Give your answers in the space provided. No calculators or smartphones allowed.
Roll: No: \qquad NAME:
Time: 20 mins

1. A vector space V is spanned by a set of linearly independent vectors, $\left\{v_{i}\right\}, 1 \leq i \leq p$. Another set of linearly independent vectors, $\left\{w_{i}\right\}, 1 \leq i \leq q$ are also found to span the same vector space V. Pick the correct option and justify with proper reasoning/derivation.
(a) $p=q$, or
(b) $p \neq q$ in general, or
(c) more information is required to say anything about the relation between p, q.

Solution: $(1+3)$
Correct option is (a) because the number of basis vectors in a basis is unique, even though the basis itself need not be unique. Similar question was done in the tutorial. See it for detailed proof.
2. Given a system of linear equations represented by the matrix equation $A x=b$ with $A \in$ $\mathbb{R}^{m \times n}, x \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}$. Given that the rows of this matrix are linearly independent and that there are more columns than row. Mention the dimensionality of each of the four fundamental subspaces of A with a one line reason for each.

Solution: (1.5×4)
$C\left(A^{T}\right): m$ Since rows are independent,
$C(A): m$ Since row rank $=$ col rank,
$N(A): n-m$ and $N\left(A^{T}\right): 0$ by rank nullity theorem.

