \mathrm{W} \subset$ $N\left(T_{W}\right)$.
Therefore, $N\left(T_{W}\right)=N(T) \cap W$. Hence, proved.

