Give your answers in the space provided. No calculators or smartphones allowed.
Roll: No: \qquad NAME:
Time: 20 mins

1. Given a subset of \mathbb{R}^{2} defined as $W_{p}=(p / \alpha, m p+c)$, where $p, m, c, \alpha \in \mathbb{R}$ and m, c, α are non-zero constants. Further, given a vector $v=\left(0, c^{3}\right) \in \mathbb{R}^{2}$. Answer with reasons.
(a) Is W_{p} a subspace of \mathbb{R}^{2} ?
(b) Is a subset U defined as $U=W_{p}-v:\left\{w-v \mid w \in W_{p}\right\}$ a subspace of \mathbb{R}^{2} ?

Solution: $(2+3)$
(a) No, since it is a line not passing through the origin.
(b) Yes if $c= \pm 1$. In that case $U=(p / \alpha, m p)$ which is a subspace.
2. Given the row reduced echelon form of a $m \times n$ matrix as $\left(\begin{array}{ll}P & Q \\ R & S\end{array}\right)$, with the additional information that: All the p pivots appear in the first p columns, and the sub-matrix P below is $p \times p$:
(a) What can be said about the contents of P, Q, R, S ?
(b) Can you work out the null space matrix N in this case? Recall that the columns of N span the null space.

Solution: $(2+3)$
(a) $P=I, R=0, S=0$, nothing can be said about Q.
(b) $N=\left[\begin{array}{ll}-Q & I\end{array}\right]^{T}$.

