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Abstract—This paper presents algorithms and architecture improved performance at these high data rates, highly so-
designs that can meet real-time requirements of multiuser phisticated and complex multiuser algorithms for channel
channel estimation and detection in future code-division mul- gstimation and detection need to be implemented. These
tiple-access-based wireless base-station receivers. Sophisticate . . . .
algorithms proposed to implement multiuser channel estimation algorithms combat MAI by JO'”“Y processing Fhe S|gnals_ of
and detection make their real-time implementation difficult on  all users at the base-station receiver. The multiuser algorithms
current digital signal processor-based receivers. A maximum-like- involving matrix multiplications and inversions [4], [5] re-
lihood based multiuser channel estimation scheme requiring quire block-based computations and floating point accuracy
matrix inversions is redesigned from an implementation per- and significantly increase the implementation complexity of

spective for a reduced complexity, iterative scheme with a simple . . . . .
fixed-point very large scale integration (VLSI) architecture. A the receiver [6]. A direct implementation of these multiuser

reduced-complexity, bit-streaming multiuser detection algorithm @lgorithms using current generation digital signal processor
that avoids the need for multishot detection is also developed for (DSP)-based base-station receivers fails to meet third-gener-

a simple, pipelined VLSI architecture. Thus, we develop real-time  ation real-time requirements [7]. Therefore, only single user
solutions for multiuser channel estimation and detection for algorithms for channel estimation and detection [8], [9] have

third-generation wireless systems by: 1) designing the algorithms . . .
from a fixed-point implementation perspective, without significant been implemented in all current practical CDMA systems, such

loss in error rate performance; 2) task partitioning; and 3) de- @S IS-95.
signing bit-streaming fixed-point VLSI architectures that explore Implementations for multiuser detection for the base station

pipelining, parallelism, and bit-level computations to achieve have been studied in [6] and [10] while low power versions
real-time with minimum area overhead. targeted at mobile handsets have been studied in [11] and
Index Terms—Digital signal processor, multiuser channel esti- [12]. However, these detector implementations either assume
mation, multiuser detection, real-time implementation, very large  perfect channel estimation or assume single user estimation
scale integration, wideband code-division multiple-access. using sliding-correlator type structures [8]. The detector im-
plementations also assume that channel estimation is done in
l. INTRODUCTION real-time and the data rates are considered to be dependent only
on the detector. However, many advanced multiuser channel

T HIRD-GENERATION (3G) wireless cellular systems stimation schemes have high computational complexity, even

q [1]—[3],'ar'§a/lbt/)e|ng ge3|gTed th support ex;remely hig ore than that for multiuser detection, due to matrix inversions
ata rates (in Mbfs) and quality-of-service (QOS) guarantegs, o4 and cannot be performed in real-time. Also, algorithms
that are required for multimedia communication. Wideba

o . r estimation and detection are block-computation based due
code-division multiple-access (W-CDMA) [2] has been choseg o aq for repeated inversion updates for estimation [13]

as_the multiple-access protocol to support these features. & multishot detection [5], [14], which make their real-time
existing narrowband CDMA 1S-95 standard supports on ¥nEIementation more difficult. Matrix-inversion free schemes

V?'Ce.tﬁnd Iozv—:?}atabrates tUI'f' 10 9.6 kb/ S ?r? dt Uses S|ngle|£_u$ﬁ h as those based on conjugate gradient descent and recursive
algonthms at the base-station receiver that 1gnore muiting, ¢ squares (RLS) [15]-[17] exist in the literature. We have
access interference (MAI) between different users. To achie

&aluated the applicability of such schemes for multiuser
channel estimation and presented one such scheme with low
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presented in [18]. They have also studied word-length effeatsique signature sequence (short repetitive spreading code) to
and provided comparisons with least mean square (LMS) amibdulate the data bits{1). The base station receives a summa-
RLS schemes. tion of the signals of all the active users after they travel through
In this paper, we present efficient algorithms for multiusetifferent paths in the channel. The multipath is caused due to re-
channel estimation and detection, designed from an impfléections of the transmitted signal that arrive at the receiver along
mentation perspective and their mapping to real-time VLSVith the line-of-sight component. These channel paths induce
architectures. We redesign a multiuser channel estimatidifferent delays, attenuations and phase-shifts to the signals and
algorithm [13], based on the maximume-likelihood (ML)the mobility ofthe users causes fading in the channel. Moreover,
principle and present an iterative scheme, which is computhe signals from different users interfere with each other in ad-
tionally effective, suitable for a fixed point implementatiordition to the additive white Gaussian noise (AWGN) present in
and is equivalent to matrix inversion in terms of error ratthe channel. Multiuser channel estimation refers to the joint es-
performance. A new bit-streaming multiuser detection schenimation of these unknown parameters for all users to mitigate
based on parallel interference cancellation is presented ttiese undesirable effects and accurately detect the received bits
avoids the need for multishot detection [5], [14], [19] for af different users. Multiuser detection refers to the detection of
simple bit-streaming pipelined VLSI architecture. Fixed-poirthe received bits for all users jointly by canceling the interfer-
implementations of the redesigned algorithms are presentedce between the different users. The performance of multiuser
First, we determine the maximum data rate achievable witletection depends greatly on the accuracy of the channel esti-
no area constraints. Then, we obtain the data rate achievedhites. The model for the received signal at the output of the
an area-constrained architecture. Finally, we present area-timeltipath channel [13] can be expressed as
tradeoffs for real-time VLSI architectures to achieve the tar-
geted data rates with minimum area overhead. Thus, the main r; = Ad, +n; (1)
contribution of this paper is to show real-time performance for
multiuser algorithms by: 1) designing the algorithms from wherer; € C" is the received signal vector after chip-matched
fixed-point architecture perspective, without significant loss ifftering [5], [20], A € CV**K is the effective spreading code
error rate performance; 2) task partitioning; and 3) designifigatrix, containing information about the spreading codes (of
bit-streaming fixed point VLS| architectures to exploit availabléength V), attenuation and delays from the various path)s¢

pipelining, parallelism and bit-level computations. {=1, #1325 = [dy,i—1, dr i, ..., di i1, di,q] " are the bits
of K users to be detected, is AWGN ands is the time index.
Il. MULTIUSER CHANNEL ESTIMATION AND DETECTION 1€ size of the data bits of the uselsis 2K as we assume
] ] that all paths of all users are coarse synchronized to within
A. Real-Time Requirements one symbol period from the arbitrary timing reference. Hence,

Data transmission in 3G wireless systems such as third-gemy two symbols of each user will overlap in each observation
eration partnership project (3GPP) or universal mobile telecomindow. This model can be easily extended to include more gen-
munications systems (UMTSs) is possible at varying rates suettal situations for the delays [21], without affecting the deriva-
as from 32 kb/s to 2 Mb/s depending on the spreading fadfyr ( tion of the channel estimation algorithms. The estimate of the
which varies from 256 (for vehicular traffic) to 4 (for indoor enimatrix A contains the effective spreading code of all active users
vironments), respectively (for example, see [3]). The standaraisd the channel effects and is used for accurately detecting the
assume a chip rate of 4.096 Mcps and quadrature phase-siei¢eived data bits of different users. We will call this estimate
keying (QPSK) modulation (2 bits/symbol). We have assumed the effective spreading code matrid,, our channel esti-
binary phase-shift keying (BPSK) modulation (1 bit/symbol) imate as it contains the channel information directly in the form
our work for simplicity. Hence, we target data rates in the rangeeeded for detection. This approach [13] is chosen as it pro-
of 16 kb/s to 1 Mb/s. However, our proposed algorithms as wefides: 1) a single framework for both channel estimation and de-
as our work on fixed-point analysis, pipelining, and parallelistection and 2) both computational and performance gains. Most
can be extended to higher modulation schemes as well. We pother multiuser channel estimation techniques try to estimate the
pose different architectures which explore area-time trade-offglividual channel attenuations and delays instead of the effec-
in order to achieve these data rates. We seek to design artive spreading code.
tectures that meet real-time requirements to within an order-of-
magnitude. Specifically, we target architecture designs for di&. Multiuser Channel Estimation and Tracking

ferent spreading gains\{ = K = 4, 16, 32, 128, 256) 10 The plock diagram of the base-station receiver is shown in
achieve data rates of 16 kb/s, 64 kb/s, 128 kb/s, 256 kb/s, g6l 1. The multiuser channel estimation algorithm proposed in
1 Mb/s, respectively. Note that the reference to 3G systemg{s) js redesigned for implementation in this paper. The ML
solely as an example to illustrate important system features sy¢finnel estimate is obtained using the knowledge of training

as the varying data rates which we seek to target and the US%)%bols. Most proposed 3G systems [3] allow for the use of

training sequences for channel estimation. training symbols. When training symbols are not available the
) i channel can be updated, to track time-variations, using decision
B. Received Signal Model feedback from the detector. This approach provides a simple

We assume BPSK modulation and use direct sequence sprigaehr channel estimation technique and its properties are similar
spectrum signaling, where each active mobile unit possessés those associated with the ML approach discussed in [22].
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1) Matched Filter (MF) Detector:The bits,d;, of the K
— users to be detected lie between the received sigraaidr; _;
-------------------- boundaries. The MF detector [5], [20] does a correlation of the

input bits with the received bits. Hence, the MF detector can be
Fig. 1. Simplified view of the base station receiver. This figure shows t
multiuser channel estimation and detection blocks in the receiver. A trainir}%presemed as
sequence (pilot) is used for channel estimation and decision feedback is used to T " "
update the estimates in the absence of a pilot. d; = sign (§R [Al ri_1+Ag rz]) . (6)

Training Decision
> mode ¢ Feedback Delay

Base-siation Receiver cessive bit vectorsl;_; andd;; whered; € {-1, +1}%
Antenna :' T g i =[di, i, ..., di ;]" are the bits of the{ users at time instant
i 1 ul . . . .
I s et Decoder i that need to be detected. In vector form, the received signal is
//\I], 1 + 1 Information
. | Channel ! Bits C]. i—1
Multipl 1
élz_vgse ! Estimation : r, = [A()Al] |: d. :| +n;. (5)
1
b (Known) bT r T 7 (Daia) :
1
1
]

] ] ] . The multistage detector uses the MF to get an initial estimate of
A basic summary of the algorithm and its computationgfe pits and then iteratively subtracts the interference from all
aspects are presented here. More details can be found in [}her users.
ConsiderL observations of the received vectqr, ry, ..., ry 2) Multistage Detector: The multistage detector [14], [23]
corresponding to the known training bitvectbs b, ..., br.  performs parallel interference cancellation iteratively in stages.

Given the knowledge of the training bits, the discretized receiyq@le desired user’s bits suffers from interference caused by the

vectorsry, ry, ..., ry, are independent and each of them 55t or future overlapping symbols of different asynchronous
Gaussian distributed. Thus, the likelihood function becomes users. Detecting a block of bits simultaneously (multishot de-

p(ri, T2, ..., r1|A, by, by, ..., by) tection) can give performance gains [5]. However, in order to
. I do multishot detection, the above model should be extended to
= —Npexpq -~ Z (r; — Ab))(r; — Ab;) } . include multiple bits. Let us cons@ela bits at a time { =
P} 1,2, ..., D). So, we form the multishot received vectore
ND i g =
After eliminating terms that do not affect the maximizationB by concatenating vectors(r;, i =1, 2, ..., D)
the log likelihood function becomes Ag A7 0 0 dy
L 0 AO Al 0 d2
> (ri— Ab)(r; — Ab;) o . ) r=| | s @)
i=1 : LT Ay :
The estimated, that maximizes the log likelihood, satisfies the 0 0 Ao Ao] Ldp
following: Let. A € CNVP*KD represent the new multishot channel matrix.
RiuA—R,. 3) The initial soft decision outputg(® € R*” and hard decision
b b outputsd® e R*P of the detector are obtained from a MF
The matriceRy;, andR,,. are defined as follows: using the channel estimates as
L L 0) =R .AHI‘ 8
i=1 i=1 d® =sign(y©®) 9)
Thus, the computations required to obtain the estindatare: yO =y©@ _ g [A”A — diag (AHA)] 4= (10)
1) the computation of the correlation matrid®s, andR,,. and S O
2) the computation required to solve the linear equation in (3). d" =sign(y"’) (11)
D. Multiuser Detection wherey® andd(® are the soft and hard decisions, respectively,

] ] ) after each stage of the multistage detector. These computations
Multiuser detection cancels the interference from other USESs iterated foil = 1. 2 M where M is the maximum
- ? R

to improve the error rate performance, compared with the tragis 1 her of iterations chosen for desired performance. The struc-
Flonal single user detection using only a matched f||ter.[2(.)]. Were of A A € CEP*KD s as shown
implement multistage detection [14], based on the principle of -
Parallel Interference Cancellation. This scheme cancels the ko Ao Ag Ay 0 0
terference from different users, iteratively in stages and is showmA A, AY A, + AHA, AFA, 0
to have computational complexity quadratic with the number gf
users. It is also possible to feed the channel estimate matrix gli- : :
rectly into the multistage detector instead of explicitly extractin 0 0 AFA, AFA,+AFA,
the parameters.
The channel matrixA is rearranged into its odd and everThe block tri-diagonal nature of the matrix arises due to the
columnsAy, A; € CY*E which corresponds to the suc-assumption that the asynchronous delays of the different users
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are coarse synchronized within one symbol duration [13], [22dnd of the training sequence. The solution converges monoton-
If the channel is static, the matrix is also block-Toeplitz. Wieally to the true estimate with each iteration and the final error
exploit the block tri-diagonal nature of the matrix later, for reis negligible for realistic system parameters. A detailed analysis
ducing the complexity and pipelining the algorithm effectivelyof the deterministic gradient descent algorithm can be found in
The hard decisionsl, made at the end of the final stage, are fefL6] and [17] and a similar iterative algorithm for channel esti-
back to the estimation block in the decision feedback mode faration for long code CDMA systems is analyzed in [24].
tracking in the absence of the pilot signal. Detectors using dif- Animportant advantage of this iterative scheme is that it lends
ferencing methods have been proposed [23] to take advantégelf to a simple fixed pointimplementation, which was difficult
of the convergence behavior of the iterations. If there is no sigm achieve using the previous inversion scheme based on ML
change of the detected bit in succeeding stages, the differendd 8. The multiplication by the convergence parametean be
zero and this fact is used to reduce the computations. Howeverplemented as a right shift, by making it a power of two as the
the advantage is useful only in case of sequential executionadgorithm converges for a wide range;of24].
the detection loops, as in DSPs. Hence, we do not implemeniThe proposed iterative channelestimation canalso be easily ex-
the differencing scheme in our design for a VLSI architectureendedtotrack slowly time-varying channels. During the tracking
phase, bitdecisions from the multiuser detector are usedto update
[ll. REAL-TIME ALGORITHMS FORMULTIUSER CHANNEL the channel estimate. Only a few iterations need to be performed
ESTIMATION AND DETECTION for a slowly fading channel and the previous estimate serves as a
very good initialization. The correlation matrices are maintained

. overasliding window of lengtlh as follows:
A direct computation of the ML based channel estimaAte

A. lterative Scheme for Channel Estimation

involves the computation of the correlation matridk&l, and Rz(;i) =R(Z Y 4T — by bl (16)
R, and then the computation of the solution to @), Ry, ‘
at the end of the pilot. A direct inversion at the end of the pilot R =RV + bl —b;_prll 17)

is computationally expensive and delays the start of detection
beyond the pilot. This delay limits the information rate. In our
iterative algorithm, we approximate the ML solution based dB. Performance Comparisons

the following ideas. lterative algorithms have been proposed earlier for channel

1) The producR,; Ry, can be directly approximated usingestimation and detection in [15] and [25]-[28]. In [15] and [25],
iterative algorithms such as the gradient descent alg§sveral iterative methods for general adaptive filter and equal-
rithm [16]. This reduces the computational complexityzer applications are discussed in detail. Specific algorithms ap-
and is applicable in our case becailg is positive def- plicable for CDMA systems are developed in [26]-[29]. Most
inite (as long ad > 2K). of these algorithms are based on the method of gradient de-

2) The iterative algorithm can be modified to update the esjcent or the method of least squares. These papers mainly target
mate as the pilot is being received instead of waiting unit-error rate (BER) performance and they do not consider hard-
the end of the pilot. Therefore, the computation per bifare complexity for a real-time implementation. In this paper,
is reduced by spreading the computation over the entifg propose an iterative channel estimation algorithm for mul-
training duration. During théth bit duration, the channel tjyser channel estimation suitable for real-time implementation
estimate A, is updated iteratively in order to get closeand we show that it has almost the same performance as schemes
to the ML estimate for training length f Therefore, the pased on least squares.

channel estimate is available for use in the detector im'AS discussed in [15]’ the gradient descent a|gorithms can be

mediately after the end of the pilot sequence. broadly classified into two categories, deterministic and sto-
The computations in the iterative scheme duringithebit du- chastic gradient descent. The well known least mean square
ration are given below (LMS) algorithm is a stochastic gradient algorithm, where the
Rz(;i) :Rl()ifl) +bb! (13) actual gradient is not known and is approximated by an esti-

mated noisy gradient. In this paper, we use the deterministic
Rfj) =R(Z Dy, ! (14) gradient descent algorithm from [15]-[17], where the gradient

‘ of the objective function is known exactly, to solve the linear

AD = AGD (ng « AU~ _ Rg?) . (15) equation in (3).

The proposed iterative algorithm to obtain the ML estimate
The term(R(Z « A1) _ R(Z ) in step 3 is the gradient of the is related to the RLS approach for minimum mean-square-error
likelihood function in (2) atA(Z U for a training length of. (MMSE) estimation. In both cases, the estimate for preamble

The constanj: is the step size along the direction of the graengthi aims to minimize the squared error for that particular
dient. Since the gradient is known exactly, the iterative chanriehgth!. However, we use the known gradient to obtain the es-
estimate can be made arbitrarily close to the ML estimate kiynate as opposed to the RLS algorithm which does not rely
repeating step 3 and using avabuehat is lesser than the recip-on gradient descent. Another difference between our iterative
rocal of the largest eigenvalue be In our simulations, we approach and RLS is that we use a sliding window update as
observe that a single iteration during each bit duration is suféipposed to RLS which uses an exponential weight factor up-

cientin order to reach very close to the true ML estimate by tliate Q). For the case of AWGN noise, we note that the ML and
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Fig. 2. BER performa_nce comparison of the itergtiv_e scheme with RLg, 3. Error rate performance in a multipath fading channel. This figure
and true inversion for different preamble lengths. This figure shows the err; ows the error performance of both estimation schemes in the presence of

performance for two detectors, a MF detector and a multiuser detector. gy fading at 10 km/h mobile velocity at a carrier frequency of 1.8 GHz. The
matrix inversion based scheme assumes a static channel and is not updated

. . . ith decision feedback, while the iterative scheme is updated every bit. The
MMSE estimation approaches lead to the same solution for c%hvergence parameter, is chosen as 1/1024. A pilot sequence of 128 bits

taining the channel estimate. was used initially to obtain the channel estimates.
A comparison of the performance of our iterative scheme
against the RLS algorithm is shown in Fig. 2. The simulations

. : dition is the same for both the iterative scheme and RLS
were performed for 8 equal power users with a spreading ¢

o ) .
of length 16 for a AWGN channel having three multipath reflec-. (K N) per bit], the _RLS_ scheme require(K N) more
tions at 10 dB signal-to-noise ratio (SNR). The BER is calcmﬁj-'v's'ons' The complexity difference may be thought of as the

lated using the channel estimates after the end of the pilot phgggit[ona}l complexity to gnd. a r;]evpé (gain vg-c;tor) fc_)r every
for two types of detectors, a MF detector [5], [20] and a multfterationin RLS compared with the fixgdused in our iterative

stage multiuser detector (MUD) [14]. The users are all transmﬁgheme' Our iterative scheme is also more suitable for a hard-

ting at the same power over a static channel with three pathd'¥é#'€ implementation than RLS. In a systolic implementation,
relative strengths 1, 0.5, and 0.33. Although the detection alddf Proposed iterative algorithm uses only truncated multipliers
rithm can handle the near—far problem, we simulated the eq@f¢ adders and does not require any special boundary cells.
power scenario as it generates the worst case for multistage @2 implementation of RLS, matrix decomposition techniques
tection. To use a sliding window update, we choase 1 asthe Such as QR have been used [15]. The QR decomposition can
exponential weighting factor for RLS in our simulations. Fror@lso be implemented efficiently in fixed-point using systolic
Fig. 2, it can be seen that our iterative scheme (ITER) perforgays [30], [31]. However, the cells in the array (especially,
almost as well as the RLS algorithm and the actual matrix ife boundary cells, which need to compute the Givens rotation)
version. The value of should be less than the reciprocal of thél5], [31] have more computational complexity than the cells
largest eigenvalue dr.!) for convergence. used in our iterative algorithm.

Since the maximum eigenvalue Hz(;i) increases with, a Thus, we show that our proposed iterative algorithm has a
larger ;1 is possible for a smaller preamble length. ThereforéWer computational complexity than RLS and is also more suit-
faster convergence can be achieved for smaller preambles. #Rke for a hardware implementation. We now evaluate the per-
maximum value of: that can provide stability for a given pre-formance of the iterative scheme with respect to the original ML
amble can chosen at the receiver for fastest convergence. Theggeme for different SNRs and for fading channels.
fore, the performance of our iterative algorithm is almost the The analysis of the system for a multipath fading channel with
same as that achieved by the RLS algorithm or the exact MIacking is as shown in Fig. 3. Here, we see that the proposed
algorithm. From Fig. 2, we can see that the performance cunfggcking scheme based on the update of (16) and (17) is able
almost flatten out after a window length of 128 and, hencefortig, effectively track the time-varying channel. The poor perfor-
we useL = 128 as our window length for simulations. Sincemance of the static channel assumption for this Rayleigh fading
for this window lengthy, = 1/256 and; = 1/1024 have the channel (with mobile velocity 10 km/h) at a carrier frequency of
same performance, we will uge= 1/1024 henceforth in our 1.8 GHz shows the importance of tracking. The simulation was
simulations for greater stability. done for 15 equal power users with a window length of 128 (and

Our iterative scheme is less computationally complex thgmeamble length of 128). For faster fading, the window length
RLS as we avoid the computation of the gain vector with eveneeds to be decreased appropriately. The original channel esti-
iteration. The RLS algorithm uses the matrix inversion lemnraation scheme requires a matrix inversion and matrix multipli-
[15] to avoid matrix inversion but requires scalar divisioncation for every update while the iterative scheme reduces the
Though the order of complexity in terms of multiplication andomplexity to a matrix multiplication per update.
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C. Pipelined Detection Matbed

Filler o5,
The multishot detection scheme [14], [32] proposed in tt, . .
earlier section is block-based. Such a block-based implemer
tion needs a windowing strategy and has to wait until all the biF sser i d.
needed in the window are received and are available for co
putation. This results in taking a window & bits and using
it to detectD — 2 bits as the edge bits are not detected acc =
rately due to windowing effects. Thus, there are two additional
computations per block and per iteration that are not used. T#ig 4. Pipelined bit-streaming detection. This figure shows how the detection
detection is done in blocks and the two edge bits are throwfgcess can be streamlined to work on a bit basis rather than in blocks. As
. . . soon as the immediate future bits are available, the next iteration of detection is
.away and rfecalcmated in the next 'ter_at!on- HOWeV?r’ the Stagﬁﬁied out. Bit 3 is highlighted as an example for pipelined detection.
in the multistage detector can be efficiently pipelined [19] to

avoid edge computations and to work on a bit-streaming basis. ) ) o
This is equivalent to the normal detection of a block of infinit§€d9€ bit computations in this scheme and, hence, they can be

length, detected in a simple pipelined fashion. Also, the comp@oided and we get/ D) savings in computation per detection
tations can be reduced to work on smaller matrix sets. This c3i§9€; WhereD is the detection window length including the
be done due to the block tri-diagonal nature of the maifixA edge bits. Also, instead of detecting a block of bits, each bit

as seen from (12). The computations performed on the internfedetected in a streaming fashion, reducing the worst case la-
diate bits reduce to tency by the detection window lengfh/2 and eliminating the

memory requirements of block computation by a factobgt

lagh | &

FIL Sage 1 d

L=R|AlA] (18)
D. Fixed-Point Implementation

C=Rr [Aé{Ao +Af'A; — diag (Aé{f&o + A{{Al)} We developed a model of the system in C++ using fixed-point

(19) “classes” in order to study the performance of the system with

different precision requirements. The multiplications and addi-

vy =y _raf v - cal"v - LHCAIEEELD (20) tion operations were “over-loaded” so as to saturate if the avail-
O W able precision were to be exceeded. Since the received signal
d;” =sign (yi ) : (21) amplitude depends on the number of users in the system, the

number of multiple path reflections, the spreading gain and the

Equation (20) may be thought of as subtracting the interferen6RiR, the amount of precision required by the A/D converter is
from the past bits of users, who have more delay, and the futl%ﬁgen by

bits of the users, who have less delay than the desired user. The
left matrix L € R">*’, stands for the partial correlation beprecision (in bits)=
tween the past bits of the interfering users and the desired useg, P
the right matrixL¥, stands for the partial correlation between £10g2 <K * Z 1 + 4 % 10~ (SNR/20) @)‘ +4. (22)
the future bits of the interfering users and the desired user. Th =1 V2
center matrixC € R >/ is the correlation of the current bits
of interfering users and the diagonal elements are made zefogiation (22) is due to the fact that the maximum value of the re-
since only the interference from other users, represented by tedved signal would bK*Ef:l (1/p), whereK is the number
nondiagonal elements, needs to be canceled. The lower ind&fijsers and” is the number of multipath reflections. The noise
i, represents time, while the upper ind&xepresents the itera- would be less thas = o x (v/N /+/2) with a probability of more
tions. The initial estimates are obtained from the matched filtéhan 0.99, where is the variance of the noise amd is the
Equation (20) is similar to the model chosen for output of thgpreading gain. Four more bits for additional precision are pro-
matched filter for multiuser detection in [32]. Equations (20Yided with one bit for the sign. This gives precisions in the range
and (21) are equivalent to (10) and (11), where the block-basgfdB—12 bits for different users and spreading gains which is pos-
nature of the computations are replaced by bit-streaming cosible with current A/D converters.
putations. We study the effects of finite precision on the estimation and
The detection can now be pipelined as shown in Fig. 4. Afetection algorithms based on their performance using simula-
example highlighting the calculation of bit 3 in the detector ions. A detailed analysis of the algorithms for finite precision
shown. An initial estimate of the received signal is done usir{g@s in [33]) is challenging and is not the focus of this paper.
a MF detector, which depends only on the current and the pslé¢ present two simulation results of the algorithms for finite
received bits. The stages of the multiuser detector need bitpracision with different spreading gains. Fig. 5 shows the BER
and 4 of all users to cancel the interference for bit 3. Henggerformance of the channel estimation and detection algorithms
the first-stage can cancel the interference only after the bitd@ a spreading gain of 16 with 8 users. Fig. 6 shows the perfor-
and 4 estimates of the matched filter are available. The ottreance for a spreading gain of 32 with 15 users. In each case, we
stages have a similar structure. Hence, while bit 3 is being @hoose a preamble length of 128 and af 1/1024 [chosen to
timated from the final stage, the matched filter is estimating e smaller than the reciprocal of the largest eigenvaILRg@?f
9, the first-stage bit 7 and the second-stage bit 5. There arefaoall  in order to ensure convergence].
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BIT ERROR RATE

107 FLOATING POINT PIC

=)
T

degrading only at 8-bit precision. This is reasonable to ex-
13-16 BIT & FLOATING POINT MF pect as the computations required for interference cancel-
lation are more complex than that for matched filter detec-
tion. While matched filter detection requires just an inner
product computation, multiuser detection requires us to
solve a linear equation. Furthermore, significant perfor-
mance gain is achieved in multiuser detection (compared
with matched filter detection) with the extra precision.
14-16 BITPIC 4) Higher spreading gains and larger number of users im-
plies larger number of multiply-and-accumulates, which
may easily saturate the multipliers and adders. Hence, we
see that going fromV = 16 to N = 32 shows a slight
increase in precision requirements (from 14 to 16).

13-BIT PIC

— MATCHED FILTER f
-7 MULTISTAGE PIC

4

Fig. 5.
shows

T L ’ . . IV. TASK DECOMPOSITION ANDVLSI ARCHITECTURES

10
SNR (dB) A. Task Decomposition of Multiuser Channel Estimation and

Fixed point error rate performance f5r = 16, ' = 8. The figure Detection
the effects of quantization on the MF and MUD for different precisions. The various subblocks in the joint multiuser channel esti-
mation and detection algorithm are as shown in Fig. 7. The

BIT ERROR RATE

figure shows the blocks required for channel estimation, the
1 glue matriced., C between channel estimation and detection
and the blocks in the detector. The blocks that are pipelined are
shown on the horizontal time axis while the blocks that have
coarse-grained parallelism are shown along the vertical axis.
The dynamic range of the input is dependent on SNR, the MAI,
and the number of users in the system. We assume a 16-bit
. precision for the architectures. The area and time requirements
of the architecture do not vary significantly with the precision.
Also note that the blocks, Ry, and A are complex-valued
while b andRy,; are real-valued. For the sake of convenience,
we henceforth represent the current inphbifsr; asb, r and
b;_r,r;_1, asbyg, rg, respectively. All the architectures assume

14-16 BIT & FLOATING POINT MF

14-BIT PIC

16-BIT PIC

FLOATING POINT PIC

<<

4

Fig. 6.
shows

a single-cycle multiplication and addition as both multiplication
= MULT'STGAGE e L - - ” ol and addition can be implementedlisng(n) type computations
SNR (dB) [34] wheren is the number of bits and the single cycle assump-

tion also helps us with the DSP comparisons. We assume that a
¥Vallace or Dadda multiplier tree [34] is used for multiplication
requiringO(n?) 1-bit full adders (FA) for am-bit multiplica-

tion. Since the multiplication by; in (15) (implemented as a

Fixed point error rate performance f§r = 32, ' = 15. The figure
the effects of quantization on the MF and MUD for different precision

Based on the simulations performed, we have made the fehift) results in truncation of the output, a truncated multipli-
lowing observations: cation using significantly less hardware [35] can be used. The

1)

2)

3)

We see that 16-bit fixed point multiuser channel estimaelays of blocks such as multiplexers and gates are assumed to
tion and detection performs almost as well as floatinige included in the single-cycle delay. For an area estimate of the
point precision multiuser estimation and detection. larchitectures, we consider the number of 1-bit FA cells in the de-
fact, for N = 16 andK = 8 the performance beginssign. It can be observed from Fig. 7 that the bottlenecks in the
to degrade only at 13-bit precision and f5r = 32 and pipeline are the matrix multiplicatiorB; * A for channel es-

K = 15 the performance degrades at 14-bit precision. timation and the calculation of tHe, C matrices for multiuser
The A/D quantization of the received chip-matched filtedetection.

output does not require as much precision as required folWe explore different area-time tradeoffs to develop real-time
the computations. Reasonable precision of 8—12 bits farchitectures with minimum area overhead. We explain the de-
A/D conversion is sufficient. For very high SNR, theresign in detail for a time-constrained architecture which shows
could be some degradation due to the A/D quantizatidhe upper bound on data rates with no constraints on hardware
as the quantization noise could be significant comparathd then show that by constraining hardware, we are able to de-
with the background noise. sign different architectures to meet real-time requirements with
The finite precision of the computations has greater inminimum area overhead. We have considered only the compu-
pact on the performance of multiuser algorithms than dational complexity for our analysis and have ignored the anal-
single-user algorithms. The matched filter receiver starngsis of the memory requirements. This is because the focus of
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Fig. 7. Task decomposition of joint multiuser channel estimation and detection. This figure illustrates how multiuser channel estimatiortianccdetbe
split into different tasks and can be pipelined. Vertically aligned blocks can be computed in parallel while horizontally aligned blocks ad.pipelin
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Fig. 8. Data rates achieved by different VLSI architecture tradeoffs withig. 9. Area requirements for different VLSI architecture tradeoffs with

varying spreading gains. The figure shows the data rates achieved for a seriggrging spreading gains. The figure shows the number of transistors required

parallel and two data rate targeted area-time tradeoff architectures. for a serial, a parallel and two data rate targeted area-time tradeoff architectures
with 16-bit precision.

our paper was on the computational complexity and area-time

tradeoffs needed to meet real-time requirements. We have dGHEPYt mQamX can be formed in parallel eveng, (2K) + 1
using 4K “N multipliers. This is because each element of an

an analysis for the memory requirements in previous work f?\; * N product matrix can be computed log, (N) + 1 time

channel estimation [36]. Fig. 8 shows the achievable data rau%?ngN?’ multipliers and using a tree structure to compute the

and F'ég'bg IShOV\\;\? the tran5|szté)r count for the alrct?_ltecturdes gi' ner products [37], in a time-constrained architecture.
cussed below. We assume 28 transistors per 1-bit standar e also exploit the bit-level arithmetic and parallel structure

cell as in [34]. of the correlation matrices to form the correlation matrices si-
_ . _ multaneously within a cycle. Since the autocorrelation matrix

B. Area-Time Tradeoffs for Channel Estimation Arch|tecture§1pdate is a symmetric matrix and all the diagonal elements are

1) Time-Constrained ArchitectureThe block diagram of a 1s @ & a = 1), we need to compute only the strictly upper tri-
time-constrained architecture is as shown in Fig. 10. In this angular (or lower triangular) part of the autocorrelation matrix.
chitecture, the available parallelismin the algorithm is exploiteso, as the updates are allls or —1s, this can be obtained
to the maximum extent. Hence, all the elements needed to pleom a simple single-biXNOR gate structure. As the autocorre-
form a parallel matrix multiplication are computed simultandation matrix is always updated and down-datedis, incre-
ously. The entire matriceB;;, and A are multiplied using an ment/decrement counters can be used in place of general adders
array of multipliers. The entire product matrix is subtracted by our design. Also, the elements in the cross-correlation update
the autocorrelation matribR,,., shifted and a new channel es-are+r or —r and hence, the vectercould be directly added
timate is formed. Thus, as the time taken by the other comr subtracted with every column of the cross-correlation matrix
putations is pipelined with the time for the multiplication, thdased on the sign of the bit vector
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Fig. 10. Time-constrained VLSI architecture block diagram. The dotted lines show the parts corresponding to (13)—(15). All operations witraneatiglimg)
computed by exploiting the maximum parallelism available in that block. The parallel matrix multiplication is the bottleneck.

The area requirements for the time-constrained architecture Received ~ Channel
are as shown in Fig. 9. The area requirements vary frofn 10 S'f":' e
to 10'? transistors. This is a highly aggressive solution with l
today’s technology and it is not feasible to devote so many ]
FA cells just for channel estimation, which is only a part of Matched Fiter
the complete receiver. However, this states the theoretical min- Vin2|dhy RELT c L
imum time requirements by exploiting the available parallelism {1 | { ,,,,,,,,,,,, } ,,,,,,,
aslog,(2K) + 1, which is the time required to do the parallel N N )
multiplication and pipelined integration with the other blocks. Ll > -Cd 1 -Ldyy
We require2 K N(2K — 1) adders for doing the recursive dou- Delay
bling [37] inlog,(2K) time [adding2K elements ifog,(2K) '
time requireg2K — 1) adders] an®K N adders for the sub- Delay : Stage |
traction following the multiplication. The data rates achieved by
this fully parallel architecture is shown in Fig. 8. We can see that j'i Detseift';m
we are able to get one to two orders of magnitude performance
more than necessary using the amount of parallelism in the al- w |& oLt c L
gorithms. Therefore, we propose better area-time tradeoffs more ' ' i
closely matched to the target data rates in Section 1V-B3. Stage 2

2) Area-Constrained ArchitectureFor an area-constrained ly' l Py c .
architecture, we assume that only a single multiplier and vy ¥ ¥
adder are available. Thus, the matrix—matrix multiplication Stage 3

serially takest K2 N cycles. The data rates achieved and area l l
requirements for this architecture are shown in Figs. 8 and 9. iy dis
We see that though the serial architecture uses very little area,

it falls below real-time requirements by one to two orders (ffg. 11. Time-constrained pipelined detector architecture. The figure shows
he matched filter which provides the initial estimates for parallel interference

magnitude. cancellation. A three-stage parallel interference cancellation detector is shown.
3) Data Rate Targeted Area-Time Tradeofis: this section, The first-stage of the detector is expanded in detail.

we use part of the available parallelism to achieve real-time per-

formance with minimum area overhead. We use a vector mulga) and soft estimatesy{ to the parallel interference cancella-

plier calculating each row of the multiplication in parallel. Thi%ion stages. A three-stage detector is chosen for implementation
is shown in Figs. 8 and 9 &SREA-TIMEL Thus, the multipli- as it provides sufficient convergence [23]

cation now takeg X'V cycles at ar2k increase in the number array of parallel multipliers is used for computing the en-

of multipliers. This seems to meet real-time requirements up o : ; AH AH :
ST ) e matched filter estimatd ' r and A" r vectors in parallel.
N = 32 as seen in Fig. 8. However, fof > 32, it can be or Lr P

. As the imaginary parts of the products need not be computed,
seen that greater amounts of parallelism need to be used to ginary p b b

M requires & N multipliers. To form the inner product addi-
real-time. ForNV > 32, we found that additionally 16 columns a P P

. . o ) tion in parallel for every row oA andAH, we use an adder
of the matrix need to be computed in parallel. This implies th b y 0 !

: S i tee utilizing K (2N — 1) adders. The matched filter estimate
the matrix multiplication is done id&/N/8 cycles and at a fur- can be computed itog, (V) + 2 time.

Fher_ 16x increase in the number of multipliers. This is shown The glue matriced,,, C, between the channel estimation and
in Figs. 8 and 9 aAREA-TIME2 detection schemes require a significant amount of computation.
_ _ _ _ SinceAf Ay andAF A, are symmetric and their diagonal el-
C. Area-Time Tradeoffs for Multiuser Detection ArchnecturesEments and imaginary parts need not be computed to get the
1) Time-Constrained ArchitectureA detailed task partition matrix products in a time-constrained architecture, we require
of the blocks for multiuser detection are as shown in Fig. 11. TRé( (K — 1) N multipliers andK (K — 1)(4N — 1)/2 adders to
blocks consist of a MF detector which provides the initial harfihd the dot products in a tree fashion. This requires (K) +

Detected bits
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3 time. Similarly, for the computation cAX A, we require TABLE |

QKN multipliers andK2(2N— 1) adders ifoge (N) +2time COMPARISONS OFCOMPUTATIONAL TIME SAVINGS. THIS TABLE SHOWS THE
52 ’ COMPUTATIONAL SAVINGS ACHIEVED BY THE ENHANCED SCHEMES FOR

EaCh Stage Of the mU|tIUSGT deteCtOf uses Only adderS as mU|- MULTIUSER ESTIMATION AND DETECTION OVER THE PREVIOUS

tiplication by single bits can be reduced to addition and subtrac- ScHEMES K —NUMBER OF USERS N—SPREADING GAIN,

tion. In order to form the various vectors such@d; in (20), D—DETECTIONWINDOW, M —NUMBER OF STAGES

an adder tree oK — 1 adders. Thus, for computirig&i_l, Blocks | Architoet Orininal Enbanced
Cd; andL7d;;, we need3(2K — 1) adders followed bBx N nane nhanee
more adders (for a four-operand tree addition) to get the fir (Cycles) (Cyeles)
soft decisionsgy. Each stage of the multistage detector can t Channel | Uni-processor O(6K® + 4K®N) O(K’N)
computed inlog,(K) + 3 time, assuming two cycles for the Estimation |  Parallel - Olog, (2K) +1)
final four-operand addition and a single cycle for the multipli Multiuser | Uni-processor | O(DNK + M(D + 2)K?) | O(DNK + MDK?)
cation. The achieved data rates and area requirements for de pgection Parallel i O(log,(N) + 3)

tion are also shown in Figs. 8 and 9. The detector architecture
also takes 19-10'2 transistors, which is not an efficient solution

with today’s technology but serves to reveal the parallelism apgt are designed to benefit from exploiting parallelism and

pipelining in the algorithm and determine the maximum dafgipelining in an architecture. Thus, significant benefits in per-

rate. formance can be achieved by enhancing the existing schemes
2) Area-Constrained ArchitectureFor an area-constrainedfor channel estimation and detection with schemes having an

architecture, we use a single multiplier for theone forC and  efficient hardware implementation and exploiting the available
one for the matched filter. The latency time depends on the niarallelism.

trix—matrix multiplications for thel. matrix, which takes2 N
cycles. The data rates achieved and area requirements forghecomparisons With DSPs
area constrained architectures are shown in Figs. 8 and 9.

3) Data Rate Targeted Area-Time TradeoffEhe area-time

complexity for multiuser detection is found to be similar gghhan ] X .
that for channel estimation and hence. we use the same typén&fnment for processing on bits. Storage of bits as bytes on such

area-time tradeoffs as before. This is shown in Figs. 8 and 9§ CESSOrs is inefficient as there is a large overhead involved in

AREA-TIME1Thus, the multiplication now takds NV cycles at packing and unpacking these bits. Also, the compiler may not

a K increase in the number of multipliers. This potentially Ca[]Jeplace bit-level multiplications with additions and subtractions.
§ sing a control structure instead, also limits the utilization of

meet real-time requirements upAb= 32 as observed in Fig. 8. _ : ) : . ;
However, forN > 32, itcan be seen that greater amounts of pa?y":l'labIe paralleh_sm. Forr_natlon of b|_t—le_vel matrix l_deates IS
allelism need to be used to meet real-time. HenceMar 32, much more effective aqd S|mpl_er.to puﬂd in paraliel with XNOR
we found that 16 columns of the matrix also needs to be co&@tgs than as sequential multiplications on DSPs.

puted in parallel. This implies that the multiplication is done in .F|g. 8 ?ISO compares the V.LSI arch|tec'tures at 500 MHZ
KN/16 cycles and at a further 16 times increase in the numb\@&th the single processor DSP implementation of the multiuser

of multipliers. This is shown in Fias. 8 and 9 AREA-TIME2  © aqnel es_timation and detection a!gorithms on a TI_ C_6701
uttipl S wnin g floating-point DSP at 167 MHz. We did the DSP analysis in an

earlier work [38] and hence, have comparison points only for

V. RESULTS AND COMPARISONS the N = K = 32 case. The channel estimation DSP implemen-

A. Computational Savings tation takes 600 ms for all 32 users. This poor performance is

e to the computation of a matrix multiplication per received
on the DSP. The frequency of updates to the channel esti-
es can be reduced for slow fading channels for better time
r}Serformance. Similarly, detection takes 20 ms for all 32 users.
The low data rate performance of the detector is because we
D%ﬁsider a more realistic and complete system with continuous

Though DSPs and general purpose processors with MMX-
nhanced instruction sets exploit byte-wide parallelism, they are

The computational advantages of the newly proposgﬁ
schemes over the previous schemes are shown in Table I.
original algorithm for channel estimation required a matrix i
version and a matrix multiplication requirit@(6 K> +4K? N)
cycles on a sequential uni-processor machine such as a

wh|le_ estlrln_a:!on _usgg 4;?(291\';“&“\/9 methoq quuwﬁ_s on}lg L?pdating of channel estimates to the detector as compared with
matrix multiplication O( ) on a sequential machine. Saf static channel assumption and neglecting effects of channel

N andK are of the same order, this only implies a SaVINgS Qstimation in other detector DSP implementations [6], [23].
the order of two times. However, a fully parallel VLSI solution

for implementation can accelerate the time requirements to
O(log,(2K) + 1). Similarly, for comparing the detection
schemes, we assume that a window Bfbits need to be  We first present computationally efficient algorithms to meet
detected. For every window, we sa¢2M K?2) computations, real-time requirements of multiuser channel estimation and de-
assuming anV/ -stage detector as the edge bits do not needtction in future wireless base stations. Existing algorithms for
be calculated. A fully pipelined time-constrained detector canultiuser channel estimation and detection are redesigned from
reduce the time requirements@log, (V) + 3) by exploiting an implementation perspective for a reduced complexity so-
available parallelism. Note that the enhanced algorithms, lason. The ML based channel estimation algorithm requiring
seen from Table | do not have inherent computational savinggtrix inversions, block-based computations and floating point

VI. CONCLUSION
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accuracy is redesigned for an iterative scheme, which has a sin®]
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pler fixed point VLSI architecture and reduced complexity. Mul-

tiuser detection is also redesigned for a pipelined structure, that
reduces the memory requirements by a factabéfand worst

case latency byD/2. The edge bit computations in the block

scheme are eliminated and2dD improvement in computa-

tional complexity per detection stage is achieved.
We then present fixed point, real-time VLSI architectures for

multiuser channel estimation and detection. The proposed VL),
architecture schemes can be integrated with DSP architectures
as a coprocessor support [39] to build single DSP base-station

solutions. Bit-level extensions [40] can also be similarly de-

veloped to utilize bit-level parallelism on DSPs and acceleratge]

wireless communication algorithms.
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