EE5120 Linear Algebra: Tutorial 1, July-Dec 2017-18

1. Solve the following sets of linear equations using Gaussian elimination
(a)
2x1 —2xp — 3x3 = =2

3x1 —3xp —2x3+5x4 =7
X1 — X2 —2x3 — x4 = —3

(b)

X1 +2x —x3+x4=05
X1+4X2—3X3—3X4:6
2x1+3x) —x3+4x4 =8

Solution:

(a) System after simplifications =

X1 — X2 —2x3 — x4 = —3
X3+2.X'4:4
4x3 + 8x4 = 16

Thus solution is {(5+ s — 3t,s,4 — 2t,t) : s,t € R}

(b) No solutiom

2. State True or False for each of the following with proper justification:
(@) An elementary matrix is always a square matrix.
(b) The n x n identity matrix is an elementary matrix.

(c) Product of two elementary matrices (each of appropriate dimensions) is an elementary
matrix.

(d) Sum of two elementary matrices of same dimension is also an elementary matrix.

(e) If B is a matrix that can be obtained by performing an elementary row operation on a
matrix A, then A can be obtained by performing an elementary row operation on B.

(f) If B is a matrix that can be obtained by performing an elementary row operation on a
matrix A, then B can also be obtained by performing an elementary column operation
on A.

Solution:

(a) True. Since every elementary matrix comes from identity matrix which is a square
matrix.




(b) True. It can be considered as an elementary matrix performing the operation of
multiplying a row (column) by the scalar value 1.

(c) False. Counter example: Let A = [ 3 (1) ] and B = [ (1) (1) ] A and B are
elementary matrices representing multiplication of first row by 2 and exchange of

0

1 0 ] which is not an elementary matrix.

rows, respectively. But AB = [

(d) False. Counter example: Consider the same matrices A and B stated in (c). Now,

A+ B= [ % 1 } which is clearly not an elementary matrix.

(e) True. Suppose E is the elementary matrix such that B = EA, then A = E~!B,
where E~1 is the inverse of E which is well defined as inverse of elementary ma-
trices exist.

10 10
0 0 } and B = [ 10
from A by adding one time the first row of A to its second row. But no column
operation on A can change the fact that the second row of A has two zeros.

(f) False. Counter example: Let A = [ ] We can obtain B

3. What three elimination matrices E1, E31, E3 put A into upper triangular form E3pEz Ey1 A =
U? Multiply by E3_21, 153_11 and ]52_11 to factor A into LU where L = E3_21E3_11E2_11. Find L and
u:

Solution:

1 00
Ern=1| -2 1 0 |,Ex=
01

0

1
0

= U = EpEs1EnA =

0

2

0
1
],andEﬂl [O
0

0

1

2

1 0

~lp-1p-1
= L=E E;Ey = | 2 0
3 1

1
0
3

o = O
— o O

0
0| E =
1

where A = LU.
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4. Find L and U for the nonsymmetric matrix

5.

ar r r
a b s s
A_abct
a b c d

Find the four conditions on a,b,c,d,r,s,t to get A = LU with four pivots.

Solution: We are going to do the elimination in the following order E43, E3, and Ep;.

1 0 0 O 1 0 00 1 0 00
01 0 O 0 1 00 -1 100
-1 _ -1 _ 1 _
Es=loo0 1 ofB2= 0 -1 10| ™E=] ¢ 010
00 -1 1 0 0 01 0 001
a r r r
0 b—r s—r s—r
FU=EnbnbpA=1 4 " g
0 0 0 d-t
Conditions to have four pivots are: a # 0,b # r,c # sand d # t.
And,
1 000
1ol 1100
= L=EgEpEy = 1110
1111

It should be observed that L matrix has elements also in places where row elimination
is not done, as the standard order is not followed in elimination.

(a) The equation of the line through the following pair of points (3, —2,4)" and (—5,7,1)T
in R? is
(x,y,2)T = (3, —2,4)T +t(....... e e )T
where t € R.

(b) The equation of the plane through the following set of points (2, —5,—1)T, (0,4,6)T
and (-3,7,1)T in R®is

(x,y,2)T = (2,-5,—1)T +5(........ e e Tt PR e )

where s, t € R.

Solution:

(a) Equation of line: (Refer LHS figure below) The endpoint of every vector of the
form tw that begins at A lies on the line joining A and B. Thus, an equation of the
line through A and B is x = u +tw = u + (v — u). For the given set of points,
equation is

(x,y,2)" = (3, —2,4)T +t(-8,9-3)T
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(b) Equation of plane: (Refer RHS figure below) For any real number s and ¢, the
vector su + tv lies in the plane containing A, B and C. Thus, the equation of the
plane becomes x = A + su + tv. For the given set of points, equation is

x,v,2)T =(2,-5,—1)T +5(=2,9,7)T ++(—5,12,2)T
y

6. If (a,b) is a multiple of (¢, d) with abed # 0, show that (a,c) is a multiple of (b,d). Thus
show that if a matrix has dependent rows, then it has dependent columns.

Solution: If (4,b) is a multiple of (c,d), then there is some reR such that
(a,b) =r(c,d) = (rc,rd)
Hence,
a=rc=ryd = 5(rd) = 5b.
Thus,

(a,0) = (5b, 5) = §(b,d)

Thus if a matrix [z Z} has dependent rows, it has dependent columns.

7. Working with inverse matrices:

(a) Suppose that A € R"*" is a square invertible matrix and u, v € R" are column vectors.
Prove that

A lunT A1

1+0TA1u

provided 1+ vT A~y # 0. This formula goes by the name of Sherman-Morrison.

(A+uoh)t=A"1—

(b) The practical use of this formula? Let’s say that you have been solving matrix equa-
tions of the form Ax = b and the system description (embedded in A) changed slightly
from A to A’ = A + uo!. This formula allows you to use your previous method (e.g.
the LU factors of A) in solving for anew A’x’ = b. Show that a new LU decomposition
of A’ is unnecessary.
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Solution: In part (a) substitute the given inverse and multiply with A + uv” A to obtain
I. In the second part, multiply the given inverse expression with b to see that LU
decomposition is not needed afresh.
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