EE5120 Linear Algebra: Tutorial Test 2, 23.08.17B

Give your answers in the space provided. No calculators or smartphones allowed.

Roll: No:___

NAME:_____

Time: 20 mins

- 1. Given a subset of \mathbb{R}^2 defined as $W_p = (p/\alpha, mp + c)$, where $p, m, c, \alpha \in \mathbb{R}$ and m, c, α are non-zero constants. Further, given a vector $v = (0, c^3) \in \mathbb{R}^2$. Answer with reasons.
 - (a) Is W_p a subspace of \mathbb{R}^2 ?
 - (b) Is a subset *U* defined as $U = W_p v : \{w v | w \in W_p\}$ a subspace of \mathbb{R}^2 ?

Solution: (2+3)
(a) No, since it is a line not passing through the origin.
(b) Yes if c = ±1. In that case U = (p/α, mp) which is a subspace.

- 2. Given the row reduced echelon form of a $m \times n$ matrix as $\begin{pmatrix} P & Q \\ R & S \end{pmatrix}$, with the additional information that: All the *p* pivots appear in the first *p* columns, and the sub-matrix *P* below is $p \times p$:
 - (a) What can be said about the contents of *P*, *Q*, *R*, *S*?
 - (b) Can you work out the null space matrix *N* in this case? Recall that the columns of *N* span the null space.

Solution: (2+3) (a) P = I, R = 0, S = 0, nothing can be said about *Q*. (b) $N = \begin{bmatrix} -Q & I \end{bmatrix}^T$.