EE5120 Linear Algebra: Class Test 1, 11th August'17

1. Solve the following sets of linear equations using Gaussian elimination

$$
\begin{aligned}
x_{1}-4 x_{2}-x_{3} & =-6 \\
2 x_{1}-8 x_{2}+x_{3} & =-9 \\
-x_{1}+4 x_{2}-2 x_{3} & =3
\end{aligned}
$$

Solution: System after simplifications \Rightarrow

$$
\begin{aligned}
x_{1}-4 x_{2}-x_{3} & =-6 \\
3 x_{3} & =3
\end{aligned}
$$

Therefore $x_{3}=1$; assigning $x_{2}=k$ for some $k \in \mathbb{R}$, we have $x_{1}=-5+4 k$.
Thus solution set is $\{(-5,0,1)+k(4,1,0): k \in \mathbb{R}\}$
2. A matrix \mathbf{X} is called a projector matrix if $\mathbf{X}^{2}=\mathbf{X}$. Let \mathbf{v}_{1} and \mathbf{v}_{2} be vectors of dimension $N \times 1$ each, and let \mathbf{I}_{N} denote an $N \times N$ identity matrix. Define $\mathbf{P}_{i}=\frac{\mathbf{v}_{i} \mathbf{v}_{i}^{T}}{\mathbf{v}_{i}^{T} \mathbf{v}_{i}}, i=1,2$. Here, $(.)^{T}$ refers to transpose operation.
(a) Prove that the matrices $\mathbf{P}_{1}, \mathbf{I}_{N}-\mathbf{P}_{1}$ are projector matrices.
(b) Suppose \mathbf{v} is a vector defined as $\mathbf{v}=\left(\mathbf{I}_{N}-\mathbf{P}_{1}\right) \mathbf{v}_{2}$, then compute the expression for $\mathbf{v}_{1}^{T} \mathbf{v}$.

Solution:

(a) Note that $\mathbf{v}_{1}^{T} \mathbf{v}_{1}$ is a scalar. Then, we obtain,

$$
\mathbf{P}_{1}^{2}=\frac{\mathbf{v}_{1} \mathbf{v}_{1}^{T}}{\mathbf{v}_{1}^{T} \mathbf{v}_{1} \mathbf{v}_{1}^{T}} \mathbf{v}_{1}^{T} \mathbf{v}_{1} \quad=\frac{\mathbf{v}_{1}\left(\mathbf{v}_{1}^{T} \mathbf{v}_{1}\right) \mathbf{v}_{1}^{T}}{\left(\mathbf{v}_{1}^{T} \mathbf{v}_{1}\right)^{2}}=\frac{\left(\mathbf{v}_{1}^{T} \mathbf{v}_{1}\right) \mathbf{v}_{1} \mathbf{v}_{1}^{T}}{\left(\mathbf{v}_{1}^{T} \mathbf{v}_{1}\right)^{2}}=\frac{\mathbf{v}_{1} \mathbf{v}_{1}^{T}}{\mathbf{v}_{1}^{T} \mathbf{v}_{1}}=\mathbf{P}_{1} .
$$

Hence, \mathbf{P}_{1} is a projector matrix. Similarly, we can prove \mathbf{P}_{2} is also projector matrix. Now, consider the following:

$$
\left(\mathbf{I}_{N}-\mathbf{P}_{2}\right)^{2}=\mathbf{I}_{N}^{2}+\mathbf{P}_{2}^{2}-2 \mathbf{I}_{N} \mathbf{P}_{2}=\mathbf{I}_{N}+\mathbf{P}_{2}-2 \mathbf{P}_{2}=\mathbf{I}_{N}-\mathbf{P}_{2} .
$$

The second equality uses the fact \mathbf{P}_{2} is a projector matrix. Hence, $\mathbf{I}_{N}-\mathbf{P}_{2}$ is a projector matrix.
(b) Vector \mathbf{v} is given by,

$$
\mathbf{v}=\left(\mathbf{I}_{N}-\mathbf{P}_{1}\right) \mathbf{v}_{2}=\mathbf{v}_{2}-\frac{\mathbf{v}_{1} \mathbf{v}_{1}^{T}}{\mathbf{v}_{1}^{T} \mathbf{v}_{1}} \mathbf{v}_{2}=\mathbf{v}_{2}-\frac{\mathbf{v}_{1}\left(\mathbf{v}_{1}^{T} \mathbf{v}_{2}\right)}{\mathbf{v}_{1}^{T} \mathbf{v}_{1}} .
$$

Now,

$$
\begin{aligned}
\mathbf{v}_{1}^{T} \mathbf{v} & =\mathbf{v}_{1}^{T}\left(\mathbf{v}_{2}-\frac{\mathbf{v}_{1}\left(\mathbf{v}_{1}^{T} \mathbf{v}_{2}\right)}{\mathbf{v}_{1}^{T} \mathbf{v}_{1}}\right)=\mathbf{v}_{1}^{T} \mathbf{v}_{2}-\mathbf{v}_{1}^{T} \frac{\mathbf{v}_{1}\left(\mathbf{v}_{1}^{T} \mathbf{v}_{2}\right)}{\mathbf{v}_{1}^{T} \mathbf{v}_{1}} \\
& =\mathbf{v}_{1}^{T} \mathbf{v}_{2}-\frac{\left(\mathbf{v}_{1}^{T} \mathbf{v}_{1}\right)\left(\mathbf{v}_{1}^{T} \mathbf{v}_{2}\right)}{\mathbf{v}_{1}^{T} \mathbf{v}_{1}}=\mathbf{v}_{1}^{T} \mathbf{v}_{2}-\mathbf{v}_{1}^{T} \mathbf{v}_{2}=0 .
\end{aligned}
$$

Thus, $\mathbf{v}_{1}^{T} \mathbf{v}=0$.

