Carry-Look-Ahead Addition Revisited

- Generalizing equations for fast adders - carry-look-ahead, carry-select and carry-skip

Notation:

- $P_{i:j}$ - group-propagated carry
- $G_{i:j}$ - group-generated carry

for group of bit positions $i, i-1, ... , j$ ($i \geq j$)

- $P_{i:j} = 1$ when incoming carry into least significant position j, c_j, is allowed to propagate through all $i-j+1$ positions
- $G_{i:j} = 1$ when carry is generated in at least one of positions j to i and propagates to $i+1$, ($c_{i+1} = 1$)

* Generalization of previous equations
* Special case - single bit-position functions P_i and G_i
Group-Carry Functions

♦ Boolean equations

\[
P_{i:j} = \begin{cases}
P_i & \text{if } i = j \\
P_i \cdot P_{i-1:j} & \text{if } i > j
\end{cases}
\]

\[
G_{i:j} = \begin{cases}
G_i & \text{if } i = j \\
G_i + P_i \cdot G_{i-1:j} & \text{if } i > j
\end{cases}
\]

♦ \(P_{i:i} \equiv P_i \); \(G_{i:i} \equiv G_i\)

♦ Recursive equations can be generalized \((i \geq m \geq j+1)\)

\[
P_{i:j} = P_{i:m} \cdot P_{m-1:j}, \\
G_{i:j} = G_{i:m} + P_{i:m} \cdot G_{m-1:j}
\]

♦ Same generalization used for deriving section-carry propagate and generate functions - P** and G**

♦ Proof - induction on \(m\)

\[
c_{i+1} \quad i \quad i-1 \quad \cdots \cdots \quad m \quad m-1 \quad \cdots \cdots \quad j \quad c_j
\]
Fundamental Carry Operator

- Boolean operator - fundamental carry operator - \circ

$$ (P, G) \circ (\tilde{P}, \tilde{G}) = (P \cdot \tilde{P}, G + P \cdot \tilde{G}) $$

- Using the operator \circ

- $(P_{i:j}, G_{i:j}) = (P_{i:m}, G_{i:m}) \circ (P_{m-1:j}, G_{m-1:j}) \ (i \geq m \geq j+1)$

- Operation is associative

$$ ((P_{i:m}, G_{i:m}) \circ (P_{m-1:v}, G_{m-1:v})) \circ (P_{v-1:j}, G_{v-1:j}) $$

$$ = (P_{i:m}, G_{i:m}) \circ ((P_{m-1:v}, G_{m-1:v}) \circ (P_{v-1:j}, G_{v-1:j})) $$

- Operation is idempotent

$$ (P, G) \circ (P, G) = (P \cdot P, G + P \cdot G) = (P, G) $$

- Therefore

$$ (P_{i:j}, G_{i:j}) = (P_{i:m}, G_{i:m}) \circ (P_{v:j}, G_{v:j}) \quad i \geq m \ ; \ v \geq j \ ; \ v \geq m-1 $$
Individual Bit Carry & Sum

- Group carries $P_{i:j}$ and $G_{i:j}$ calculated from subgroup carries - subgroups are of arbitrary size and may even overlap.

- Group and subgroup carries used to calculate individual bit carries C_{i+1}, C_i, ..., C_{j+1}, and sum outputs S_i, S_{i-1}, ..., S_j.

- Must take into account “external” carry c_j.

- For the mth bit position, $i \geq m \geq j$ -
 \[
 c_m = G_{m-1:j} + P_{m-1:j} \cdot c_j
 \]

- Rewritten as
 \[
 (P_{m-1:j}, G_{m-1:j}) \circ (1, c_j)
 \]

- If $P_m = x_m \oplus y_m$ then $s_m = c_m \oplus P_m$.

- If $P_m = x_m + y_m$ then $s_m = c_m \oplus (x_m \oplus y_m)$.
Various Adder Implementations

♦ Equations can be used to derive various implementations of adders - ripple-carry, carry-look-ahead, carry-select, carry-skip, etc.

♦ 5-bit ripple-carry adder: All subgroups consist of a single bit position; computation starts at position 0, proceeds to position 1 and so on

\[(P_4, G_4) \circ \{(P_3, G_3) \circ ((P_2, G_2) \circ [(P_1, G_1) \circ \{(P_0, G_0) \circ (1, c_0)\}]\}]]

♦ 16-bit carry-look-ahead adder: 4 groups of size 4; ripple-carry among groups

\[(P_{15:12}, G_{15:12}) \circ \{(P_{11:8}, G_{11:8}) \circ [(P_{7:4}, G_{7:4}) \circ \{(P_{3:0}, G_{3:0}) \circ (1, c_0)\}]\}]]
Brent-Kung Adder

♦ Variant of carry-look-ahead adder - blocking factor of 2 → very regular layout tree with $\log_2 n$ levels - total area $\approx n \log_2 n$

♦ Consider C_{16} - incoming carry at stage 16 in a 17-bit (or more) adder and suppose $G_0 = x_0 y_0 + P_0 c_0$

♦ The part that generates $(P_{7:0}, G_{7:0})$ corresponds to

$$(P_{7:0}, G_{7:0}) = (P_{7:4}, G_{7:4}) \circ (P_{3:0}, G_{3:0})$$

$$= \{ (P_{7:6}, G_{7:6}) \circ (P_{5:4}, G_{5:4}) \} \circ \{ (P_{3:2}, G_{3:2}) \circ (P_{1:0}, G_{1:0}) \}$$

$$= \{ [(P_7, G_7) \circ (P_6, G_6)] \circ [(P_5, G_5) \circ (P_4, G_4)] \}$$

$$\circ \{ [(P_3, G_3) \circ (P_2, G_2)] \circ [(P_1, G_1) \circ (P_0, G_0)] \}$$

♦ Each line, except c_0, represents two signals - either x_m, y_m or $P_v:m, G_v:m$
Tree Structure for Calculating C_{16}
Carry Calculation

- Circuits in levels 2 to 5 implement fundamental carry op
- \(c_{16} = G_{15:0} \); \(P_m = x_m \oplus y_m \)
 - sum: \(s_{16} = c_{16} \oplus P_{16} \)
- Tree structure also generates carries \(c_2, c_4 \) and \(c_8 \)
- Carry bits for remaining positions can be calculated through extra subtrees that can be added
- Once all carries are known - corresponding sum bits can be computed
- Above - blocking factor = 2
 - Different factors for different levels may lead to more efficient use of space and/or shorter interconnections
Prefix Adders

♦ The BK adder is a parallel prefix circuit - a combinational circuit with \(n \) inputs \(x_1, x_2, \ldots, x_n \) producing outputs \(x_1 \circ x_1, x_2 \circ x_1, \ldots, x_n \circ x_{n-1} \circ \ldots \circ x_1 \)

♦ \(\circ \) is an associative binary operation

♦ First stage of adder generates individual \(P_i \) and \(G_i \)

♦ Remaining stages constitute the parallel prefix circuit with fundamental carry operation serving as the \(\circ \) associative binary operation

♦ This part of tree can be designed in different ways
Implementation of the 16-bit Brent-Kung Adder

Inputs | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

Outputs

stage 1
stage 2
stage 3
stage 4
stage 5
stage 6
stage 7
Brent-Kung Parallel Prefix Graph

- Bullets implement the fundamental carry operation - empty circles generate individual P_i and G_i
- Number of stages and total delay - can be reduced by modifying structure of parallel prefix graph

- Min # of stages = $\log_2 n$
 - 4 for $n=16$
 - For BK parallel prefix graph = $2\log_2 n - 1$
Ladner-Fischer Parallel Prefix Adder

♦ Implementing a 4-stage parallel prefix graph
♦ Unlike BK, LF adder employs fundamental carry operators with a fan-out ≥ 2 - blocking factor varies from 2 to n/2
♦ Fan-out ≤ n/2 requiring buffers - adding to overall delay
Kogge-Stone Parallel Prefix Adder

- \(\log_2 n \) stages - but lower fan-out
- More lateral wires with long span than BK - requires buffering causing additional delay
Han-Carlson Parallel Prefix Adder

- Other variants - small delay in exchange for high overall area and/or power
 - Compromises between wiring simplicity and overall delay

- A hybrid design combining stages from BK and KS
 - 5 stages - middle 3 resembling KS - wires with shorter span than KS

Inputs 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

stage 1
stage 2
stage 3
stage 4
stage 5
Ling Adders

♦ Variation of carry-look-ahead - simpler version of group-generated carry signal - reduced delay

♦ Example: A carry-look-ahead adder - groups of size 2 - produces signals \(G_{1:0}, P_{1:0}, G_{3:2}, P_{3:2}, \ldots \)

♦ Outgoing carry for position 3 - \(C_4 = G_{3:0} = G_{3:2} + P_{3:2} G_{1:0} \)

♦ where \(G_{3:2} = G_3 + P_3 G_2 ; G_{1:0} = G_1 + P_1 G_0 ; P_{3:2} = P_3 P_2 \)

♦ Either assume \(c_0 = 0 \) or set \(G_0 = x_0 y_0 + P_0 c_0 \)
 * Also \(P_i = X_i + Y_i \)

♦ \(G_{3:0} = G_3 + P_3 G_2 + P_3 P_2 (G_1 + P_1 G_0) \)

♦ since \(G_3 = G_3 P_3 \) - \(G_{3:0} = P_3 H_{3:0} \)
 * where \(H_{3:0} = H_{3:2} + P_{2:1} H_{1:0} ; H_{3:2} = G_3 + G_2 ; H_{1:0} = G_1 + G_0 \)

♦ Note: \(P_{2:1} \) used instead of \(P_{3:2} \) before
Ling Adders – Cont.

- **H** - alternative to carry generate **G**
 - Similar recursive calculation
 - No simple interpretation like **G**
 - Simpler to calculate

- **Example:** $H_{3:0} = G_3 + G_2 + P_2P_1(G_1 + G_0)$

- **Simplified** - $H_{3:0} = G_3 + G_2 + P_2G_1 + P_2P_1G_0$

- **While** - $G_{3:0} = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0$

- Smaller maximum fan-in \rightarrow simpler/faster circuits
- Variations of **G** have corresponding variations for **H**

- $G_{3:0} = G_3 + P_3G_{2:0}$
- $H_{3:0} = G_3 + T_2H_{2:0}$ where $T_2 = X_2 + Y_2$

- **General expression for H** -

 $H_{i:0} = G_i + T_{i-1}H_{i-1:0}$ where $T_{i-1} = X_{i-1} + Y_{i-1}$
Calculation of Sum Bits in Ling Adder

♦ Slightly more involved than for carry-look-ahead

♦ Example:

\[s_3 = c_3 \oplus (x_3 \oplus y_3) = (P_2 H_{2:0}) \oplus (x_3 \oplus y_3) \]

\[= H_{2:0}(x_3 \oplus y_3) + H_{2:0}(P_2 \oplus (x_3 \oplus y_3)) \]

♦ Calculation of \(H_{2:0} \) faster than \(C_3 \) - delay reduced

♦ Other variations of carry-look-ahead and implementations of Ling adders appear in literature
Carry-Select Adders

- n bits divided into non-overlapping groups of possibly different lengths - similar to conditional-sum adder
- Each group generates two sets of sum and carry; one assumes incoming carry into group is 0, the other 1
- the lth group consists of k bit positions starting with j and ending with i=j+k-1
Carry-Select Adder - Equations

♦ Outputs of group: sum bits S_i, S_{i-1}, ... , S_j and group outgoing carry C_{i+1}

$$s_m = s_m^0 \cdot \overline{c_j} + s_m^1 \cdot c_j ; \quad m = j, j + 1, \ldots, i$$

$$c_{i+1} = c_{i+1}^0 \cdot \overline{c_j} + c_{i+1}^1 \cdot c_j$$

♦ Same notation as for conditional-sum adder

♦ Two sets of outputs can be calculated in a ripple-carry manner
Detailed Expressions

♦ For bit m - calculate carries from $G_{m-1:j}^0 ; G_{m-1:j}^1$

$$(P_{m-1:j}, G_{m-1:j}^0) = (P_{m-1}, G_{m-1}) \circ (P_{m-2}, G_{m-2}) \circ \cdots \circ (P_j, G_j)$$

$$(P_{m-1:j}, G_{m-1:j}^1) = (P_{m-1:j}, G_{m-1:j}^0) \circ (1, 1) = (P_{m-1:j}, G_{m-1:j}^0 + P_{m-1:j})$$

♦ $P_{m-1:j}$ has no superscript - independent of incoming carry

♦ Once individual carries are calculated - corresponding sum bits are

$$s_m^0 = c_m^0 \oplus P_m \quad \text{and} \quad s_m^1 = c_m^1 \oplus P_m$$

♦ Since C_{i+1} implies C_{i+1}^1 - $c_{i+1} = c_{i+1}^0 + c_{i+1}^1 \cdot c_j$

♦ Group sizes can be either different or all equal to k, with possibly one group smaller
Different Group Sizes

♦ **Notations:**

* Size of group $\ell - k_\ell$
* L - number of groups
* ΔG - delay of a single gate

k_ℓ chosen so that delay of ripple-carry within group and delay of carry-select chain from group 1 to ℓ are equal

♦ **Actual delays depend on technology and implementation**

♦ **Example:** Two-level gate implementation of MUX

* Delay of carry-select chain through preceding $\ell-1$ groups - $(\ell-1)2\Delta G$
* Delay of ripple-carry in ℓth group - $k_\ell 2\Delta G$

♦ Equalizing the two - $k_\ell = \ell - 1$ with $k_\ell \geq 1$; $\ell = 1, 2, ..., L$
Different Group Sizes - Cont.

♦ Resulting group sizes - 1, 1, 2, 3, ...

♦ Sum of group sizes \(\geq n \)

\[
1 + L(L-1)/2 \geq n \quad \rightarrow \quad L(L-1) \geq 2(n-1)
\]

♦ Size of largest group and execution time of carry-select adder are of the order of \(\sqrt{n} \)

♦ Example: \(n=32 \), 9 groups required - one possible choice for sizes: 1, 1, 2, 3, 4, 5, 6, 7 & 3

♦ Total carry propagation time is \(18\Delta_G \), instead of \(62\Delta_G \) for ripple-carry adder

♦ If sizes of \(L \) groups are equal - carry-select chain (i.e., generating Group Carry-Out from Group Carry-In) not necessarily ripple-carry type

♦ Single or multiple-level carry-look-ahead can be used
Carry-Skip Adders

- Reduces time needed to propagate carry by skipping over groups of consecutive adder stages
- Generalizes idea behind Manchester Adder
- Illustrates dependence of "optimal" algorithm for addition on available technology
 * Known for many years, only recently became popular
- In VLSI - speed comparable to carry look-ahead (for commonly used word lengths - not asymptotically)
- Requires less chip area and consumes less power
- Based on following observation:
 - Carry propagation process can skip any adder stage for which $x_m \neq y_m$ (or, $P_m = x_m \oplus y_m = 1$)
 - Several consecutive stages can be skipped if all satisfy $x_m \neq y_m$
Carry-Skip Adder - Structure

♦ n stages divided into groups of consecutive stages with simple ripple-carry used in each group

♦ Group generates a group-carry-propagate signal that equals 1 if for all internal stages $P_m = 1$

♦ Signal allows an incoming carry into group to "skip" all stages within group and generate a group-carry-out

♦ Group l consists of k bit positions $j, j+1, \ldots, j+k-1 (= i)$
Structure - Cont.

- **Group_l_Carry-out = Gi:j + Pi:j Group_l_Carry-in**
- **Gi:j = 1** when a carry is generated internal to group and allowed to propagate through all remaining bit positions including i
- **Pi:j = 1** when k=i-j+1 bit positions allow incoming carry c_j to propagate to next position i+1
- Buffers realize the OR operation
Example - 15-bit carry-skip adder

♦ Consisting of 3 groups of size 5 each
♦ \(\Pi_i:j \) for all groups can be generated simultaneously allowing a fast skip of groups which satisfy \(\Pi_i:j=1 \)
Determining Optimal Group Size k

♦ Assumption: Groups have equal size \(k = \frac{n}{k} \) integer

♦ \(k \) selected to minimize time for longest carry-propagation chain

♦ Notations:

* \(tr \) - carry-ripple time through a single stage
* \(ts(k) \) - time to skip a group of size \(k \) (for most implementations - independent of \(k \))
* \(tb \) - delay of buffer (implements \text{OR}) between two groups
* \(T_{\text{carry}} \) - overall carry-propagation time - occurs when a carry is generated in stage 0 and propagates to stage \(n-1 \)

♦ Carry will ripple through stages 1, 2, ..., \(k-1 \) within group 1, skip groups 2, 3, ..., \(\frac{n}{k}-1 \), then ripple through group \(\frac{n}{k} \)
Determining Optimal \(k \) - Cont.

- \(T_{\text{carry}} = (k-1)tr + tb + (n/k-2)(ts+tb) + (k-1)tr \)

- **Example** - two-level gate implementation used for ripple-carry and carry-skip circuits
 - \(tr = ts + tb = 2\Delta G \)
 - \(T_{\text{carry}} = (4k+2n/k-7) \Delta G \)

- Differentiating \(T_{\text{carry}} \) with respect to \(k \) and equating to 0 -
 \[
 k_{\text{opt}} = \sqrt{\frac{n}{2}}
 \]

- Group size and carry propagation time proportional to \(\sqrt{n} \) - same as for carry-select adder

- **Example**: \(n=32 \), 8 groups of size \(k_{\text{opt}} = 4 \) is best
 - \(T_{\text{opt}} = 25\Delta G \) instead of \(62\Delta G \) for ripple-carry adder
Further Speedup

♦ Size of first and last groups smaller than fixed size k - ripple-carry delay through these is reduced

♦ Size of center groups increased - since skip time is usually independent of group size

♦ Another approach: add second level to allow skipping two or more groups in one step (more levels possible)

♦ Algorithms exist for deriving optimal group sizes for different technologies and implementations (i.e., different values of ratio $(t_s+t_b)/t_r)$
Variable-Size Groups

♦ Unlike equal-sized group case – cannot restrict to analysis of worst case for carry propagation

♦ This may lead to trivial conclusion: first and last groups consisting of a single stage – remaining \(n-2 \) stages constituting a single center group

♦ Carry generated at the beginning of center group may ripple through all other \(n-3 \) stages – becoming the worst case

♦ Must consider all possible carry chains starting at arbitrary bit position \(a \) (with \(x_a=y_a \)) and stopping at \(b \) (\(x_b=y_b \)) where a new carry chain (independent of previous) may start
Optimizing Different Size Groups

♦ k_1, k_2, \ldots, k_L - sizes of L groups $\sum_{i=1}^{L} k_i = n$

♦ General case: Chain starts within group u, ends within group v, skips groups $u+1, u+2, \ldots, v-1$

♦ Worst case - carry generated in first position within u and stops in last position within v

♦ Overall carry-propagation time is

$$T_{\text{carry}}(u, v) = (k_u - 1) \cdot t_r + t_b + \sum_{l=u+1}^{v-1} (t_s(k_l) + t_b) + (k_v - 1) \cdot t_r$$

♦ Number of groups L and sizes k_1, k_2, \ldots, k_L selected so that longest carry-propagation chain is minimized -

$$\text{minimize} \left[\max_{1 \leq u \leq v \leq L} T_{\text{carry}}(u, v) \right]$$

♦ Solution algorithms developed - geometrical interpretations or dynamic programming
Optimization - Example

- 32-bit adder with single level carry-skip
- $ts + tb = tr$
- **Optimal organization** - $L = 10$ groups with sizes $k_1, k_2, ..., k_{10} = 1, 2, 3, 4, 5, 6, 5, 3, 2, 1$
- Resulting in $T_{carry} \leq 9 \, tr$
- If $tr = 2$ ΔG - $T_{carry} \leq 18 \, \Delta G$ instead of $25 \, \Delta G$ in equal-size group case
- **Exercise**: Show that any two bit positions in any two groups u and v ($1 \leq u \leq v \leq 10$) satisfy $T_{carry}(u,v) \leq 9 \, tr$
Strategies behind two schemes sound different.

Equations relating group-carry-out with group-carry-in are variations of same basic equation.

Both have execution time proportional to \sqrt{n}.

Only details of implementation vary, in particular calculation of sum bits.

Even this difference is reduced when the multiplexing circuitry is merged into summation logic.