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Abstract—This paper presents algorithms and architecture
designs that can meet real-time requirements of multiuser
channel estimation and detection in future code-division mul-
tiple-access-based wireless base-station receivers. Sophisticated
algorithms proposed to implement multiuser channel estimation
and detection make their real-time implementation difficult on
current digital signal processor-based receivers. A maximum-like-
lihood based multiuser channel estimation scheme requiring
matrix inversions is redesigned from an implementation per-
spective for a reduced complexity, iterative scheme with a simple
fixed-point very large scale integration (VLSI) architecture. A
reduced-complexity, bit-streaming multiuser detection algorithm
that avoids the need for multishot detection is also developed for
a simple, pipelined VLSI architecture. Thus, we develop real-time
solutions for multiuser channel estimation and detection for
third-generation wireless systems by: 1) designing the algorithms
from a fixed-point implementation perspective, without significant
loss in error rate performance; 2) task partitioning; and 3) de-
signing bit-streaming fixed-point VLSI architectures that explore
pipelining, parallelism, and bit-level computations to achieve
real-time with minimum area overhead.

Index Terms—Digital signal processor, multiuser channel esti-
mation, multiuser detection, real-time implementation, very large
scale integration, wideband code-division multiple-access.

I. INTRODUCTION

T HIRD-GENERATION (3G) wireless cellular systems
[1]–[3], are being designed to support extremely high

data rates (in Mb/s) and quality-of-service (QoS) guarantees
that are required for multimedia communication. Wideband
code-division multiple-access (W-CDMA) [2] has been chosen
as the multiple-access protocol to support these features. The
existing narrowband CDMA IS-95 standard supports only
voice and low-data rates up to 9.6 kb/s and uses single-user
algorithms at the base-station receiver that ignore multiple
access interference (MAI) between different users. To achieve
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improved performance at these high data rates, highly so-
phisticated and complex multiuser algorithms for channel
estimation and detection need to be implemented. These
algorithms combat MAI by jointly processing the signals of
all users at the base-station receiver. The multiuser algorithms
involving matrix multiplications and inversions [4], [5] re-
quire block-based computations and floating point accuracy
and significantly increase the implementation complexity of
the receiver [6]. A direct implementation of these multiuser
algorithms using current generation digital signal processor
(DSP)-based base-station receivers fails to meet third-gener-
ation real-time requirements [7]. Therefore, only single user
algorithms for channel estimation and detection [8], [9] have
been implemented in all current practical CDMA systems, such
as IS-95.

Implementations for multiuser detection for the base station
have been studied in [6] and [10] while low power versions
targeted at mobile handsets have been studied in [11] and
[12]. However, these detector implementations either assume
perfect channel estimation or assume single user estimation
using sliding-correlator type structures [8]. The detector im-
plementations also assume that channel estimation is done in
real-time and the data rates are considered to be dependent only
on the detector. However, many advanced multiuser channel
estimation schemes have high computational complexity, even
more than that for multiuser detection, due to matrix inversions
involved and cannot be performed in real-time. Also, algorithms
for estimation and detection are block-computation based due
to the need for repeated inversion updates for estimation [13]
and multishot detection [5], [14], which make their real-time
implementation more difficult. Matrix-inversion free schemes
such as those based on conjugate gradient descent and recursive
least squares (RLS) [15]–[17] exist in the literature. We have
evaluated the applicability of such schemes for multiuser
channel estimation and presented one such scheme with low
computational complexity and suitable for implementation.
Jointly performing multiuser channel estimation and detection
is shown to have lower computational complexity and better
error rate performance than performing multiuser estimation
and detection separately [13]. Hence, we shall consider this
joint algorithm for multiuser channel estimation and detection
for redesign from a very large scale integration (VLSI) architec-
ture perspective. Similar work on a joint channel estimation and
detection scheme for time division multiple access (TDMA)
systems with a systolic implementation for Kalman filtering is
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presented in [18]. They have also studied word-length effects
and provided comparisons with least mean square (LMS) and
RLS schemes.

In this paper, we present efficient algorithms for multiuser
channel estimation and detection, designed from an imple-
mentation perspective and their mapping to real-time VLSI
architectures. We redesign a multiuser channel estimation
algorithm [13], based on the maximum-likelihood (ML)
principle and present an iterative scheme, which is computa-
tionally effective, suitable for a fixed point implementation
and is equivalent to matrix inversion in terms of error rate
performance. A new bit-streaming multiuser detection scheme
based on parallel interference cancellation is presented that
avoids the need for multishot detection [5], [14], [19] for a
simple bit-streaming pipelined VLSI architecture. Fixed-point
implementations of the redesigned algorithms are presented.
First, we determine the maximum data rate achievable with
no area constraints. Then, we obtain the data rate achieved by
an area-constrained architecture. Finally, we present area-time
tradeoffs for real-time VLSI architectures to achieve the tar-
geted data rates with minimum area overhead. Thus, the main
contribution of this paper is to show real-time performance for
multiuser algorithms by: 1) designing the algorithms from a
fixed-point architecture perspective, without significant loss in
error rate performance; 2) task partitioning; and 3) designing
bit-streaming fixed point VLSI architectures to exploit available
pipelining, parallelism and bit-level computations.

II. M ULTIUSER CHANNEL ESTIMATION AND DETECTION

A. Real-Time Requirements

Data transmission in 3G wireless systems such as third-gen-
eration partnership project (3GPP) or universal mobile telecom-
munications systems (UMTSs) is possible at varying rates such
as from 32 kb/s to 2 Mb/s depending on the spreading factor ()
which varies from 256 (for vehicular traffic) to 4 (for indoor en-
vironments), respectively (for example, see [3]). The standards
assume a chip rate of 4.096 Mcps and quadrature phase-shift
keying (QPSK) modulation (2 bits/symbol). We have assumed
binary phase-shift keying (BPSK) modulation (1 bit/symbol) in
our work for simplicity. Hence, we target data rates in the range
of 16 kb/s to 1 Mb/s. However, our proposed algorithms as well
as our work on fixed-point analysis, pipelining, and parallelism
can be extended to higher modulation schemes as well. We pro-
pose different architectures which explore area-time trade-offs
in order to achieve these data rates. We seek to design archi-
tectures that meet real-time requirements to within an order-of-
magnitude. Specifically, we target architecture designs for dif-
ferent spreading gains ( 4, 16, 32, 128, 256) to
achieve data rates of 16 kb/s, 64 kb/s, 128 kb/s, 256 kb/s, and
1 Mb/s, respectively. Note that the reference to 3G systems is
solely as an example to illustrate important system features such
as the varying data rates which we seek to target and the use of
training sequences for channel estimation.

B. Received Signal Model

We assume BPSK modulation and use direct sequence spread
spectrum signaling, where each active mobile unit possesses a

unique signature sequence (short repetitive spreading code) to
modulate the data bits (1). The base station receives a summa-
tion of the signals of all the active users after they travel through
different paths in the channel. The multipath is caused due to re-
flections of the transmitted signal that arrive at the receiver along
with the line-of-sight component. These channel paths induce
different delays, attenuations and phase-shifts to the signals and
the mobility of the users causes fading in the channel. Moreover,
the signals from different users interfere with each other in ad-
dition to the additive white Gaussian noise (AWGN) present in
the channel. Multiuser channel estimation refers to the joint es-
timation of these unknown parameters for all users to mitigate
these undesirable effects and accurately detect the received bits
of different users. Multiuser detection refers to the detection of
the received bits for all users jointly by canceling the interfer-
ence between the different users. The performance of multiuser
detection depends greatly on the accuracy of the channel esti-
mates. The model for the received signal at the output of the
multipath channel [13] can be expressed as

(1)

where is the received signal vector after chip-matched
filtering [5], [20], is the effective spreading code
matrix, containing information about the spreading codes (of
length ), attenuation and delays from the various paths,

, , are the bits
of users to be detected, is AWGN and is the time index.
The size of the data bits of the users is as we assume
that all paths of all users are coarse synchronized to within
one symbol period from the arbitrary timing reference. Hence,
only two symbols of each user will overlap in each observation
window. This model can be easily extended to include more gen-
eral situations for the delays [21], without affecting the deriva-
tion of the channel estimation algorithms. The estimate of the
matrix contains the effective spreading code of all active users
and the channel effects and is used for accurately detecting the
received data bits of different users. We will call this estimate
of the effective spreading code matrix,, our channel esti-
mate as it contains the channel information directly in the form
needed for detection. This approach [13] is chosen as it pro-
vides: 1) a single framework for both channel estimation and de-
tection and 2) both computational and performance gains. Most
other multiuser channel estimation techniques try to estimate the
individual channel attenuations and delays instead of the effec-
tive spreading code.

C. Multiuser Channel Estimation and Tracking

The block diagram of the base-station receiver is shown in
Fig. 1. The multiuser channel estimation algorithm proposed in
[13] is redesigned for implementation in this paper. The ML
channel estimate is obtained using the knowledge of training
symbols. Most proposed 3G systems [3] allow for the use of
training symbols. When training symbols are not available the
channel can be updated, to track time-variations, using decision
feedback from the detector. This approach provides a simple
linear channel estimation technique and its properties are similar
to those associated with the ML approach discussed in [22].
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Fig. 1. Simplified view of the base station receiver. This figure shows the
multiuser channel estimation and detection blocks in the receiver. A training
sequence (pilot) is used for channel estimation and decision feedback is used to
update the estimates in the absence of a pilot.

A basic summary of the algorithm and its computational
aspects are presented here. More details can be found in [13].
Consider observations of the received vector
corresponding to theknown trainingbit vectors .
Given the knowledge of the training bits, the discretized received
vectors , are independent and each of them is
Gaussian distributed. Thus, the likelihood function becomes

After eliminating terms that do not affect the maximization,
the log likelihood function becomes

(2)

The estimate , that maximizes the log likelihood, satisfies the
following:

(3)

The matrices and are defined as follows:

(4)

Thus, the computations required to obtain the estimateare:
1) the computation of the correlation matrices and and
2) the computation required to solve the linear equation in (3).

D. Multiuser Detection

Multiuser detection cancels the interference from other users
to improve the error rate performance, compared with the tradi-
tional single user detection using only a matched filter [20]. We
implement multistage detection [14], based on the principle of
Parallel Interference Cancellation. This scheme cancels the in-
terference from different users, iteratively in stages and is shown
to have computational complexity quadratic with the number of
users. It is also possible to feed the channel estimate matrix di-
rectly into the multistage detector instead of explicitly extracting
the parameters.

The channel matrix is rearranged into its odd and even
columns which corresponds to the suc-

cessive bit vectors and ; where
are the bits of the users at time instant

that need to be detected. In vector form, the received signal is

(5)

1) Matched Filter (MF) Detector:The bits, , of the
users to be detected lie between the received signaland
boundaries. The MF detector [5], [20] does a correlation of the
input bits with the received bits. Hence, the MF detector can be
represented as

(6)

The multistage detector uses the MF to get an initial estimate of
the bits and then iteratively subtracts the interference from all
other users.

2) Multistage Detector:The multistage detector [14], [23]
performs parallel interference cancellation iteratively in stages.
The desired user’s bits suffers from interference caused by the
past or future overlapping symbols of different asynchronous
users. Detecting a block of bits simultaneously (multishot de-
tection) can give performance gains [5]. However, in order to
do multishot detection, the above model should be extended to
include multiple bits. Let us consider bits at a time (

). So, we form the multishot received vector
by concatenating vectors

...
...

. . .
...

(7)

Let represent the new multishot channel matrix.
The initial soft decision outputs and hard decision
outputs of the detector are obtained from a MF
using the channel estimates as

(8)

(9)

(10)

(11)

where and are the soft and hard decisions, respectively,
after each stage of the multistage detector. These computations
are iterated for where is the maximum
number of iterations chosen for desired performance. The struc-
ture of is as shown

...
...

...
...

(12)
The block tri-diagonal nature of the matrix arises due to the
assumption that the asynchronous delays of the different users
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are coarse synchronized within one symbol duration [13], [21].
If the channel is static, the matrix is also block-Toeplitz. We
exploit the block tri-diagonal nature of the matrix later, for re-
ducing the complexity and pipelining the algorithm effectively.
The hard decisions,, made at the end of the final stage, are fed
back to the estimation block in the decision feedback mode for
tracking in the absence of the pilot signal. Detectors using dif-
ferencing methods have been proposed [23] to take advantage
of the convergence behavior of the iterations. If there is no sign
change of the detected bit in succeeding stages, the difference is
zero and this fact is used to reduce the computations. However,
the advantage is useful only in case of sequential execution of
the detection loops, as in DSPs. Hence, we do not implement
the differencing scheme in our design for a VLSI architecture.

III. REAL-TIME ALGORITHMS FORMULTIUSER CHANNEL

ESTIMATION AND DETECTION

A. Iterative Scheme for Channel Estimation

A direct computation of the ML based channel estimate
involves the computation of the correlation matrices and

, and then the computation of the solution to (3), ,
at the end of the pilot. A direct inversion at the end of the pilot
is computationally expensive and delays the start of detection
beyond the pilot. This delay limits the information rate. In our
iterative algorithm, we approximate the ML solution based on
the following ideas.

1) The product can be directly approximated using
iterative algorithms such as the gradient descent algo-
rithm [16]. This reduces the computational complexity
and is applicable in our case because is positive def-
inite (as long as ).

2) The iterative algorithm can be modified to update the esti-
mate as the pilot is being received instead of waiting until
the end of the pilot. Therefore, the computation per bit
is reduced by spreading the computation over the entire
training duration. During theth bit duration, the channel
estimate, , is updated iteratively in order to get closer
to the ML estimate for training length of. Therefore, the
channel estimate is available for use in the detector im-
mediately after the end of the pilot sequence.

The computations in the iterative scheme during theth bit du-
ration are given below

(13)

(14)

(15)

The term in step 3 is the gradient of the
likelihood function in (2) at for a training length of .
The constant is the step size along the direction of the gra-
dient. Since the gradient is known exactly, the iterative channel
estimate can be made arbitrarily close to the ML estimate by
repeating step 3 and using a valuethat is lesser than the recip-
rocal of the largest eigenvalue of . In our simulations, we
observe that a single iteration during each bit duration is suffi-
cient in order to reach very close to the true ML estimate by the

end of the training sequence. The solution converges monoton-
ically to the true estimate with each iteration and the final error
is negligible for realistic system parameters. A detailed analysis
of the deterministic gradient descent algorithm can be found in
[16] and [17] and a similar iterative algorithm for channel esti-
mation for long code CDMA systems is analyzed in [24].

An important advantage of this iterative scheme is that it lends
itself to a simple fixed point implementation, which was difficult
to achieve using the previous inversion scheme based on ML
[13]. The multiplication by the convergence parametercan be
implemented as a right shift, by making it a power of two as the
algorithm converges for a wide range of[24].

Theproposediterativechannelestimationcanalsobeeasilyex-
tendedtotrackslowly time-varyingchannels.Duringthetracking
phase,bitdecisions fromthemultiuserdetectorareusedtoupdate
the channel estimate. Only a few iterations need to be performed
for a slowly fading channel and the previous estimate serves as a
very good initialization. The correlation matrices are maintained
over a sliding window of length as follows:

(16)

(17)

B. Performance Comparisons

Iterative algorithms have been proposed earlier for channel
estimation and detection in [15] and [25]–[28]. In [15] and [25],
several iterative methods for general adaptive filter and equal-
izer applications are discussed in detail. Specific algorithms ap-
plicable for CDMA systems are developed in [26]–[29]. Most
of these algorithms are based on the method of gradient de-
scent or the method of least squares. These papers mainly target
bit-error rate (BER) performance and they do not consider hard-
ware complexity for a real-time implementation. In this paper,
we propose an iterative channel estimation algorithm for mul-
tiuser channel estimation suitable for real-time implementation
and we show that it has almost the same performance as schemes
based on least squares.

As discussed in [15], the gradient descent algorithms can be
broadly classified into two categories, deterministic and sto-
chastic gradient descent. The well known least mean square
(LMS) algorithm is a stochastic gradient algorithm, where the
actual gradient is not known and is approximated by an esti-
mated noisy gradient. In this paper, we use the deterministic
gradient descent algorithm from [15]–[17], where the gradient
of the objective function is known exactly, to solve the linear
equation in (3).

The proposed iterative algorithm to obtain the ML estimate
is related to the RLS approach for minimum mean-square-error
(MMSE) estimation. In both cases, the estimate for preamble
length aims to minimize the squared error for that particular
length . However, we use the known gradient to obtain the es-
timate as opposed to the RLS algorithm which does not rely
on gradient descent. Another difference between our iterative
approach and RLS is that we use a sliding window update as
opposed to RLS which uses an exponential weight factor up-
date ( ). For the case of AWGN noise, we note that the ML and
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Fig. 2. BER performance comparison of the iterative scheme with RLS
and true inversion for different preamble lengths. This figure shows the error
performance for two detectors, a MF detector and a multiuser detector.

MMSE estimation approaches lead to the same solution for ob-
taining the channel estimate.

A comparison of the performance of our iterative scheme
against the RLS algorithm is shown in Fig. 2. The simulations
were performed for 8 equal power users with a spreading code
of length 16 for a AWGN channel having three multipath reflec-
tions at 10 dB signal-to-noise ratio (SNR). The BER is calcu-
lated using the channel estimates after the end of the pilot phase
for two types of detectors, a MF detector [5], [20] and a multi-
stage multiuser detector (MUD) [14]. The users are all transmit-
ting at the same power over a static channel with three paths of
relative strengths 1, 0.5, and 0.33. Although the detection algo-
rithm can handle the near–far problem, we simulated the equal
power scenario as it generates the worst case for multistage de-
tection. To use a sliding window update, we choose 1 as the
exponential weighting factor for RLS in our simulations. From
Fig. 2, it can be seen that our iterative scheme (ITER) performs
almost as well as the RLS algorithm and the actual matrix in-
version. The value of should be less than the reciprocal of the
largest eigenvalue of for convergence.

Since the maximum eigenvalue of increases with, a
larger is possible for a smaller preamble length. Therefore,
faster convergence can be achieved for smaller preambles. The
maximum value of that can provide stability for a given pre-
amble can chosen at the receiver for fastest convergence. There-
fore, the performance of our iterative algorithm is almost the
same as that achieved by the RLS algorithm or the exact ML
algorithm. From Fig. 2, we can see that the performance curves
almost flatten out after a window length of 128 and, henceforth,
we use as our window length for simulations. Since
for this window length, and have the
same performance, we will use henceforth in our
simulations for greater stability.

Our iterative scheme is less computationally complex than
RLS as we avoid the computation of the gain vector with every
iteration. The RLS algorithm uses the matrix inversion lemma
[15] to avoid matrix inversion but requires scalar division.
Though the order of complexity in terms of multiplication and

Fig. 3. Error rate performance in a multipath fading channel. This figure
shows the error performance of both estimation schemes in the presence of
slow fading at 10 km/h mobile velocity at a carrier frequency of 1.8 GHz. The
matrix inversion based scheme assumes a static channel and is not updated
with decision feedback, while the iterative scheme is updated every bit. The
convergence parameter,�, is chosen as 1/1024. A pilot sequence of 128 bits
was used initially to obtain the channel estimates.

addition is the same for both the iterative scheme and RLS
[ per bit], the RLS scheme requires more
divisions. The complexity difference may be thought of as the
additional complexity to find a new (gain vector) for every
iteration in RLS compared with the fixedused in our iterative
scheme. Our iterative scheme is also more suitable for a hard-
ware implementation than RLS. In a systolic implementation,
our proposed iterative algorithm uses only truncated multipliers
and adders and does not require any special boundary cells.
For implementation of RLS, matrix decomposition techniques
such as QR have been used [15]. The QR decomposition can
also be implemented efficiently in fixed-point using systolic
arrays [30], [31]. However, the cells in the array (especially,
the boundary cells, which need to compute the Givens rotation)
[15], [31] have more computational complexity than the cells
used in our iterative algorithm.

Thus, we show that our proposed iterative algorithm has a
lower computational complexity than RLS and is also more suit-
able for a hardware implementation. We now evaluate the per-
formance of the iterative scheme with respect to the original ML
scheme for different SNRs and for fading channels.

The analysis of the system for a multipath fading channel with
tracking is as shown in Fig. 3. Here, we see that the proposed
tracking scheme based on the update of (16) and (17) is able
to effectively track the time-varying channel. The poor perfor-
mance of the static channel assumption for this Rayleigh fading
channel (with mobile velocity 10 km/h) at a carrier frequency of
1.8 GHz shows the importance of tracking. The simulation was
done for 15 equal power users with a window length of 128 (and
preamble length of 128). For faster fading, the window length
needs to be decreased appropriately. The original channel esti-
mation scheme requires a matrix inversion and matrix multipli-
cation for every update while the iterative scheme reduces the
complexity to a matrix multiplication per update.
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C. Pipelined Detection

The multishot detection scheme [14], [32] proposed in the
earlier section is block-based. Such a block-based implementa-
tion needs a windowing strategy and has to wait until all the bits
needed in the window are received and are available for com-
putation. This results in taking a window of bits and using
it to detect 2 bits as the edge bits are not detected accu-
rately due to windowing effects. Thus, there are two additional
computations per block and per iteration that are not used. The
detection is done in blocks and the two edge bits are thrown
away and recalculated in the next iteration. However, the stages
in the multistage detector can be efficiently pipelined [19] to
avoid edge computations and to work on a bit-streaming basis.
This is equivalent to the normal detection of a block of infinite
length, detected in a simple pipelined fashion. Also, the compu-
tations can be reduced to work on smaller matrix sets. This can
be done due to the block tri-diagonal nature of the matrix
as seen from (12). The computations performed on the interme-
diate bits reduce to

(18)

(19)

(20)

(21)

Equation (20) may be thought of as subtracting the interference
from the past bits of users, who have more delay, and the future
bits of the users, who have less delay than the desired user. The
left matrix , stands for the partial correlation be-
tween the past bits of the interfering users and the desired user,
the right matrix , stands for the partial correlation between
the future bits of the interfering users and the desired user. The
center matrix , is the correlation of the current bits
of interfering users and the diagonal elements are made zeros
since only the interference from other users, represented by the
nondiagonal elements, needs to be canceled. The lower index,
, represents time, while the upper index,, represents the itera-

tions. The initial estimates are obtained from the matched filter.
Equation (20) is similar to the model chosen for output of the
matched filter for multiuser detection in [32]. Equations (20)
and (21) are equivalent to (10) and (11), where the block-based
nature of the computations are replaced by bit-streaming com-
putations.

The detection can now be pipelined as shown in Fig. 4. An
example highlighting the calculation of bit 3 in the detector is
shown. An initial estimate of the received signal is done using
a MF detector, which depends only on the current and the past
received bits. The stages of the multiuser detector need bits 2
and 4 of all users to cancel the interference for bit 3. Hence,
the first-stage can cancel the interference only after the bits 2
and 4 estimates of the matched filter are available. The other
stages have a similar structure. Hence, while bit 3 is being es-
timated from the final stage, the matched filter is estimating bit
9, the first-stage bit 7 and the second-stage bit 5. There are no

Fig. 4. Pipelined bit-streaming detection. This figure shows how the detection
process can be streamlined to work on a bit basis rather than in blocks. As
soon as the immediate future bits are available, the next iteration of detection is
carried out. Bit 3 is highlighted as an example for pipelined detection.

edge bit computations in this scheme and, hence, they can be
avoided and we get savings in computation per detection
stage, where is the detection window length including the
edge bits. Also, instead of detecting a block of bits, each bit
is detected in a streaming fashion, reducing the worst case la-
tency by the detection window length and eliminating the
memory requirements of block computation by a factor of.

D. Fixed-Point Implementation

We developed a model of the system in C++ using fixed-point
“classes” in order to study the performance of the system with
different precision requirements. The multiplications and addi-
tion operations were “over-loaded” so as to saturate if the avail-
able precision were to be exceeded. Since the received signal
amplitude depends on the number of users in the system, the
number of multiple path reflections, the spreading gain and the
SNR, the amount of precision required by the A/D converter is
given by

precision (in bits)

(22)

Equation (22) is due to the fact that the maximum value of the re-
ceived signal would be , where is the number
of users and is the number of multipath reflections. The noise
would be less than with a probability of more
than 0.99, where is the variance of the noise and is the
spreading gain. Four more bits for additional precision are pro-
vided with one bit for the sign. This gives precisions in the range
of 8–12 bits for different users and spreading gains which is pos-
sible with current A/D converters.

We study the effects of finite precision on the estimation and
detection algorithms based on their performance using simula-
tions. A detailed analysis of the algorithms for finite precision
(as in [33]) is challenging and is not the focus of this paper.
We present two simulation results of the algorithms for finite
precision with different spreading gains. Fig. 5 shows the BER
performance of the channel estimation and detection algorithms
for a spreading gain of 16 with 8 users. Fig. 6 shows the perfor-
mance for a spreading gain of 32 with 15 users. In each case, we
choose a preamble length of 128 and aof 1/1024 [chosen to
be smaller than the reciprocal of the largest eigenvalue of
for all in order to ensure convergence].
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Fig. 5. Fixed point error rate performance forN = 16,K = 8. The figure
shows the effects of quantization on the MF and MUD for different precisions.

Fig. 6. Fixed point error rate performance forN = 32,K = 15. The figure
shows the effects of quantization on the MF and MUD for different precisions.

Based on the simulations performed, we have made the fol-
lowing observations:

1) We see that 16-bit fixed point multiuser channel estima-
tion and detection performs almost as well as floating
point precision multiuser estimation and detection. In
fact, for 16 and 8 the performance begins
to degrade only at 13-bit precision and for and

the performance degrades at 14-bit precision.
2) The A/D quantization of the received chip-matched filter

output does not require as much precision as required for
the computations. Reasonable precision of 8–12 bits for
A/D conversion is sufficient. For very high SNR, there
could be some degradation due to the A/D quantization
as the quantization noise could be significant compared
with the background noise.

3) The finite precision of the computations has greater im-
pact on the performance of multiuser algorithms than on
single-user algorithms. The matched filter receiver starts

degrading only at 8-bit precision. This is reasonable to ex-
pect as the computations required for interference cancel-
lation are more complex than that for matched filter detec-
tion. While matched filter detection requires just an inner
product computation, multiuser detection requires us to
solve a linear equation. Furthermore, significant perfor-
mance gain is achieved in multiuser detection (compared
with matched filter detection) with the extra precision.

4) Higher spreading gains and larger number of users im-
plies larger number of multiply-and-accumulates, which
may easily saturate the multipliers and adders. Hence, we
see that going from 16 to 32 shows a slight
increase in precision requirements (from 14 to 16).

IV. TASK DECOMPOSITION ANDVLSI ARCHITECTURES

A. Task Decomposition of Multiuser Channel Estimation and
Detection

The various subblocks in the joint multiuser channel esti-
mation and detection algorithm are as shown in Fig. 7. The
figure shows the blocks required for channel estimation, the
glue matrices between channel estimation and detection
and the blocks in the detector. The blocks that are pipelined are
shown on the horizontal time axis while the blocks that have
coarse-grained parallelism are shown along the vertical axis.
The dynamic range of the input is dependent on SNR, the MAI,
and the number of users in the system. We assume a 16-bit
precision for the architectures. The area and time requirements
of the architecture do not vary significantly with the precision.
Also note that the blocks, and are complex-valued
while and are real-valued. For the sake of convenience,
we henceforth represent the current inputs, as , and

, as , , respectively. All the architectures assume
a single-cycle multiplication and addition as both multiplication
and addition can be implemented in type computations
[34] where is the number of bits and the single cycle assump-
tion also helps us with the DSP comparisons. We assume that a
Wallace or Dadda multiplier tree [34] is used for multiplication
requiring 1-bit full adders (FA) for an -bit multiplica-
tion. Since the multiplication by in (15) (implemented as a
shift) results in truncation of the output, a truncated multipli-
cation using significantly less hardware [35] can be used. The
delays of blocks such as multiplexers and gates are assumed to
be included in the single-cycle delay. For an area estimate of the
architectures, we consider the number of 1-bit FA cells in the de-
sign. It can be observed from Fig. 7 that the bottlenecks in the
pipeline are the matrix multiplications for channel es-
timation and the calculation of the matrices for multiuser
detection.

We explore different area-time tradeoffs to develop real-time
architectures with minimum area overhead. We explain the de-
sign in detail for a time-constrained architecture which shows
the upper bound on data rates with no constraints on hardware
and then show that by constraining hardware, we are able to de-
sign different architectures to meet real-time requirements with
minimum area overhead. We have considered only the compu-
tational complexity for our analysis and have ignored the anal-
ysis of the memory requirements. This is because the focus of
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Fig. 7. Task decomposition of joint multiuser channel estimation and detection. This figure illustrates how multiuser channel estimation and detection can be
split into different tasks and can be pipelined. Vertically aligned blocks can be computed in parallel while horizontally aligned blocks are pipelined.

Fig. 8. Data rates achieved by different VLSI architecture tradeoffs with
varying spreading gains. The figure shows the data rates achieved for a serial, a
parallel and two data rate targeted area-time tradeoff architectures.

our paper was on the computational complexity and area-time
tradeoffs needed to meet real-time requirements. We have done
an analysis for the memory requirements in previous work for
channel estimation [36]. Fig. 8 shows the achievable data rates
and Fig. 9 shows the transistor count for the architectures dis-
cussed below. We assume 28 transistors per 1-bit standard FA
cell as in [34].

B. Area-Time Tradeoffs for Channel Estimation Architectures

1) Time-Constrained Architecture:The block diagram of a
time-constrained architecture is as shown in Fig. 10. In this ar-
chitecture, the available parallelism in the algorithm is exploited
to the maximum extent. Hence, all the elements needed to per-
form a parallel matrix multiplication are computed simultane-
ously. The entire matrices and are multiplied using an
array of multipliers. The entire product matrix is subtracted by
the autocorrelation matrix, , shifted and a new channel es-
timate is formed. Thus, as the time taken by the other com-
putations is pipelined with the time for the multiplication, the

Fig. 9. Area requirements for different VLSI architecture tradeoffs with
varying spreading gains. The figure shows the number of transistors required
for a serial, a parallel and two data rate targeted area-time tradeoff architectures
with 16-bit precision.

output matrix can be formed in parallel every
using multipliers. This is because each element of an

product matrix can be computed in time
using multipliers and using a tree structure to compute the
inner products [37], in a time-constrained architecture.

We also exploit the bit-level arithmetic and parallel structure
of the correlation matrices to form the correlation matrices si-
multaneously within a cycle. Since the autocorrelation matrix
update is a symmetric matrix and all the diagonal elements are
1s ( ), we need to compute only the strictly upper tri-
angular (or lower triangular) part of the autocorrelation matrix.
Also, as the updates are all1s or 1s, this can be obtained
from a simple single-bitXNOR gate structure. As the autocorre-
lation matrix is always updated and down-dated by1s, incre-
ment/decrement counters can be used in place of general adders
in our design. Also, the elements in the cross-correlation update
are or and hence, the vectorcould be directly added
or subtracted with every column of the cross-correlation matrix
based on the sign of the bit vector.
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Fig. 10. Time-constrained VLSI architecture block diagram. The dotted lines show the parts corresponding to (13)–(15). All operations within a block are being
computed by exploiting the maximum parallelism available in that block. The parallel matrix multiplication is the bottleneck.

The area requirements for the time-constrained architecture
are as shown in Fig. 9. The area requirements vary from 10
to 10 transistors. This is a highly aggressive solution with
today’s technology and it is not feasible to devote so many
FA cells just for channel estimation, which is only a part of
the complete receiver. However, this states the theoretical min-
imum time requirements by exploiting the available parallelism
as , which is the time required to do the parallel
multiplication and pipelined integration with the other blocks.
We require adders for doing the recursive dou-
bling [37] in time [adding elements in
time requires adders] and adders for the sub-
traction following the multiplication. The data rates achieved by
this fully parallel architecture is shown in Fig. 8. We can see that
we are able to get one to two orders of magnitude performance
more than necessary using the amount of parallelism in the al-
gorithms. Therefore, we propose better area-time tradeoffs more
closely matched to the target data rates in Section IV-B3.

2) Area-Constrained Architecture:For an area-constrained
architecture, we assume that only a single multiplier and
adder are available. Thus, the matrix–matrix multiplication
serially takes cycles. The data rates achieved and area
requirements for this architecture are shown in Figs. 8 and 9.
We see that though the serial architecture uses very little area,
it falls below real-time requirements by one to two orders of
magnitude.

3) Data Rate Targeted Area-Time Tradeoffs:In this section,
we use part of the available parallelism to achieve real-time per-
formance with minimum area overhead. We use a vector multi-
plier calculating each row of the multiplication in parallel. This
is shown in Figs. 8 and 9 asAREA-TIME1. Thus, the multipli-
cation now takes cycles at an increase in the number
of multipliers. This seems to meet real-time requirements up to

32 as seen in Fig. 8. However, for 32, it can be
seen that greater amounts of parallelism need to be used to meet
real-time. For 32, we found that additionally 16 columns
of the matrix need to be computed in parallel. This implies that
the matrix multiplication is done in 8 cycles and at a fur-
ther 16 increase in the number of multipliers. This is shown
in Figs. 8 and 9 asAREA-TIME2.

C. Area-Time Tradeoffs for Multiuser Detection Architectures

1) Time-Constrained Architecture:A detailed task partition
of the blocks for multiuser detection are as shown in Fig. 11. The
blocks consist of a MF detector which provides the initial hard

Fig. 11. Time-constrained pipelined detector architecture. The figure shows
the matched filter which provides the initial estimates for parallel interference
cancellation. A three-stage parallel interference cancellation detector is shown.
The first-stage of the detector is expanded in detail.

( ) and soft estimates () to the parallel interference cancella-
tion stages. A three-stage detector is chosen for implementation
as it provides sufficient convergence [23].

An array of parallel multipliers is used for computing the en-
tire matched filter estimate and vectors in parallel.
As the imaginary parts of the products need not be computed,
this requires 4 multipliers. To form the inner product addi-
tion in parallel for every row of and , we use an adder
tree utilizing adders. The matched filter estimate
can be computed in time.

The glue matrices, , , between the channel estimation and
detection schemes require a significant amount of computation.
Since and are symmetric and their diagonal el-
ements and imaginary parts need not be computed to get the
matrix products in a time-constrained architecture, we require

multipliers and adders to
find the dot products in a tree fashion. This requires
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time. Similarly, for the computation of , we require
multipliers and adders in time.

Each stage of the multiuser detector uses only adders as mul-
tiplication by single bits can be reduced to addition and subtrac-
tion. In order to form the various vectors such as in (20),
an adder tree of adders. Thus, for computing ,

and , we need adders followed by
more adders (for a four-operand tree addition) to get the final
soft decisions . Each stage of the multistage detector can be
computed in time, assuming two cycles for the
final four-operand addition and a single cycle for the multipli-
cation. The achieved data rates and area requirements for detec-
tion are also shown in Figs. 8 and 9. The detector architecture
also takes 10–10 transistors, which is not an efficient solution
with today’s technology but serves to reveal the parallelism and
pipelining in the algorithm and determine the maximum data
rate.

2) Area-Constrained Architecture:For an area-constrained
architecture, we use a single multiplier for the, one for and
one for the matched filter. The latency time depends on the ma-
trix–matrix multiplications for the matrix, which takes
cycles. The data rates achieved and area requirements for the
area constrained architectures are shown in Figs. 8 and 9.

3) Data Rate Targeted Area-Time Tradeoffs:The area-time
complexity for multiuser detection is found to be similar to
that for channel estimation and hence, we use the same type of
area-time tradeoffs as before. This is shown in Figs. 8 and 9 as
AREA-TIME1. Thus, the multiplication now takes cycles at
a increase in the number of multipliers. This potentially can
meet real-time requirements up to 32 as observed in Fig. 8.
However, for 32, it can be seen that greater amounts of par-
allelism need to be used to meet real-time. Hence, for 32,
we found that 16 columns of the matrix also needs to be com-
puted in parallel. This implies that the multiplication is done in

cycles and at a further 16 times increase in the number
of multipliers. This is shown in Figs. 8 and 9 asAREA-TIME2.

V. RESULTS AND COMPARISONS

A. Computational Savings

The computational advantages of the newly proposed
schemes over the previous schemes are shown in Table I. The
original algorithm for channel estimation required a matrix in-
version and a matrix multiplication requiring
cycles on a sequential uni-processor machine such as a DSP
while estimation using the iterative method requires only a
matrix multiplication on a sequential machine. As

and are of the same order, this only implies a savings of
the order of two times. However, a fully parallel VLSI solution
for implementation can accelerate the time requirements to

. Similarly, for comparing the detection
schemes, we assume that a window of bits need to be
detected. For every window, we save computations,
assuming an -stage detector as the edge bits do not need to
be calculated. A fully pipelined time-constrained detector can
reduce the time requirements to by exploiting
available parallelism. Note that the enhanced algorithms, as
seen from Table I do not have inherent computational savings

TABLE I
COMPARISONS OFCOMPUTATIONAL TIME SAVINGS. THIS TABLE SHOWS THE

COMPUTATIONAL SAVINGS ACHIEVED BY THE ENHANCED SCHEMES FOR

MULTIUSER ESTIMATION AND DETECTION OVER THE PREVIOUS

SCHEMES. K—NUMBER OF USERS, N—SPREADING GAIN,
D—DETECTIONWINDOW,M—NUMBER OF STAGES

but are designed to benefit from exploiting parallelism and
pipelining in an architecture. Thus, significant benefits in per-
formance can be achieved by enhancing the existing schemes
for channel estimation and detection with schemes having an
efficient hardware implementation and exploiting the available
parallelism.

B. Comparisons With DSPs

Though DSPs and general purpose processors with MMX-
enhanced instruction sets exploit byte-wide parallelism, they are
inefficient for processing on bits. Storage of bits as bytes on such
processors is inefficient as there is a large overhead involved in
packing and unpacking these bits. Also, the compiler may not
replace bit-level multiplications with additions and subtractions.
Using a control structure instead, also limits the utilization of
available parallelism. Formation of bit-level matrix updates is
much more effective and simpler to build in parallel with XNOR
gates than as sequential multiplications on DSPs.

Fig. 8 also compares the VLSI architectures at 500 MHz
with the single processor DSP implementation of the multiuser
channel estimation and detection algorithms on a TI C6701
floating-point DSP at 167 MHz. We did the DSP analysis in an
earlier work [38] and hence, have comparison points only for
the 32 case. The channel estimation DSP implemen-
tation takes 600 ms for all 32 users. This poor performance is
due to the computation of a matrix multiplication per received
bit on the DSP. The frequency of updates to the channel esti-
mates can be reduced for slow fading channels for better time
performance. Similarly, detection takes 20 ms for all 32 users.
The low data rate performance of the detector is because we
consider a more realistic and complete system with continuous
updating of channel estimates to the detector as compared with
a static channel assumption and neglecting effects of channel
estimation in other detector DSP implementations [6], [23].

VI. CONCLUSION

We first present computationally efficient algorithms to meet
real-time requirements of multiuser channel estimation and de-
tection in future wireless base stations. Existing algorithms for
multiuser channel estimation and detection are redesigned from
an implementation perspective for a reduced complexity so-
lution. The ML based channel estimation algorithm requiring
matrix inversions, block-based computations and floating point
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accuracy is redesigned for an iterative scheme, which has a sim-
pler fixed point VLSI architecture and reduced complexity. Mul-
tiuser detection is also redesigned for a pipelined structure, that
reduces the memory requirements by a factor ofand worst
case latency by . The edge bit computations in the block
scheme are eliminated and a improvement in computa-
tional complexity per detection stage is achieved.

We then present fixed point, real-time VLSI architectures for
multiuser channel estimation and detection. The proposed VLSI
architecture schemes can be integrated with DSP architectures
as a coprocessor support [39] to build single DSP base-station
solutions. Bit-level extensions [40] can also be similarly de-
veloped to utilize bit-level parallelism on DSPs and accelerate
wireless communication algorithms.
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