
EE5120 Linear Algebra: Tutorial 2, July-Dec 2017-18

1. Let A and B be n× n matrices, and let In denote an n× n identity matrix.

(a) Define a matrix X as,

X =

[
In 0n
A In

]
,

where 0n is an n× n all zero matrix. Is X invertible? If so, find the inverse. Else, give
proper reason for your answer.

(b) Trace of a matrix is the sum of diagonal entries of that matrix. Prove that trace of the
matrix AB is equal to that of the matrix BA.

Solution:

(a) If X is invertible, then there must exists a matrix Y such that

XY = YX =

[
In 0n
0n In

]
. Let Y be,

Y =

[
Y1 Y2
Y3 Y4

]
,

where Yi, ∀i = 1, ..., 4 be n× n matrices. To satisfy the first equation, Y must be
such that,

InY1 + 0nY3 = In ⇒ Y1 = In

InY2 + 0nY4 = 0n ⇒ Y2 = 0n

AY1 + InY3 = 0n ⇒ A + Y3 = 0n ⇒ Y3 = −A
AY2 + InY4 = Yn ⇒ Y4 = In.

Hence, Y is given by,

Y =

[
In 0n
−A In

]
,

It can be easily verified that YX = XY = I2n. Hence, inverse of X exists and the
above Y is its inverse.

(b) Let (Z)i,j denoted the (i, j)th element of a matrix Z. Then, we have the following:e

Trace(AB) =
n

∑
i=1

(AB)i,i =
n

∑
i=1

n

∑
k=1

Ai,kBk,i

=
n

∑
i=1

n

∑
k=1

Bk,iAi,k =
n

∑
k=1

n

∑
i=1

Bk,iAi,k =
n

∑
k=1

(BA)k,k = Trace(BA).

2. Suppose V is a vector space and S1, S2 are subspaces of V . Sum of S1 and S2, denoted by
S1 + S2 is the set {x + y|x ∈ S1, y ∈ S2}. Having said that, prove the following:

(a) S1 + S2 is a subspace of V that contains both S1 and S2.



(b) Any subspace of V that contains S1 and S2 must also contain S1 + S2.

Solution:

(a) Let S1 + S2 = S . We place the following arguments:

(i) Since {Si}2
i=1 are subspaces, 0 ∈ S1, 0 ∈ S2 ⇒ 0 + 0 = 0 ∈ S .

(ii) Let u1 + u2, v1 + v2 ∈ S . Then, u1, v1 ∈ S1 and u2, v2 ∈ S2. Since {Si}2
i=1

are subspaces, ui + vi ∈ Si, i = 1, 2. Thus, (u1 + v1) + (u2 + v2) ∈ S ⇒
u1 + (v1 + u2) + v2 ∈ S ⇒ u1 + u2 + v1 + v2 ∈ S . This is by commutative
and associative properties of vectors in vector space V . Thus, (u1 + u2) +
(v1 + v2) ∈ S .

(iii) Let u + v ∈ S and a be a scalar from the underlying field. Now, u ∈ S1
and v ∈ S2. As S1 and S2 are subspaces, au ∈ S1 and av ∈ S2. Then,
au + av = a(u + v) ∈ S , using distributive property defined on V .

Thus, S is a subspace. Further, let u ∈ S1. Since 0 ∈ S2, u + 0 = u ∈ S (this
is because 0 is additive identity of V). Thus, S1 ⊂ S . Similarly, S2 ⊂ S can be
proven.

(b) Again, let S = S1 + S2. LetW be a subspace of V such that,

S1 ⊂ W ;S2 ⊂ W . (1)

Let u + v ∈ S . Then, u ∈ S1 and v ∈ S2. Equation (1) implies u, v ∈ W . SinceW
is a subspace, u + v ∈ W . Thus, S ⊂ W .

3. State true or false with proper justifications

(a) If V is a vector space and W is a subset of V that is a vector space, then W is a subspace
of V

(b) The empty set is a subspace of every vector space
(c) If V is a vector space and V 6= {0}, then V contains a subspace W such that W 6= V
(d) The intersection of any two subsets of V is a subspace of V
(e) An n× n diagonal matrix can never have more than n non zero entries

Solution:

(a) False. It depends on the field. Let V = R and W = Q (rational numbers). W is a
V.S over Q but not over R and hence not a subspace of V

(b) False. Subspace must contain zero vector

(c) True. W = {0}

(d) False. V = R let W1, W2 ⊂ R, let W1 = {1}, and W2 = {2}W1∩W2 = φ, not a V.S

(e) True.

4. Determine if the following subsets of R3 are subspaces of R3 under coordinate wise addi-
tion and scalar multiplication. Justify your answers
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(a) W1 = {(a1, a2, a3) ∈ R3 : a1 = 3a2, a3 = −a2}
(b) W2 = {(a1, a2, a3) ∈ R3 : a1 = a3 + 2}
(c) W3 = {(a1, a2, a3) ∈ R3 : 2a1 − 7a2 + a3 = 0}
(d) W4 = {(a1, a2, a3) ∈ R3 : a1 − 4a2 − a3 = 0}

Solution:

(a) Yes. It is a line t(3, 1,−1) through origin (0,0,0) hence a subspace

(b) No. It doesnot contain the zero vector (0,0,0)

(c) Yes.It is a plane with normal vector (2,-7,1)

(d) Yes

5. Given a matrix A,

A =


2 −6
−1 3
−4 12
3 −9


Find Null space and Column space of A. Present each subspace as a set spanned by a set
of linearly independent vectors.

Solution: First, decompose the matrix A to find its linearly independent set of vectors.
Use Ax = 0 to find Nullspace of A. For, Column space look for linearly independent
column of decomposed matrix A.

NulA = span(
[

3
1

]
) and ColA = span(


2
−1
−4
3

)

6. Prove this theorem: Let Ax = b be a system of n linear equations in n unknowns. If A
is invertible, then the system has exactly one solution, namely A−1b. Conversely, if the
system has exactly one solution, then A is invertible.
Hint: Section 2.2 of Gilbert Strang.

Solution: Suppose that the system has exactly one solution xp. Let xn denote the solu-
tion set for the corresponding homogeneous Axn = 0. By theorem, x = xp + xn, where
x denotes the solution set of system of linear equations Ax = b, we get x = x + xn. But
this is so only if xn = {0}. Thus, (Nullspace) N(A) = {0}, and hence A is invertible.

7. Suppose A is a 2× 1 matrix and that B is a 1× 2 matrix. Prove that C = AB is not invertible.
Hence prove the general case: if A is an m× n matrix and B is an n×m matrix, AB is not
invertible if n < m.
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Solution: A matrix of dimension n× n will not be invertible if its rank is less than n.

Let A =

[
a
b

]
and B =

[
c d

]
. Then C = AB =

[
ac ad
bc bd

]
.

Performing the row operation R2 = R2 − b
a R1 on AB, it reduces to AB =

[
ac ad
0 0

]
.

Thus AB has only one independent row, i.e., its rank is less than 2 and therefore not
invertible.
For the general case, the matrix formed by the multiplication of an m× n and an n×m
matrix, with dimension m×m, can similarly be reduced to have n independent rows(or
columns) if n < m and hence is not invertible.
Alt Proof: Since B is a ‘fat’ matrix (n < m), there will be at least one non-trivial vector in
it’s nullspace (the number of pivots will be less than the number of variables). Let such
a vector be x0. Thus, Bx0 = 0. Pre-multiplying by A gives us Cx0 = ABx0 = 0, i.e. we
have found a non-trivial vector x0 in the null space of C. Thus it can’t be invertible.

8. Write down the 4 by 4 finite-difference matrix equation (h = 1
5 ) for

−d2u
dx2 + u = x, u(0) = u(1) = 0

Solve the equations and compare the solution with the analytical solution. Why are the
results not matching and what should be done to improve the accuracy?

Solution: Splitting the line segment from x = 0 to x = 1 into h-length segments gives
us: xn = nh, where n = 1, 2, 3, 4
Second Difference is given as,

d2u
dx2 =

un−1 − 2un + un+1

h2

where, un = u(xn).
Substitute Second Difference into the equation to get,

−−un−1 + 2un − un+1

h2 + un = xn

Substitute xn in terms of h and write the equation for n = 1, 2, 3, 4, with boundary
conditions and rearrange in matrix form as shown below,

2.04 −1 0 0
−1 2.04 −1 0
0 −1 2.04 −1
0 0 −1 2.04




u1
u2
u3
u4

 =


0.008
0.016
0.024
0.032


Solution of matrix equation is (u1, u2, u3, u4) = (0.0286, 0.0503, 0.0581, 0.0442).
Analytical solution is

u(x) = x− sinh(x)
sinh(1)

,

⇒ (u1, u2, u3, u4) = (0.0287, 0.0505, 0.0583; 0.0443).

(Solutions are shown by rounding of to 4 digits.)
The solutions are very near to each other. To still improve the accuracy, we need to
decrease h i.e, to increase the number of equations.
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9. Use Gaussian elimination without partial pivoting to solve the system of linear equations,
rounding to three signnificant digits after each intermediate calculation. Then use partial
pivoting to solve the same system, again rounding to three significant digits after each
intermediate calculation. Finally, compare both solutions with the given exact solution.

(a)
x + 1.04y = 2.04, 6x + 6.20y = 12.20

(Exact: x = 1, y = 1)

(b)  0.143 0.357 2.01
−1.31 0.911 1.99
11.2 −4.30 −0.605

 x1
x2
x3

 =

 −5.173
−5.458
4.415


(Exact: x1 = 1, x2 = 2 and x3 = −3).

Solution:

(a) Gaussian elimination without partial pivoting:[
1 1.04
6 6.20

] [
x
y

]
=

[
2.04
12.2

]
Subtract 6 times the first row to second row,[

1 1.04
0 −0.04

] [
x
y

]
=

[
2.04

0

]
Thus y = 0, using back-substitution we have x = 2.04.
Gaussian elimination using partial pivoting:[

1 1.04
6 6.20

] [
x
y

]
=

[
2.04
12.2

]
’6’ is the number with largest magnitude in the first column. So, you need to bring
it to first row, i.e exchange row one and two.[

6 6.20
1 1.04

] [
x
y

]
=

[
12.2
2.04

]
Divide First row my 6, [

1 1.03
1 1.04

] [
x
y

]
=

[
2.03
2.04

]
Add -1 times first row to second row,[

1 1.03
0 0.01

] [
x
y

]
=

[
2.03
0.01

]
Thus y = 1, using back-substitution we have x = 1.
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(b) After roundoff to three digits 0.143 0.357 2.01
−1.31 0.911 1.99
11.2 −4.30 −0.605

 x1
x2
x3

 =

 −5.17
−5.46
4.42


Gaussian elimination without partial pivoting: 1.00 2.50 14.1

0.00 1.00 4.89
0.00 0.00 1.00

 x1
x2
x3

 =

 −36.2
−12.6
−2.00


Thus x3 = −2.00, and using back-elimination we obtain x2 = −2.82 and x1 =
−0.950. Gaussian elimination using partial pivoting: 1.00 −0.384 −0.0540

0.00 1.00 4.90
0.00 0.00 1.00

 x1
x2
x3

 =

 0.395
−12.7
−3.00


Thus x3 = −3.00, and using back-elimination we obtain x2 = 2.00 and x1 = 1.00.
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