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Abstract—In this paper, we analyze the performance of an
adaptive Multiple Input Multiple Output (MIMO) system em-
ploying transmit antenna selection and rate adaptation based on
channel state information (CSI). Imperfections in CSI due to
estimation error and feedback delay are considered. Since CSI
is imperfect, the rate of transmission is chosen in order to meet
a target outage probability. The average throughput is evaluated
for various cases of imperfect CSI using Monte Carlo simulations.
Simulation results show that rate adaptation provides significant
gains even with imperfect CSI. Furthermore, prediction can be
used to effectively combat the effect of feedback delay.

I. INTRODUCTION

Employing adaptive transmission schemes with multiple

antenna systems is an effective means to improve the spectral

efficiency of wireless communication systems [1], [2]. The

major drawbacks are the increased hardware complexity due

to the additional antennas and the feedback bandwidth require-

ments for adaptation. Transmit antenna selection, where the

single best antenna is chosen for transmission, is a good low

complexity option [3], because of the following reasons: (1)

reduced hardware complexity owing to the usage of only one

antenna at any point of time, (2) same diversity gain as that

of the full system using all the antennas (because diversity

gain depends on the total number of antennas rather than

the number of antennas that are used), and (3) low feedback

bandwith required as the index of the selected antenna alone

needs to be fed back.

The performance of a Multiple Input Multiple (MIMO)

system employing single transmit antenna selection has been

studied in [4] and shown to preserve the diversity gain.

Since the wireless channel is time varying in nature, using

constant power and rate will lead to block errors during

the poor channel conditions or under utilization of resources

when the channel conditions are good. Adapting any one of

the parameters is sufficient to achieve high gains [5]. Rate

adaptation strategies have been shown to provide significant

gains both in the case of single antenna systems [6] and multi

antenna systems [1]. Adaptive transmission techniques require

Channel State Information (CSI) at the transmitter (CSIT). CSI

is generally obtained at the receiver using training symbols and

fed back to the transmitter through feedback. Estimation errors

and feedback delay render the CSIT imperfect. The effect of

estimation errors on MIMO antenna selection is studied in [7]

and the effect of feedback delay for a specific case of a 2× 1
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system is studied in [8]. Outage performance and Diversity-

Multiplexing gain Tradeoff (DMT) of the MIMO antenna

selection are presented in [9] for the general imperfect CSIT

model that encompasses feedback delay, estimation errors and

prediction. However, rate adaptation has not been considered

in [7], [8], [9]. In practice, systems with CSIT are likely to

adapt the transmission rate while maintaining a target outage

probability. Therefore, it is important to understand the effect

of imperfect CSIT on a system with rate adaptation along with

antenna selection.

In this paper, the performance of a rate adaptive MIMO an-

tenna selection system is studied in the presence of imperfect

CSIT. The instantaneous transmission rate is chosen using a

lower bound on the conditional mutual information in order to

meet a target outage probability. The effect of feedback delay

on rate adaptation is studied and the improvement obtained

upon using channel prediction is also analyzed. Simulation

results reveal that the average throughput improves with rate

adaptation even in the presence of feedback delay. However,

the improvement reduces with increasing delay. Prediction can

effectively combat the impact of feedback delay on adaptive

transmission.

The rest of the paper is organized as follows. The system

model is described in section II. The lower bound on mutual

information and rate adaptation methodology are presented in

section III. Simulations results are presented in section IV and

conclusions are drawn in section V.

II. SYSTEM MODEL

The system model is depicted in Fig 1. A MIMO system

with Nt transmit antennas and Nr receive antennas is consid-

ered. At any instant of time, one out of the Nt antennas is used

for transmission. Transmission rate is adapted based on CSI.

The channel between the transmitter and receiver is assumed

to be frequency flat. The received vector at time index k is,

therefore, represented as:

y(k) =
√

Phsel(k)x(k) + n(k), (1)

where x(k) represents the transmit symbol at time k, P is

the transmit power, n(k) ∼ CN
(

0, σ2
nINr

)

is the vector of

Additive White Gaussian Noise (AWGN) and hsel(k) is the

Nr × 1 channel vector corresponding to the selected transmit

antenna. hsel(k) is one of the columns of the Nr×Nt channel

matrix H(k) at instant k. The elements of H(k) are assumed
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Fig. 1: System Model

to be i.i.d and CN (0, 1). A block fading model is considered,

where the elements of H are assumed to be constant over a

block and correlated across blocks.

Maximal Ratio Combining (MRC) is employed at the re-

ceiver for decoding. CSI is estimated using training symbols.

The training pattern employed for channel estimation is similar

to the training in [10], [11]. Antenna selection is done based

on the estimated CSI and the selected index is fed back

to the transmitter. Selection is based on maximizing the

instantaneous receive SNR, i.e., the antenna that maximizes

||hsel(k)||2 is selected. Let Ht represent the channel estimate

used for antenna selection and Hr represent the channel

estimate used for decoding. Since Ht and Hr are both zero

mean and jointly Gaussian and circularly symmetric, they can

be related as follows [12], [9]:

Hr = σr

[

ρ

σt

Ht +
√

1 − ρ2E

]

, (2)

where Eij ∼ CN (0, 1), σ2
r = E[|Hr,ij |2], σ2

t = E[|Ht,ij |2],
and ρ =

E[Ht,ijH∗

r,ij ]√
E[|Hr,ij |2]E[|Ht,ij |2]

. Xij represents the (i, j)th

element of the matrix X. Since Ht,ij’s are i.i.d and Hr,ij’s are

also i.i.d., ρ is independent of i, j. We consider four different

cases of imperfect CSIT as summarized in Table I. Pt is

the training symbol power, fdTs is the normalized Doppler

frequency, and ∆ is the delay in number of frames. w is

the L-tap Wiener filter used for channel prediction and p is

the cross correlation vector between the actual channel and

the past estimates. A detailed discussion of the imperfect CSI

model can be found in [12], [9].

III. RATE ADAPTATION FOR THE MIMO ANTENNA

SELECTION SYSTEM

In this section, we present the rate adaptation strategy

used with the MIMO antenna selection system. At the time

of decoding, the receiver has the knowledge of the current

estimate Hr and the past estimate Ht. However, antenna

selection and rate adaptation have to be performed only using

the past estimate Ht. When both Hr and Ht are known, a

lower bound on the conditional mutual information between

the input and output given Hr and Ht can be obtained and

a transmission rate can be chosen to avoid outage. However,

when only Ht is used to choose the transmission rate, outage

is possible. In this case, the transmission rate can be chosen

in such a way that the probability that the lower bound on

achievable rate is less than the required rate is below a given

target outage probability. The details are presented below.

A. Mutual Information Lower bound

The lower bound on the conditional mutual information

between the input x and output y of the MIMO antenna

selection system, for a given Hr and Ht is given by [9]:

I (x;y/Ht,Hr) ≥ log
(

1 + Γ||Hr,sel||2
)

, (3)

where Γ = Pd

Pdσ2
e+σ2

n
, Pd is the transmit data power and Hr,sel

is the estimate of the channel vector corresponding to the

selected antenna. σ2
e is the estimation error variance given by

σ2
e =

σ2
n

Pt+σ2
n

. In the absence of estimation errors, i.e., with

perfect CSIR, equation (3) becomes an equality.

In practice, Ht alone can be used for rate adaptation.

Therefore, this lower bound cannot be calculated. However,

since we can relate Hr and Ht using the model in equation

(2), we can write

||Hr,sel||2 =
σ2

r(1 − ρ2)

2

∥

∥

∥

∥

∥

[
√

2ρ2

(1 − ρ2)σ2
t

Ht,sel +
√

2Esel

]∥

∥

∥

∥

∥

2



Imperfect CSIT σ2
r σ2

t ρ

Estimation Errors and no delay Pt

Pt+σ2
n

Pt

Pt+σ2
n

1

No estimation errors, delay 1 1 J0(2πfdTs∆)

Estimation errors + delay Pt

Pt+σ2
n

Pt

Pt+σ2
n

Pt

Pt+σ2
n
J0(2πfdTs∆)

Estimation errors+delay Pt

Pt+σ2
n

pHw
√

Pt

Pt+σ2
n
pHw

+ prediction

TABLE I: Imperfect CSIT cases considered

= σ2
r

(1 − ρ2)

2
A,

where A is defined as

∥

∥

∥

[√

2ρ2

(1−ρ2)σ2
t

Ht,sel +
√

2Esel

]∥

∥

∥

2

and Ht,sel is the vector of past estimates of the selected

antenna. Since selection is based on Ht, ||Ht,sel||2 =
max

i=1,2,··· ,Nt

||Ht,i||2. Therefore, the lower bound on the mutual

information for a given Ht and Hr can be written as

I (x,y/Ht,Hr) ≥ log

(

1 + Γσ2
r

(1 − ρ2)

2
A

)

. (4)

The elements of
√

2Esel are complex Gaussian with variance

1 per dimension. Therefore, for a given Ht,sel, A is non-

central distributed with 2Nr degrees of freedom. The non

centrality parameter δ = 2µ

σ2
t
||Ht,sel||2, where µ = ρ2

1−ρ2 . Even

though the lower bound in equation (4) cannot be evaluated,

the probability that the lower bound is lower than a required

rate for a given Ht,sel can be evaluated. This probability will

be an upper bound on the actual outage probability. Therefore,

the transmission rate can be chosen such that the outage

probability is less than a given target.

For a given Ht and transmission rate R (Ht), the probability

of outage is upper bounded as

P (outage/Ht) ≤ P

(

A < 2β

(

1 + µ

σ2
r

))

= Fnc−χ2,2Nr,δ

(

2β

(

1 + µ

σ2
r

))

, (5)

where β = eR(Ht)−1
Γ and Fnc−χ2,2Nr,δ(·) is the CDF of

the non central chisquared distributed random variable with

parameters 2Nr and δ given by (equation (26.4.25) in [13])

Fnc−χ2,2Nr,δ (a) =
∞
∑

j=0

e−
δ
2

(

δ
2

)j

j!
γj+Nr

(a

2

)

, (6)

where γi(x) is the regularized gamma function given by

γi(x) =

∫ x

0

e−yyi−1

(i−1)! dy.

B. Rate adaptation methodology

Based on the upper bound on outage probability above, rate

adaptation is performed as follows.

Step 1: Find the maximum column norm of Ht, i.e., ||Ht,sel||2

and the corresponding non-centrality parameter δ.

Step 2: Calculate the largest value of βopt such that

Fnc−χ2,2Nr,δ

(

2βopt

(

1 + µ

σ2
r

))

< Pout, (7)

where Pout is the target outage probability. While it is difficult

to get βopt in closed form, standard numerical methods are

available to calculate the inverse of the CDF of noncentral

chi-squared random variables.

Step 3: Using βopt, rate is calculated as

R(Ht) = log (1 + Γβopt) . (8)

Finally, the average rate achieved is given by

Ravg =

∫ ∞

0

R(x)f||Ht,sel||2(x)dx, (9)

where f||Ht,sel||2(x) is the pdf of ||Ht,sel||2. This can be

evaluated using Monte Carlo simulations.

Some simple special cases where the rate can be chosen to

avoid outage are:

1) No delay: In the absence of feedback delay, Ht = Hr.

In this case, the lower bound on mutual information can be

evaluated and, therefore, R can be chosen to be

R(Ht) = log
(

1 + Γ||Hr,sel||2
)

in order to avoid outage.

2) Perfect CSIT: With perfect CSIT, Ht = Hr = H and

σ2
e = 0. Therefore, R can be chosen as

R(H) = log

(

1 +
P

σ2
n

||Hsel||2
)

in order to avoid outage.

IV. NUMERICAL RESULTS AND DISCUSSION

A 2 × 2 MIMO antenna selection system is considered

for illustration purposes. The average rate (throughput) is

calculated using Monte Carlo simulations for the case of

perfect CSIT and all the four cases of imperfect CSIT – (1)

Estimation errors, no delay, (2) Delay, no estimation errors,

(3) Estimation errors, Delay, and (4) Estimation errors, delay,

and prediction. The normalized Doppler is chosen to be 0.05,

which leads to ρ = 0.97. Delay in frames of ∆ = 1 and

∆ = 2 are considered. For the case of predicted CSIT, the

prediction filter length is chosen to be L = 20 [12], [9].

Training symbol power is optimized based on the method



in [11]. The target outage probability Pout is chosen to be

0.01. The outage capacity without rate adaptation for outage

probability of 0.01 is also plotted for the sake of comparison.

Fig. 2 shows the average rate vs. SNR for perfect CSIT and

for all the four cases of imperfect CSIT. Feedback delay of

∆ = 1 frame is considered. It can be seen that rate adaptation

improves the average throughput, for all the CSIT conditions.

With rate adaptation, even the throughput in the presence of

imperfect CSIT is better than that obtained with perfect CSIT

in the absence of rate adaptation. Feedback delay affects the

rate more significantly compared to estimation error. This is

because estimation error reduces with SNR while the feedback

delay is independent of SNR. Channel prediction can also be

seen to effectively combat delay in feedback.

Fig. 3 compares the effect of using rate adaptation for

increasing feedback delay. ∆ = 1 and ∆ = 2 are considered.

For both the cases, throughput improves upon using rate adap-

tation. However, the improvement decreases with increasing

∆. As delay increases, the correlation between the available

CSIT and the actual CSIT decreases and thereby, the gain

achieved using adaptation is also decreased.

The effect of channel prediction is shown in Fig. 4. It is clear

from the figure that channel prediction almost restores the gain

achieved by adaptation. Using channel prediction improves the

correlation between the available CSIT and the actual CSIT.

Therefore, the improvement obtained using rate adaptation

does not diminish even for increasing feedback delay.

V. CONCLUSIONS

In this paper, we have analyzed the performance of rate

adaptive MIMO antenna selection systems in the presence

of imperfect CSIT. The transmission rate is chosen in order

to maintain a target outage probability and different im-

perfect CSIT cases are considered. It has been shown that

rate adaptation improves the average throughput even with

imperfect CSIT. However, as delay increases, the gain from

rate adaptation decreases. The effect of feedback delay can be

significantly compensated using channel prediction. Analytical

results on the asymptotic loss in average rate due to imperfect

CSIT are being currently studied.
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