EE5120 Linear Algebra: Tutorial 4, July-Dec 2017-18

- 1. State True or False for each of the following with proper justification:
 - (a) Let matrix A be a transformation from \mathbb{R}^m to \mathbb{R}^n , then dimension of left nullspace of A, i.e. $N(A^T)$ is m r.
 - (b) The pseudoinverse $(A^t A)^{-1}A$ of any linear operator A exists even if the operator is not invertible.
 - (c) Let V and W be vector spaces, and let $T : V \to W$ be linear. The *T* is one-to-one iff $N(T) = \{0\}$.
 - (d) Let $v \in \mathbb{R}^n$. The nullity of matrix vv^t is n.

(e)
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
 is a rotation matrix and $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ is a reflection matrix.

Solution:

- (a) False. Dimension will be n r.
- (b) False. $A^t A$ needs to be invertible.
- (c) True. Suppose that **T** is one-to-one and $x \in N(\mathbf{T})$. Then $\mathbf{T}(x) = 0 = \mathbf{T}(0)$. Hence, $N(T) = \{0\}$.
- (d) False. vv^t is a rank 1 matrix. By rank-nullity theorem, nullity = n 1.
- (e) True.
- 2. In \mathbb{R}^2 , let *L* be the line y = 2x. Find an expression for $\mathbf{T}(x, y)$, where **T** is the reflection of \mathbb{R}^2 about *L*.

Solution: Refer section 2.6 of Gilbert Strang. The matrix for reflection about θ line is $H = \begin{bmatrix} 2c^2 - 1 & 2cs \\ 2cs & 2s^2 - 1 \end{bmatrix}$, where $c = cos\theta$ and $s = sin\theta$. For line y = 2x, $\theta = tan^{-1}(2)$. Substitute these values in *H* and you get, $\mathbf{T}(x, y) = (1/5) \begin{bmatrix} -3x + 4y \\ 4x + 3y \end{bmatrix}$.

3. Prove that for two matrices, *A*, *B*, the following holds: rank(*AB*) \leq min(rank(*A*),rank(*B*)).

Solution: Step 1 (col picture): Consider the product *AB* in the following way: $AB = A[b_1 \dots b_n] = [Ab_1 \dots Ab_n]$, where b_i is a column of *B*. Each of these Ab_i is a linear combination of the columns of *A*, hence, $Ab_i \in C(A)$ (col space of *A*), thus $C(AB) \in C(A)$. This implies that the rank of *AB* can not exceed that of *A*.

Step 2 (row picture): In the product *AB*, every row is a linear combination^{*} of the rows of *B*. We know that linear combinations of rows don't change the rank of a matrix, thus, the rank of *AB* can not exceed that of *B*. Putting the two steps together, we get the desired result.

*: To see this, $(AB)_{ij} = \sum_k a_{ik}b_{kj}$. So the i^{th} row of (AB) is: $[\sum_k a_{ik}b_{k1} \sum_k a_{ik}b_{k2} \dots \sum_k a_{ik}b_{kn}] = \sum_k a_{ik}[b_{k1} \ b_{k2} \dots \ b_{kn}] = \sum_k a_{ik}[b_k]$ where $[b_k]$ is the k^{th} row of B, i.e. a linear combination of the rows. 4. Let *T* be a linear transformation from R^3 into R^2 and *U* be a linear transformation from R^2 into R^3 . Prove that the transformation *UT* is not invertible. Generalize the theorem. (Can you relate this to question no.7 of the previous tutorial?)

Solution: Since *U*, *T* are linear transformations, they must have matrix representations. *T* is 2×3 , and *U* is 2×3 , thus both their ranks can be at most 2. Using the result above, even though the size of *UT* is 3×3 , it can have rank at most 2. Thus, *UT* is not invertible.

Alt proof: For a transformation to be invertible, it should be both one-to-one and onto. In this case, T is not one-to-one and therefore UT is not one-to-one. Hence it is not invertible. Any transformation from a higher dimensional space to a lower dimensional space leads to loss of information in one or more dimensions and hence is not invertible.

- 5. What 3 by 3 matrices represent the transformations that,
 - (a) project every vector onto the x-y plane?
 - (b) reflect every vector through the x-y pane?
 - (c) rotate the x-y plane through 90°, leaving the z-axis alone?
 - (d) rotate the x-y plane, then x-z, then y-z through 90°?
 - (e) carry out the same three rotations, but each one through 180°?

Solution: (a) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
(b) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$
(c) $\begin{bmatrix} \cos(\pi/2) & -\sin(\pi/2) & 0\\ \sin(\pi/2) & \cos(\pi/2) & 0\\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1 \end{bmatrix}$
$(d) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$
(e) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

6. Let $\alpha_1 = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}$ be the (ordered) basis for the vector space $M_{2\times 2}$, which is the set of all real valued 2×2 matrices. Also, let $\alpha_2 = \{x^2, x, 1\}$ be the basis for the vector space P_2 , which is the set of all real polynomials (with real co-efficients) with minimum degree 2. Compute the matrix representations for the following linear transformations:

- (a) $T_1: M_{2\times 2} \to M_{2\times 2}$ with $T_1(\mathbf{A}) = \mathbf{A}^T$, for every $\mathbf{A} \in M_{2\times 2}$.
- (b) $T_2 : P_2 \to M_{2\times 2}$ with $T_2(f(x)) = \begin{bmatrix} f'(0) & 2f(1) \\ 0 & f''(3) \end{bmatrix}$. Here, f'(x) and f''(x) are the 1st and 2nd derivatives of $f(x) \in P_2$.

Solution:

(a) We have the following:

$$\mathsf{T}_1\Big(\begin{bmatrix}1 & 0\\0 & 0\end{bmatrix}\Big) = \begin{bmatrix}1 & 0\\0 & 0\end{bmatrix} = (1)\begin{bmatrix}1 & 0\\0 & 0\end{bmatrix} + (0)\begin{bmatrix}0 & 0\\0 & 1\end{bmatrix} + (0)\begin{bmatrix}0 & 1\\0 & 0\end{bmatrix} + (0)\begin{bmatrix}0 & 0\\1 & 0\end{bmatrix}.$$

We take the co-efficients present in the linear combination shown above to construct the first column in the matrix representation of T_1 will be $[1000]^T$. Similarly,

$$\begin{split} \mathsf{T}_1\Big(\begin{bmatrix}0 & 0\\0 & 1\end{bmatrix}\Big) &= \begin{bmatrix}0 & 0\\0 & 1\end{bmatrix} = (0)\begin{bmatrix}1 & 0\\0 & 0\end{bmatrix} + (1)\begin{bmatrix}0 & 0\\0 & 1\end{bmatrix} + (0)\begin{bmatrix}0 & 1\\0 & 0\end{bmatrix} + (0)\begin{bmatrix}0 & 0\\1 & 0\end{bmatrix},\\ \mathsf{T}_1\Big(\begin{bmatrix}0 & 1\\0 & 0\end{bmatrix}\Big) &= \begin{bmatrix}0 & 0\\1 & 0\end{bmatrix} = (0)\begin{bmatrix}1 & 0\\0 & 0\end{bmatrix} + (0)\begin{bmatrix}0 & 0\\0 & 1\end{bmatrix} + (0)\begin{bmatrix}0 & 1\\0 & 0\end{bmatrix} + (1)\begin{bmatrix}0 & 0\\1 & 0\end{bmatrix}\\ \mathsf{T}_1\Big(\begin{bmatrix}0 & 0\\1 & 0\end{bmatrix}\Big) &= \begin{bmatrix}0 & 1\\0 & 0\end{bmatrix} = (0)\begin{bmatrix}1 & 0\\0 & 0\end{bmatrix} + (0)\begin{bmatrix}0 & 0\\0 & 1\end{bmatrix} + (1)\begin{bmatrix}0 & 1\\0 & 0\end{bmatrix} + (0)\begin{bmatrix}0 & 0\\1 & 0\end{bmatrix}.\\ \end{split}$$
Thus, matrix representation of T_1 is given by
$$\begin{bmatrix}1 & 0 & 0 & 0\\0 & 1 & 0\end{bmatrix}.$$

(b) Following the same procedure as discussed above, we get,

$$\begin{split} \mathsf{T}_{2}(x^{2}) &= \begin{bmatrix} 2(0) & 2(1^{2}) \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix} = (0) \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + (2) \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} + (2) \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + (0) \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \\ \mathsf{T}_{2}(x) &= \begin{bmatrix} 1 & 2(1) \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} = (1) \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + (0) \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} + (2) \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + (0) \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \\ \mathsf{T}_{2}(1) &= \begin{bmatrix} 0 & 2(1) \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix} = (0) \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + (0) \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} + (2) \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + (0) \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}. \end{split}$$
The matrix representation for T_{2} is given by $\begin{bmatrix} 0 & 1 & 0 \\ 2 & 0 & 0 \\ 0 & 0 \end{bmatrix}$.

7. Let V be a vector space and $T : V \to V$ be a linear transformation. Suppose $\mathbf{x} \in V$ is such that $\mathsf{T}^k(\mathbf{x}) = \mathbf{0}, \mathsf{T}^m(\mathbf{x}) \neq \mathbf{0}, \forall 1 \leq m < k \text{ and } k > 1$, then prove that the set of vectors $\{\mathbf{x}, \mathsf{T}(\mathbf{x}), \mathsf{T}^2(\mathbf{x}), ..., \mathsf{T}^{k-1}(\mathbf{x})\}$ is linearly independent.

Solution: Given k > 1. Thus, $T(\mathbf{x}) \neq \mathbf{0} \Rightarrow \mathbf{x} \neq \mathbf{0}$. Since $T^k(\mathbf{x}) = \mathbf{0}$, for all $p \ge 1$,

$$\mathsf{T}^{k+p}(\mathbf{x}) = \mathsf{T}^p\Big(\mathsf{T}^k(\mathbf{x})\Big) = \mathsf{T}^p(\mathbf{0}) = \mathbf{0}. \tag{1}$$

Assume that $\{\mathbf{x}, \mathsf{T}(\mathbf{x}), \mathsf{T}^2(\mathbf{x}), ..., \mathsf{T}^{k-1}(\mathbf{x})\}$ is linearly dependent. Then,

$$a_1\mathbf{x} + a_2\mathsf{T}(\mathbf{x}) + \dots + a_k\mathsf{T}^{k-1}(\mathbf{x})\} = 0,$$

with not all a_i s being zero, i.e., some a_i s are not equal to zero. Now, consider the following:

$$\mathsf{T}^{k-1}\Big(a_1\mathbf{x} + a_2\mathsf{T}(\mathbf{x}) + \dots + a_k\mathsf{T}^{k-1}(\mathbf{x})\}\Big) = \mathsf{T}^{k-1}(\mathbf{0})$$

$$\Rightarrow a_1\mathsf{T}^{k-1}(\mathbf{x}) + a_2\mathsf{T}^k(\mathbf{x}) + a_3\mathsf{T}^{k+1}(\mathbf{x}) + \dots + a_k\mathsf{T}^{2(k-1)}(\mathbf{x}) = \mathbf{0}$$

$$\Rightarrow a_1\mathsf{T}^{k-1}(\mathbf{x}) + \mathbf{0} + \mathbf{0} + \dots + \mathbf{0} = \mathbf{0}.$$

The above result is a consequence of equation (1) and other given information. Since $T^{k-1}(\mathbf{x}) \neq \mathbf{0}$, $a_1 = 0$. Now,

$$\mathsf{T}^{k-2}\Big(a_1\mathbf{x} + a_2\mathsf{T}(\mathbf{x}) + \dots + a_k\mathsf{T}^{k-1}(\mathbf{x})\}\Big) = \mathsf{T}^{k-2}(\mathbf{0})$$

$$\Rightarrow a_1\mathsf{T}^{k-2}(\mathbf{x}) + a_2\mathsf{T}^{k-1}(\mathbf{x}) + a_3\mathsf{T}^k(\mathbf{x}) + \dots + a_k\mathsf{T}^{2k-3}(\mathbf{x}) = \mathbf{0}$$

$$\Rightarrow \mathbf{0} + a_2\mathsf{T}^{k-1}(\mathbf{x}) + \mathbf{0} + \dots + \mathbf{0} = \mathbf{0}.$$

Again, since $\mathsf{T}^{k-1}(\mathbf{x}) \neq \mathbf{0}$, we get $a_2 = 0$. On repeating this procedure, we get $a_i = 0, \forall i = 1, 2, ..., k$, which is contradicting to the initial assumption. Hence, the initial assumption of the set { $\mathbf{x}, \mathsf{T}(\mathbf{x}), \mathsf{T}^2(\mathbf{x}), ..., \mathsf{T}^{k-1}(\mathbf{x})$ } being linearly dependent is incorrect. Thus, the above set is linearly independent.

- 8. BONUS question: **Definition:** Let V be a vector space and $T : V \rightarrow V$ be a linear transformation on V. A subspace $W \subset V$ is said to be T-invariant if for every $\mathbf{w} \in W$, $T(\mathbf{w}) \in W$. Further, if W is T-invariant, define *restriction of T on W* as, $T_W : W \rightarrow W$ such that $T_W(\mathbf{w}) = T(\mathbf{w}), \forall \mathbf{w} \in W$. Then, prove the following results:
 - (a) Subspaces $\{0\}$, V, N(T) and R(T) are T-invariant. Here, N(T) = $\{v \in V | T(v) = 0\}$, and R(T) = $\{u \in V | \exists x_u \in V \text{ s.t } T(x_u) = u\}$ (*The choice of* x_u *depends on* u).
 - (b) For a T-invariant subspace W, the transformation T_W is linear, and $N(T_W)=N(T)\cap W.$

Solution:

- (a) (i) Let $U = \{0\}$. Its a singleton set. Since T is linear $T(0) = 0 \Rightarrow T(0) \in U$. Hence, $U = \{0\}$ is T-invariant.
 - (ii) Since T is defined from V to V, for every $\mathbf{v} \in V$, $T(\mathbf{v}) \in V \Rightarrow V$ is T-invariant.
 - (iii) Since T is linear T(0) = 0. Thus, $0 \in N(T)$ by the definition of N(T). Further, $T(\mathbf{v}) = \mathbf{0} \in N(T)$, for all $\mathbf{v} \in N(T)$. Hence, N(T) is T-invariant.

- (iv) Let $u \in R(T)$. Since, $R(T) \subset V$ (by definition), $u \in V$. Thus, $T(u) \in R(T) \Rightarrow R(T)$ is T-invariant.
- (b) (i) Let $\mathbf{x}, \mathbf{y} \in W$. Then, $c_1\mathbf{x} + c_2\mathbf{y} \in W$, for some scalars c_1, c_2 as W is a subspace. W is T-invariant $\Rightarrow T(\mathbf{x}) \in W, T(\mathbf{y}) \in W, T(c_1\mathbf{x} + c_2\mathbf{y}) \in W$. Thus, $T_W(\mathbf{x}) = T(\mathbf{x}), T_W(\mathbf{y}) = T(\mathbf{y})$ and $T_W(c_1\mathbf{x} + c_2\mathbf{y}) = T(c_1\mathbf{x} + c_2\mathbf{y})$. Now, we have the following:

$$\mathsf{T}_{\mathsf{W}}(c_1\mathbf{x}+c_2\mathbf{y})=\mathsf{T}(c_1\mathbf{x}+c_2\mathbf{y})=c_1\mathsf{T}(\mathbf{x})+c_2\mathsf{T}(\mathbf{y})=c_1\mathsf{T}_{\mathsf{W}}(\mathbf{x})+c_2\mathsf{T}_{\mathsf{W}}(\mathbf{y}).$$

The above is true for any scalars c_1, c_2 and for any $\mathbf{x}, \mathbf{y} \in W$. Thus, T_W is linear.

(ii) Let $\mathbf{w} \in N(T_W)$. Since $N(T_W) \subset W$, $\mathbf{w} \in W$. Further, $T_W(\mathbf{w}) = \mathbf{0}$. But by definition, $T_W(\mathbf{w}) = T(\mathbf{w}) \Rightarrow T(\mathbf{w}) = \mathbf{0} \Rightarrow \mathbf{w} \in N(T)$. Thus, $\mathbf{w} \in N(T) \cap W \Rightarrow N(T_W) \subset N(T) \cap W$.

Let $\mathbf{u} \in N(T) \cap W$. Then, $\mathbf{u} \in N(T) \Rightarrow T(\mathbf{u}) = \mathbf{0}$. Since $\mathbf{u} \in W$ and W is T-invariant, $T_W(\mathbf{u}) = T(\mathbf{u}) = \mathbf{0} \in W \Rightarrow \mathbf{u} \in N(T_W)$. Hence, $N(T) \cap W \subset N(T_W)$.

Therefore, $N(T_W) = N(T) \cap W$. Hence, proved.