Give your answers in the space provided. No calculators or smartphones allowed.
Roll: No: \qquad NAME: Time: 20 mins

1. Given a vector space V and the basis vectors, $\left\{v_{i}\right\}_{i=1}^{n}$, which under a linear transformation $T: V \rightarrow V$ obey the following relation: $T\left(v_{i}\right)=\lambda_{i} v_{i+1}$ (for convenience, assume that $v_{n+1} \equiv v_{1}$). Find the matrix corresponding to this linear transformation. You may assume the same basis for the input and output of T.

Solution: (3 pts)

Write $T\left(\left[\begin{array}{lll}v_{1} & \ldots & v_{n}\end{array}\right]\right)=\left[\begin{array}{lll}v_{1} & \ldots & v_{n}\end{array}\right] A$ and identify the columns of A as the linear combinations of the basis vectors required to reproduce the effect of T on each the basis vectors. $A=\left[\begin{array}{cccc}0 & 0 & \ldots & \lambda_{n} \\ \lambda_{1} & 0 & \ldots & 0 \\ 0 & \lambda_{2} & \ldots & 0 \\ \vdots & \vdots & \ddots & 0\end{array}\right]$
2. Given that M is the vector space of all (real valued) upper triangular 2×2 matrices, and N is the space of all real valued 2×2 matrices.
(a) List a set of basis vectors for both spaces.
(b) A linear transformation $T: M \rightarrow N$ acts in the following way: $T(C)=C^{T}+C$. Compute the matrix corresponding to T.

Solution: ((a):1.5 for M and 1.5 for $\mathrm{N},(\mathrm{b}): 4)$
(a)For M : $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ and for $N:\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$
(b)Transform each basis element of M and write as linear combination of elements of $N: A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right]$

