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Using Delayed Feedback for
Antenna Selection in MIMO Systems

T. R. Ramya and Srikrishna Bhashyam

Abstract—Antenna selection in Multiple-Input-Multiple-
output (MIMO) systems preserves diversity gain while
significantly reducing hardware complexity. However, imperfect
Channel State Information (CSI) affects performance. In this
paper, we first analyze the performance of a MIMO system
employing antenna selection at the transmitter and Maximal
Ratio Combining (MRC) at the receiver in the presence
of feedback delay and channel estimation errors. Then, we
determine whether channel prediction can compensate for the
effect of feedback delay. Outage probability is analyzed as a
function of 𝜌, the correlation coefficient between the CSI used
at the receiver for decoding (CSIR) and the CSI used at the
transmitter for selection (CSIT). Analytical results show that
the effect of feedback delay is more significant than the effect
of estimation error. In order to overcome the effect of delay, 𝜌
should increase with SNR. For a given SNR, the length of the
Linear Minimum Mean Square Error (LMMSE) prediction filter
required is calculated and shown to increase with SNR. Finally,
we determine the asymptotic diversity order as a function of
the feedback quality. Results show that if 1− 𝜌 ∝ 𝑆𝑁𝑅−1, the
diversity order with imperfect CSI is same as that with perfect
CSI.

Index Terms—Antenna selection, feedback delay, channel pre-
diction, diversity.

I. INTRODUCTION

INFORMATION theoretic studies have shown that em-
ploying multiple antennas at the transmitter and/or at the

receiver leads to improvement in the capacity and outage
performance of wireless communication systems [1]. Further
improvement in performance can be achieved when Channel
State Information (CSI) is used at the transmitter to perform
adaptation [2], [3]. However, adaptive multi-antenna systems
suffer from two major bottlenecks. The first bottleneck is the
increase in hardware complexity due to the requirement of
an additional radio frequency (RF) chain for each additional
antenna. The second bottleneck is the necessity of CSI at the
transmitter (CSIT). In practice, perfect CSIT is not possible
due to channel estimation errors, feedback delay, and feedback
channel errors.

Transmit antenna selection, where a large number of anten-
nas are employed and only the best subset is used for transmis-
sion, is a promising multi-antenna technique as: (1) significant
reduction in hardware complexity can be achieved since only
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a subset of antennas are simultaneously used, (2) diversity
gain is unaltered, because it is the number of total available
antennas that determines the diversity gain, irrespective of the
number of antennas that are used simultaneously [4], (3) lower
feedback bandwidth is required (only the selected index needs
to be fed back) and (4) low feedback rate is sufficient since
the rate of variation of the maximum index is lower compared
to the rate of channel variation.

The outage performance of the Multiple Input Multiple
Output (MIMO) transmit antenna selection scheme with max-
imal ratio combining (MRC) at the receiver is presented in
[5] and the outage probability of the transmit antenna subset
selection system employing space time coding is presented
in [6]. It has been established in [5] and [6] that when
CSIT is perfect, antenna selection preserves the diversity gain.
However, imperfect CSI affects the selection process as well
as the decoding process. In [7], the author has shown that the
diversity order of the single antenna selection system depends
on the ordinal number of the selected antenna. Therefore, it
is evident that wrong selection degrades the diversity order
and thereby affects the performance. The effect of channel
estimation errors on transmit antenna selection systems have
been extensively studied in [8]–[12]. Simulation results on the
loss in the achievable capacity of the hybrid selection MRC
system due to CSI imperfections is presented in [8]. The error
probability of Generalized Selection Combining is presented
in [9], where it was shown that estimation errors lead to a
bounded loss in Signal to Noise Ratio (SNR) compared to
the perfect CSI case. The effect of channel estimation error
on a MIMO OFDM system employing antenna selection is
analyzed in [10]. In [11], the SER of the antenna subset
selection system is studied in the presence of channel esti-
mation errors. The effect of channel estimation errors on the
system employing joint transmit and receive antenna selection
along with space time coding is studied in [12]. It has been
established in [8]–[12] that estimation errors lead to a bounded
SNR loss and do not affect the achievable diversity gain.

The effect of feedback delay on the error rate of a system
employing Alamouti Space Time Block Coding (STBC) with
antenna selection and M-QAM constellations is studied in
[13]. Similarly, the effect of feedback delay on MIMO systems
employing rate adaptation has been presented in [14]. Both
[13] and [14] study the uncoded Symbol Error rate (SER)
performance for QAM constellations, and neglect channel
estimation error at the receiver. In [15], the SER and outage
probability of transmit antenna selection in the presence of
feedback delay are derived for the case of single receive an-
tenna and perfect CSI at the receiver. Both feedback delay and
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channel estimation errors are considered in [16] and [17] for an
antenna selection system for some specific scenarios. While
[16] presents only an approximate bit error rate expression
for BPSK modulation for very small and very large feedback
delays, [17] considers only a 2×1 MIMO system using BPSK
or QPSK. Furthermore, the use of prediction to compensate
for the effect of feedback delay has not been considered in
[13]–[17].

In this paper, we analyze the performance of a Multiple
Input Multiple Output (MIMO) system employing transmit
antenna selection and Maximal Ratio combining (MRC) at
the receiver in the presence of feedback delay and channel
estimation errors. A generalization of the imperfect CSIT
model in [18] is used, where the effect of mismatched CSI
between the transmitter and receiver is captured using 𝜌,
the correlation coefficient between the CSI used for antenna
selection at the transmitter (CSIT) and the CSI available at
the receiver (CSIR) for decoding. The outage probability of
the above system is analyzed as a function of 𝜌. The outage
capacity is also analyzed to study effect of imperfect CSI
on a rate adaptive system. The value of 𝜌 required to limit
degradation is calculated and found to increase with SNR.
Channel prediction is required to achieve the required 𝜌 at
medium and high SNR. The length of the prediction filter
so required is also calculated numerically. The asymptotic
diversity order is also analyzed as a function the feedback
quality 𝛼, defined as the rate at which 𝜌 approaches one as
the Signal to Noise Ratio (SNR) tends to infinity. Analytical
results reveal that, when 𝛼 = 1, diversity order is the same as
with perfect CSIT.

The effect of delayed feedback on Eigen beamforming for
MIMO systems has been presented in [19], while the effect of
feedback delay on beamforming in MISO systems has been
presented in [18]. Feedback channel errors are not considered
in our paper. We assume that the index of the selected antenna
is received without error after a delay. The effect of errors in
the feedback channel have been considered in [20]. In [20],
when errors occur in the feedback, the transmitter selects an
antenna different from the one signaled by the receiver leading
to the receiver using the wrong channel estimate for decoding.

The rest of the paper is organized as follows: Section II
describes the system model. Section III presents the analysis of
the outage probability of MIMO antenna selection system with
imperfect CSIT. Numerical results on the value of 𝜌 required
to limit degradation are also presented in Section III. Analysis
of the asymptotic diversity order is presented in Section IV
and conclusions are drawn in Section V.

II. SYSTEM MODEL

The system model is depicted in Fig 1. A MIMO system
with 𝑁𝑡 transmit antennas and 𝑁𝑟 receive antennas is con-
sidered. At any instant of time, one out of the 𝑁𝑡 antennas
is used for transmission. The channel between the transmitter
and receiver is assumed to be frequency flat. The received
vector at time index 𝑘 is therefore, represented as:

y(𝑘) =
√
𝑃h𝑠𝑒𝑙(𝑘)𝑥(𝑘) + n(𝑘), (1)

where 𝑥(𝑘) represents the transmit symbol at time 𝑘, 𝑃 is
the transmit power, n(𝑘) ∼ 𝒞𝒩 (

0, 𝜎2
𝑛I𝑁𝑟

)
is the vector of
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Fig. 1. System model.

Additive White Gaussian Noise (AWGN) and h𝑠𝑒𝑙(𝑘) is the
𝑁𝑟 × 1 channel vector corresponding to the selected transmit
antenna. h𝑠𝑒𝑙(𝑘) is one of the columns of the 𝑁𝑟×𝑁𝑡 channel
matrix H(𝑘) at instant 𝑘. The elements of H(𝑘) are assumed
to be i.i.d and 𝒞𝒩 (0, 1). A block fading model is considered,
where the elements of H are assumed to be constant over a
block and correlated across blocks.

MRC is employed at the receiver for decoding. CSI is
estimated using training symbols. Antenna selection is done
based on the estimated CSI and the selected index is fed
back to the transmitter. Selection is based on maximizing the
instantaneous receive SNR, i.e., the antenna that maximizes
∣∣h𝑠𝑒𝑙(𝑘)∣∣2 is selected. Due to feedback delay, switching is
effective only a few blocks after selection. Therefore, antenna
selection at any instant is based on the old CSI estimate.
The effect of feedback delay can be significantly reduced
using channel prediction. Since the channel exhibits temporal
correlation, future CSI can be predicted at the receiver using
the present and past CSI, and used for antenna selection.

A. Imperfect CSI Model

CSI is estimated using training symbols. The training pat-
tern employed for channel estimation is similar to the training
in [21], [22] and is also depicted in Fig. 2. At the beginning
of every block, the first 𝑁𝑡 symbols are assigned for training,
one for each transmit antenna. Therefore, channel is estimated
once in every 𝑇 seconds, where 𝑇 is the frame duration.
Minimum mean-squared error (MMSE) channel estimation
is assumed. The training symbol power can be increased
compared to the data symbol power, without changing the
average transmit power, to improve the quality of the estimate
[21][22]. Assuming that the number of symbols in the frame
is much larger compared to 𝑁𝑡, increasing the training power
leads to a negligible change in the data power in order to
maintain the same average transmit power. Let H𝑡 represent
the channel estimate used for antenna selection and H𝑟

represent the channel estimate used for decoding. Since H𝑡

and H𝑟 are both zero mean and jointly Gaussian and circularly
symmetric, they can be related as follows:

H𝑡 = 𝜎𝑡

[
𝜌

𝜎𝑟
H𝑟 +

√
1− 𝜌2E

]
, (2)
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Fig. 2. Training model.

where 𝐸𝑖𝑗 ∼ 𝒞𝒩 (0, 1), 𝜎2
𝑟 = 𝐸[∣𝐻𝑟,𝑖𝑗 ∣2], 𝜎2

𝑡 = 𝐸[∣𝐻𝑡,𝑖𝑗 ∣2],
and 𝜌 =

𝐸[𝐻𝑡,𝑖𝑗𝐻
∗
𝑟,𝑖𝑗 ]√

𝐸[∣𝐻𝑟,𝑖𝑗 ∣2]𝐸[∣𝐻𝑡,𝑖𝑗 ∣2]
. 𝑋𝑖𝑗 represents the (𝑖, 𝑗)𝑡ℎ

element of the matrix X. Since 𝐻𝑡,𝑖𝑗’s are i.i.d and 𝐻𝑟,𝑖𝑗’s
are also i.i.d., 𝜌 is independent of 𝑖, 𝑗. Note that H𝑡 and H𝑟

can also be related as follows:

H𝑟 = 𝜎𝑟

[
𝜌

𝜎𝑡
H𝑡 +

√
1− 𝜌2E1

]
, (3)

where 𝐸1,𝑖𝑗 ∼ 𝒞𝒩 (0, 1), and 𝜎2
𝑟 , 𝜎2

𝑡 , and 𝜌 are as defined
above. Note that E1 in equation (3) and E in equation
(2) are different even though they have the same statistical
properties. The following CSI imperfections are important
special cases considered in existing work and in comparisons
in later sections.

Case 1: Estimation errors, No feedback delay
In this case, H𝑡 = H𝑟 = estimated CSI, Ĥ.
𝜌 = 1 and 𝜎2

𝑡 = 𝜎2
𝑟 = (1− 𝜎2

𝑒) =
𝑃𝑡

𝑃𝑡+𝜎2
𝑛

,
where 𝜎2

𝑒 is the estimation error variance and 𝑃𝑡 is the
transmit training power.

Case 2: Feedback delay, No estimation error
In this case, H𝑡 = past channel H𝑜𝑙𝑑 and H𝑟 = H.
𝜎2
𝑡 = 𝜎2

𝑟 = 1 and 𝜌 = 𝐽0(2𝜋𝑓𝑑𝑇Δ),
where 𝐽0(𝑥) = zeroth order Bessel function, 𝑓𝑑 = Doppler
frequency, and Δ = feedback delay in frames. It is clear
that 𝜌 is independent of SNR and is strictly less than 1 as
𝑆𝑁𝑅 → ∞.

Case 3: Estimation errors + Feedback delay
In this case, H𝑡 = Ĥ𝑜𝑙𝑑 and H𝑟 = Ĥ.
𝜌 = 𝑃𝑡

𝑃𝑡+𝜎2
𝑛
𝐽0(2𝜋𝑓𝑑𝑇Δ).

As 𝑆𝑁𝑅 → ∞, 𝑃𝑡

𝑃𝑡+𝜎2
𝑛
→ 1 and 𝜌 → 𝐽0(2𝜋𝑓𝑑𝑇Δ) < 1.

Case 4: Estimation errors + Feedback delay + Channel
prediction
In this case, H𝑟 = Ĥ, and H𝑡 = H̃, where H̃ is the
predicted CSI. We have considered an 𝐿−tap linear MMSE
prediction filter [23] to predict the true channel value using
the past channel estimates. Let �̃�𝑖𝑗(𝑘) = w𝐻h𝑖𝑗,Δ(𝑘), where
h𝑖𝑗,Δ(𝑘) = [�̂�𝑖𝑗(𝑘 −Δ), �̂�𝑖𝑗(𝑘 −Δ− 1), ⋅ ⋅ ⋅ , �̂�𝑖𝑗(𝑘 −Δ−
𝐿 + 1)], and w is the vector of prediction filter coefficients.
At time 𝑘, �̃�𝑖𝑗(𝑘 + Δ) is computed and used for antenna
selection. Since the channel between different pairs of transmit
and receive antennas are i.i.d., the linear MMSE prediction
filter coefficients are independent of 𝑖 and 𝑗 and given by
[23]

w = R−1p,

where R = 𝐸[h𝑖𝑗,Δ(𝑘)h𝑖𝑗,Δ(𝑘)
𝐻 ] and p =

𝐸[𝐻𝑖𝑗(𝑘)h𝑖𝑗,Δ(𝑘)
𝐻 ]. The 𝑖𝑡ℎ element of vector p is

given by

𝑝𝑖 =
𝑃𝑡

𝑃𝑡 + 𝜎2
𝑛

𝐽0(2𝜋𝑓𝑑𝑇 (Δ + 𝑖− 1)),

and the elements of the matrix R are given by

𝑅𝑖𝑗 =

(
𝑃𝑡

𝑃𝑡 + 𝜎2
𝑛

)
[

𝑃𝑡

𝑃𝑡 + 𝜎2
𝑛

𝐽0(2𝜋𝑓𝑑𝑇 (𝑗 − 𝑖)) +
𝜎2
𝑛

𝑃𝑡 + 𝜎2
𝑛

𝛿(𝑖 − 𝑗)

]
,

where 𝛿(𝑖− 𝑗) is 1 if 𝑖 = 𝑗 and 0 if 𝑖 ∕= 𝑗. Further, it can be
shown that

𝜎2
𝑡 = p𝐻w = p𝐻R−1p

and

𝜌 =

√
𝑃𝑡

𝑃𝑡 + 𝜎2
𝑛

p𝐻R−1p.

Predicting future channel values improves the performance
of adaptive transmission systems [25]. It has been shown
that a band-limited process can be predicted exactly using
past samples with an infinite order predictor in the absence
of channel estimation errors (i.e. 𝜌 can be 1) [24]. This is
not possible with a finite-tap predictor and 𝜌 is strictly less
than 1 [24] even without channel estimation errors. However,
𝜌 increases with increasing filter order [23], [25], [26]. In
the presence of channel estimation errors, a continuous-time
prediction filter observing the channel over a finite duration
interval of past values can achieve 𝜌 → 1 as SNR tends to
infinity [27]. This continuous-time prediction filter provides
a performance bound for other discrete-time predictors based
on samples.

Knowledge of Doppler spread is assumed in the design of
the above prediction filter. In practice, the Doppler spread has
to be estimated. Methods for Doppler spread estimation in
Rayleigh fading channels are presented in [28], and, more
specifically, in the context of OFDM systems in [29], [30].

III. OUTAGE ANALYSIS OF MIMO ANTENNA SELECTION

WITH IMPERFECT CSI

The index of the selected antenna is determined using H𝑡

and fed back to the transmitter through a feedback channel
with delay. The channel estimate H𝑟 is obtained from the
training at the beginning of the block for decoding. Both
H𝑡 are H𝑟 are known to the receiver. Therefore, the outage
probability is:

𝑃 (𝑜𝑢𝑡𝑎𝑔𝑒) = 𝑃 (𝐼 (𝑥;y/H𝑡,H𝑟) < 𝑅) , (4)

where 𝑅 is the required rate. The mutual information between
𝑥 and y of the MIMO antenna selection system in the presence
of imperfect CSIT can be lower bounded as follows [21], [22]:

𝐼 (𝑥;y/H𝑡,H𝑟) ≥ log
(
1 + Γ∣∣H𝑟,𝑠𝑒𝑙∣∣2

)
, (5)

where Γ = 𝑃𝑑

𝑃𝑑𝜎2
𝑒+𝜎2

𝑛
, 𝑃𝑑 is the transmit data power and H𝑟,𝑠𝑒𝑙

is the estimate of the channel vector corresponding to the
selected antenna. In the absence of channel estimation errors,
i.e., perfect CSIR, equation (5) becomes an equality. Using
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equation (5), we can get an upper bound on outage probability
as follows:

𝑃 (𝑜𝑢𝑡𝑎𝑔𝑒) ≤ 𝑃

(
∣∣H𝑟,𝑠𝑒𝑙∣∣2 <

𝑒𝑅 − 1

Γ

)
. (6)

Selection is based on H𝑡, i.e., the selected antenna index
is equal to the arg max

𝑖=1,2,⋅⋅⋅ ,𝑁𝑡

∣∣H𝑡,𝑖∣∣2, where H𝑡,𝑖 is the 𝑖𝑡ℎ

column of H𝑡. Therefore, we have

𝑃 (𝑜𝑢𝑡𝑎𝑔𝑒) ≤
𝑁𝑡∑
𝑖=1

𝑃
(∣∣H𝑟,𝑖∣∣2 < 𝛽,Antenna 𝑖 is selected

)
(7)

=

𝑁𝑡∑
𝑖=1

𝑃

(
∣∣H𝑟,𝑖∣∣2 < 𝛽, ∣∣H𝑡,𝑖∣∣2 = max

𝑗=1,2,⋅⋅⋅ ,𝑁𝑡

∣∣H𝑡,𝑗 ∣∣2
)

,

(8)

where 𝛽 = 𝑒𝑅−1
Γ . From equation (3), we can write

∣∣H𝑟,𝑖∣∣2 = 𝜎2
𝑟 (1− 𝜌2)

2

∥∥∥∥∥
[√

2𝜌2

(1− 𝜌2)𝜎2
𝑡

H𝑡,𝑖 +
√
2E1,𝑖

]∥∥∥∥∥
2

= 𝜎2
𝑟

(1− 𝜌2)

2
𝐴𝑖,

where 𝐴𝑖 is defined as
∥∥∥[√ 2𝜌2

(1−𝜌2)𝜎2
𝑡
H𝑡,𝑖 +

√
2E1,𝑖

]∥∥∥2. De-

fine 𝑍𝑖 = ∣∣H𝑡,𝑖∣∣2, 𝑍 = max
𝑗=1,2,⋅⋅⋅ ,𝑁𝑡

𝑍𝑗 , and 𝜇 = 𝜌2

1−𝜌2 . Now,
1

1−𝜌2 = 1 + 𝜇, and the outage probability bound can be
rewritten as

𝑃 (outage) ≤
𝑁𝑡∑
𝑖=1

𝑃

(
𝐴𝑖 < 2𝛽

(
1 + 𝜇

𝜎2
𝑟

)
, 𝑍 = 𝑍𝑖

)
. (9)

Let 𝜈 = 𝛽
(

1+𝜇
𝜎2
𝑟

)
. Since 𝐴𝑖’s are i.i.d and 𝑍𝑖’s are also i.i.d.,

by symmetry we get

𝑃 (outage) ≤ 𝑁𝑡𝑃 (𝐴1 < 2𝜈, 𝑍 = 𝑍1)

= 𝑁𝑡𝑃 (𝐴1 < 2𝜈/𝑍 = 𝑍1)𝑃 (𝑍 = 𝑍1)

= 𝑃 (𝐴1 < 2𝜈/𝑍 = 𝑍1)

=

∫ ∞

0

𝑃 (𝐴1 < 2𝜈/𝑍 = 𝑍1 = 𝑧) 𝑓𝑍/𝑍=𝑍1
(𝑧)𝑑𝑧

=

∫ ∞

0

𝑃 (𝐴1 < 2𝜈/𝑍 = 𝑍1 = 𝑧) 𝑓𝑍(𝑧)𝑑𝑧. (10)

Note that, by symmetry, 𝑃 (𝑍 = 𝑍1) = 1/𝑁𝑡 and
𝑓𝑍/𝑍=𝑍1

(𝑧) = 𝑓𝑍(𝑧). Since the elements of
√
2E1,𝑖 are com-

plex Gaussian with variance 1 per dimension, for a given H𝑡,𝑖,
𝐴𝑖 is non-central distributed with 2𝑁𝑟 degrees of freedom.
The non centrality parameter 𝛿𝑖 =

2𝜇
𝜎2
𝑡
∣∣H𝑡,𝑖∣∣2. Therefore, we

have

𝑃 (𝐴1 < 2𝜈/𝑍 = 𝑍1 = 𝑧) = 𝐹𝑛𝑐−𝜒2,2𝑁𝑟,𝛿1 (2𝜈) ,

where 𝐹𝑛𝑐−𝜒2,2𝑁𝑟,𝛿1(⋅) is the CDF of the non central
chisquared distributed random variable with parameters 2𝑁𝑟

and 𝛿1 given by (equation (26.4.25) in [31])

𝐹𝑛𝑐−𝜒2,2𝑁𝑟,𝛿1 (𝑎) =
∞∑
𝑗=0

𝑒−
𝛿1
2

(
𝛿1
2

)𝑗
𝑗!

𝛾𝑗+𝑁𝑟

(𝑎

2

)
, (11)

where 𝛾𝑖(𝑥) is the regularized gamma function given by

𝛾𝑖(𝑥) =

∫ 𝑥

0

𝑒−𝑦𝑦𝑖−1

(𝑖−1)! 𝑑𝑦. Therefore, we have

𝑃 (outage) ≤
∫ ∞

0

𝐹𝑛𝑐−𝜒2,2𝑁𝑟,𝛿 (2𝜈) 𝑓𝑍(𝑧)𝑑𝑧. (12)

Now, we find 𝑓𝑍(𝑧). Each 𝑍𝑗 is sum of squared magnitudes
of 𝑁𝑟 zero-mean complex Gaussian random variables with
variance 𝜎2

𝑡

2 per dimension. Therefore, 𝑍𝑗 is chi-squared

distributed with PDF 𝑓𝑍𝑗 (𝑧) =
𝑒
− 𝑧

𝜎2
𝑡

(
𝑧

𝜎2
𝑡

)𝑁𝑟−1

𝜎2
𝑡 (𝑁𝑟−1)!

and CDF

𝐹𝑍𝑗 (𝑧) = 𝛾𝑁𝑟

(
𝑧
𝜎2
𝑡

)
. Since 𝑍 is maximum of 𝑁𝑡 i.i.d. random

variables, the pdf of 𝑍 is given by

𝑓𝑍(𝑧) = 𝑁𝑡

[
𝐹𝑍𝑗 (𝑧)

]𝑁𝑡−1
𝑓𝑍𝑗 (𝑧)

= 𝑁𝑡

[
𝛾𝑁𝑟

(
𝑧

𝜎2
𝑡

)]𝑁𝑡−1 𝑒
− 𝑧

𝜎2
𝑡

(
𝑧
𝜎2
𝑡

)𝑁𝑟−1

𝜎2
𝑡 (𝑁𝑟 − 1)!

. (13)

Since 𝛾𝑁𝑟 (𝑥) = 1− 𝑒−𝑥
𝑁𝑟−1∑
𝑖=0

𝑥𝑖

𝑖!
, powers of 𝛾𝑁𝑟 (𝑥) can be

found using binomial and multinomial expansion (equation
(24.1.2B) in [31]). Therefore, we have[

𝛾𝑁𝑟

(
𝑧

𝜎2
𝑡

)]𝑁𝑡−1

=

𝑁𝑡−1∑
𝑙=0

(
𝑁𝑡 − 1

𝑙

)
(−1)𝑙𝑒−

𝑙𝑧

𝜎2
𝑡

∑
𝑏1,𝑏2,⋅⋅⋅ ,𝑏𝑁𝑟

(
𝑙

𝑏1, 𝑏2, ⋅ ⋅ ⋅ , 𝑏𝑁𝑟

)(
𝑧
𝜎2
𝑡

)𝑀
𝐿1

,

(14)

where the integer vector b = [𝑏1, 𝑏2, ⋅ ⋅ ⋅ , 𝑏𝑁𝑟 ] is such that
𝑁𝑟∑
𝑡=1

𝑏𝑡 = 𝑙, 𝐿1 = Π𝑁𝑟−1
𝑡=0 (𝑡!)𝑏𝑡+1 and 𝑀 =

𝑁𝑟−1∑
𝑡=0

𝑡𝑏𝑡+1. Using

equation (14) in equation(13), we get

𝑓𝑍(𝑧) = 𝑁𝑡

𝑁𝑡−1∑
𝑙=0

(
𝑁𝑡 − 1

𝑙

)
(−1)𝑙

∑
𝑏1,𝑏2,⋅⋅⋅ ,𝑏𝑁𝑟

(
𝑙

𝑏1, 𝑏2, ⋅ ⋅ ⋅ , 𝑏𝑁𝑟

)
1

𝐿1

𝑒
− 𝑧(1+𝑙)

𝜎2
𝑡

(
𝑧
𝜎2
𝑡

)𝑀+𝑁𝑟−1

𝜎2
𝑡 (𝑁𝑟 − 1)!

(15)

= 𝑁𝑡

𝑁𝑡−1∑
𝑙=0

∑
b

𝐶𝑙,b

𝑒
− 𝑧(1+𝑙)

𝜎2
𝑡

(
𝑧
𝜎2
𝑡

)𝑀+𝑁𝑟−1

𝜎2
𝑡 (𝑁𝑟 − 1)!

, (16)

where

𝐶𝑙,b =

(
𝑁𝑡 − 1

𝑙

)
(−1)𝑙

(
𝑙

𝑏1, 𝑏2, ⋅ ⋅ ⋅ , 𝑏𝑁𝑟

)
1

𝐿1
.

The expressions in equations (16) and (11) can be substituted
in equation (12) to get:

𝑃 (outage) ≤ 𝑁𝑡

𝑁𝑡−1∑
𝑙=0

∑
b

𝐶𝑙,b

∞∑
𝑗=0

𝜇𝑗

𝑗!
𝛾𝑗+𝑁𝑟 (𝜈)

∫ ∞

0

𝑒
− 𝑧(1+𝑙+𝜇)

𝜎2
𝑡

(
𝑧
𝜎2
𝑡

)𝑗+𝑀+𝑁𝑟−1

𝜎2
𝑡 (𝑁𝑟 − 1)!

𝑑𝑧 (17)

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY MADRAS. Downloaded on December 14, 2009 at 05:11 from IEEE Xplore.  Restrictions apply. 



RAMYA and BHASHYAM: USING DELAYED FEEDBACK FOR ANTENNA SELECTION IN MIMO SYSTEMS 6063

= 𝑁𝑡

𝑁𝑡−1∑
𝑙=0

∑
b

𝐶𝑙,b

(
1

1 + 𝑙 + 𝜇

)𝑀+𝑁𝑟 ∞∑
𝑗=0

(
𝜇

1 + 𝑙 + 𝜇

)𝑗

(𝑗 +𝑀 +𝑁𝑟 − 1)!

𝑗!(𝑁𝑟 − 1)!
𝛾𝑗+𝑁𝑟 (𝜈) (18)

= 𝑁𝑡

𝑁𝑡−1∑
𝑙=0

∑
b

𝐶𝑙,b

(
1

1 + 𝑙 + 𝜇

)𝑀+𝑁𝑟 ∞∑
𝑗=0

(
𝜇

1 + 𝑙 + 𝜇

)𝑗

(𝑗 +𝑀 +𝑁𝑟 − 1)!

𝑗!(𝑁𝑟 − 1)!

[∫ 𝜈

0

𝑒−𝑎𝑎𝑗+𝑁𝑟−1

(𝑗 +𝑁𝑟 − 1)!
𝑑𝑎

]
(19)

= 𝑁𝑡

𝑁𝑡−1∑
𝑙=0

∑
b

𝐶𝑙,b

(
1

1 + 𝑙 + 𝜇

)𝑀+𝑁𝑟
∫ 𝜈

0

𝑒−𝑎𝑎𝑁𝑟−1

(𝑁𝑟 − 1)!

∞∑
𝑗=0

(
𝑎𝜇

1 + 𝑙 + 𝜇

)𝑗
(𝑗 +𝑀 +𝑁𝑟 − 1)!

𝑗!(𝑗 +𝑁𝑟 − 1)!
𝑑𝑎 (20)

= 𝑁𝑡

𝑁𝑡−1∑
𝑙=0

∑
b

𝐶𝑙,b
(𝑁𝑟 +𝑀 − 1)!

(𝑁𝑟 − 1)!

(
1

1 + 𝑙 + 𝜇

)𝑀+𝑁𝑟

𝑀∑
𝑞=0

(
𝑀

𝑞

)(
𝜇

1 + 𝜇+ 𝑙

)𝑞 ∫ 𝜈

0

𝑒−
𝑎(𝑙+1)

(𝜇+𝑙+1) 𝑎𝑞+𝑁𝑟−1

(𝑁𝑟 + 𝑞 − 1)!
𝑑𝑎 (21)

= 𝑁𝑡

𝑁𝑡−1∑
𝑙=0

∑
b

𝐶𝑙,b

(
1

𝜇+ 𝑙 + 1

)𝑀
(𝑀 +𝑁𝑟 − 1)!

(𝑁𝑟 − 1)!

𝑀∑
𝑘=0

(
𝑀

𝑘

)(
𝜇

𝑙 + 1

)𝑘 (
1

𝑙 + 1

)𝑁𝑟

𝛾𝑁𝑟+𝑘

(
𝜈(𝑙 + 1)

𝜇+ 𝑙 + 1

)
. (22)

Equation (18) is obtained using the relation∫ ∞

0

𝑒−𝛼𝑥𝑥𝑛𝑑𝑥 =
𝑛!

𝛼𝑛+1
when 𝑛 is an integer. The definition

of 𝛾𝑗+𝑁𝑟 (.) in integral form is used in equation (18) to get
equation (19). Equation (20) is obtained by interchanging
of the order of summation and integration. Equation (21)
is obtained using the following simplification that uses the
result in [32]:

∞∑
𝑗=0

(
𝑎𝜇

1 + 𝑙 + 𝜇

)𝑗
(𝑗 +𝑀 +𝑁𝑟 − 1)!

𝑗!(𝑗 +𝑁𝑟 − 1)!

= 𝑒(
𝑎𝜇

1+𝜇+𝑙 )(𝑁𝑟 +𝑀 − 1)!

𝑀∑
𝑞=0

(
𝑀

𝑞

) (
𝑎𝜇

1+𝜇+𝑙

)𝑞
(𝑁𝑟 + 𝑞 − 1)!

. (23)

Finally, equation (22) is obtained by re-writing the integral in
terms of 𝛾𝑁𝑟+𝑘(.).

Therefore, we have obtained an upper bound for the outage
probability of MIMO antenna selection system that is valid
for all SNR. A lower bound can be obtained by evaluating the
outage probability of MIMO antenna selection with perfect
CSIR and feedback delay. In this case, we have an equality
in equation (5). Therefore, the expression in equation (22)
becomes an exact expression for outage probability in the
perfect CSIR case with delayed CSIT. These results are
numerically compared in the next section. Based on the results,
it is clear that the upper bound derived above is close to the
outage probability with perfect CSIR and delayed CSIT, i.e.,
the upper bound is tight.
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Fig. 3. Probability of outage vs. SNR for 2×4 system, normalized Doppler
= 0.05.

A. Numerical Results

The outage probability vs. SNR (average) for a 2×4 antenna
selection system is depicted in Fig. 3. The average SNR is
given by 𝑆𝑁𝑅𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑃

𝜎2
𝑛
= 𝑁𝑡𝑃𝑡+(𝑁−𝑁𝑡)𝑃𝑑

𝑁𝜎2
𝑛

, where 𝑃𝑡

and 𝑃𝑑 are the transmit powers used during training and data
respectively. The values of 𝑃𝑡 and 𝑃𝑑 can be optimized to
improve the quality of the estimate. As in [22], the upper
bound on outage probability in equation (6) is minimized
if 𝑃𝑑 satisfies the equation 𝑎𝑃 2

𝑑 + 𝑏𝑃𝑑 + 𝑐 = 0, where
𝑎 = (𝑁 −𝑁𝑡)(𝑁 −2𝑁𝑡), 𝑏 = −2(𝑁−𝑁𝑡)(𝑁𝑃 +𝑁𝑡𝜎

2
𝑛) and

𝑐 = (𝑁𝑃 + 𝑁𝑡𝜎
2
𝑛)

2. The desired rate 𝑅 is 2 nats/sec/Hz.
Normalized Doppler of 0.05 (𝑓𝑑 = 25Hz, 𝑇 = 2msec)
and delay Δ = 1 frame are considered, which lead to
𝐽0(2𝜋𝑓𝑑𝑇Δ) = 0.97. The outage probability is plotted for
the four imperfect CSI cases discussed in Section II-A and
for the perfect CSIT case. It is evident from Fig. 3 that the
degradation due to feedback delay becomes significant as SNR
increases. While diversity order of 8 is achieved with perfect
CSIT, feedback delay reduces the diversity order to 4. On the
other hand, estimation errors do not alter the diversity gain
and lead to a fixed SNR loss. The upper bound on outage
probability with feedback delay and estimation error is close
to the outage probability with feedback delay and perfect
CSIR. This shows that the upper bound is tight. Fig. 3 also
reveals that performance degradation caused by delay can be
significantly compensated using channel prediction.

The upper bound in equation (22) is validated using simu-
lations. Fig. 4 compares the simulation results on the outage
probability with the analytical results for the 2 × 4 system
for 𝑓𝑑𝑇=0.05 and 𝑅 = 2nats/sec/Hz. Results are shown for
the imperfect CSIT case with estimation errors and feedback
delay with and without prediction, corresponding to cases 3
and 4 in Section II-A. In both these cases, it can be seen that
the upper bound is close to the simulation results, validating
the analysis.

The outage probability is plotted vs. 𝑅 in Fig. 5 for a
2 × 2 system for SNR of 25dB. Normalized Doppler of 0.05
and Δ = 2 frames are considered. This plot can be used to
determine the outage capacity for a given outage probability. It
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Fig. 4. Probability of outage vs. SNR for 2×4 system, normalized Doppler
= 0.05.
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Fig. 5. Probability of outage vs. R for 2× 2 system, normalized Doppler =
0.05, SNR = 25 dB.

can be seen that at outage probability of about 10−2, feedback
delay leads to a degradation of about 12% in the achievable
rate.

Fig. 6 shows the graph of outage capacity vs. SNR for 2×2
system for an outage probability of 0.01. Normalized Doppler
of 0.05 and Δ = 2 frames are considered. This plot again
provides information on the achievable rate over the range of
SNR for the given outage probability. There is a significant
degradation in the achievable rate due to feedback delay
(without channel prediction). In order to achieve the same
rate, the required SNR is about 2 dB higher with feedback
delay. This means that a rate-adaptive system needs to choose
the transmission rate conservatively in the presence of feed-
back delay. However, prediction can be used to significantly
compensate for the effect of delay.

B. Required value for correlation

In the previous subsection, we presented the outage proba-
bility of the MIMO antenna selection system with imperfect
CSIT. It was evident that the effect of estimation errors can
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Fig. 6. Outage capacity vs. SNR for 2 × 2 system, normalized Doppler =
0.05, P(outage) = 0.01.

be characterized by a fixed SNR loss while feedback delay
alters the diversity order. With constant 𝜌, the degradation in
performance increases with increasing SNR. Therefore, the
value of 𝜌 should increase with increasing SNR and approach
1 as 𝑆𝑁𝑅 → ∞ for the performance degradation to be
bounded by a fixed loss in SNR. The minimum value of 𝜌, say
𝜌𝑡, required for the outage probability with imperfect CSIT to
be bounded by (1 + 𝜖) times the outage probability without
delay is calculated. The value of 𝜖 can be chosen based on
the degradation in performance that is acceptable. The value
of 𝜌𝑡 is calculated numerically and 1− 𝜌𝑡 is plotted vs. SNR
in Fig. 7 for a 2 × 2 system for 𝑅 = 2 nats/sec/Hz. It can
be observed that 1 − 𝜌𝑡 ∝ 𝑆𝑁𝑅−1 at high SNR. Channel
prediction using a finite length linear MMSE prediction filter
can improve the value of 𝜌 and reduce the degradation for
a larger range of SNR. However, at sufficiently high SNR,
the degradation will be significant for any 𝜌 less than 1. The
value of 𝜌 obtained using prediction filters of length 2, 5, 10
and 100 for normalized Doppler of 0.05 and Δ = 1 frame
are also plotted in the graph. It can be seen that prediction is
not required up to a SNR of about 7 dB. Filter length of 2 is
sufficient till SNR = 12 dB and 𝐿 = 10 and 100 are sufficient
to limit degradation at SNR of 25 and 40 dB respectively. The
graph of the prediction filter length 𝐿 required to achieve 𝜌𝑡 is
plotted in Fig. 8 for various normalized Doppler frequencies
and Δ = 1 frame. The required 𝐿 increases with SNR and
Doppler. It can be seen that at SNR of 30dB, L = 10, 25 and
100 are required for 𝑓𝑑𝑇 = 0.03, 0.04 and 0.05 respectively.

IV. ASYMPTOTIC DIVERSITY ORDER ANALYSIS

From equation (22) in section III, it is clear that in the pres-
ence of feedback delay, the outage probability is a weighted
summation of gamma functions of different orders starting
from 𝑁𝑟. This implies that the diversity order with feedback
delay can be less than that with perfect CSIT (which is
𝑁𝑡𝑁𝑟). The same was ascertained in the previous section,
where it was shown that 𝜌 is required to improve with SNR to
limit the degradation. In this section, we derive the diversity-
multiplexing gain-feedback quality tradeoff for the MIMO
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antenna selection system with imperfect CSI. Feedback quality
𝛼 is defined as the rate at which 𝜌 → 1 as 𝑆𝑁𝑅 → ∞, i.e.,

𝛼 = − log(1− 𝜌)

log(𝑆𝑁𝑅)
. (24)

The definition for the diversity gain 𝑑 and multiplexing gain
𝑟 are as given in [33]. With perfect CSIT, 𝑑 = 𝑁𝑡𝑁𝑟(1 −
𝑟). When 𝛼 = 0, as in the delayed CSIT case, 𝜌 does not
increase with SNR leading to a diversity gain of 𝑁𝑟(1 − 𝑟).
The following theorem provides the diversity gain for other
values of 𝛼 and 𝑟 between 0 and 1.

Theorem: The asymptotic diversity gain of the MIMO
antenna selection system with imperfect CSIT is given by:

𝑑 =

{
𝑁𝑟(𝛼(𝑁𝑡 − 1) + 1− 𝑟) for 𝛼 ≤ 1− 𝑟

𝑁𝑡𝑁𝑟(1− 𝑟) for 𝛼 > 1− 𝑟,
(25)

for 0 ≤ 𝛼 ≤ 1 and 0 ≤ 𝑟 ≤ 1.
Proof: The proof follows a method similar to the method

used in [34]. Consider equation (10). The region of integration
over 𝑍 can be split into two regions [0, 𝐵] and [𝐵,∞), where

𝐵 is chosen such that 𝑓𝑍(𝑧) = 𝑐

(
𝑧

𝜎2
𝑡

)𝐾−1

𝑒
− 𝑧

𝜎2
𝑡

𝜎2
𝑡

+ 𝑜(𝑧𝐾) for
𝑧 ∈ [0, 𝐵] (for some constant 𝑐), and K = 𝑁𝑟𝑁𝑡. Therefore,
equation (10) can be written as [34]:

𝑃 (𝑜𝑢𝑡𝑎𝑔𝑒) ≤ 𝑇1 − 𝑇2 + 𝑇3, (26)

where

𝑇1 = 𝑐

∫ ∞

0

𝑃 (𝐴1 < 𝜈/𝑍 = 𝑍1 = 𝑧)

(
𝑧
𝜎2
𝑡

)𝐾−1

𝑒
− 𝑧

𝜎2
𝑡

𝜎2
𝑡

𝑑𝑧,

𝑇2 = 𝑐

∫ ∞

𝐵

𝑃 (𝐴1 < 𝜈/𝑍 = 𝑍1 = 𝑧)

(
𝑧
𝜎2
𝑡

)𝐾−1

𝑒
− 𝑧

𝜎2
𝑡

𝜎2
𝑡

𝑑𝑧

and 𝑇3 =

∫ ∞

𝐵

𝑃 (𝐴1 < 𝜈/𝑍 = 𝑍1 = 𝑧) 𝑓𝑍(𝑧)𝑑𝑧.

Here 𝑇1 − 𝑇2 corresponds to the integral over the region
[0, 𝐵] and 𝑇3 corresponds to the integral over the other region.

Analysis of Term 𝑇1:
Using equation (12) in 𝑇1 above, we have

𝑇1 = 𝑐

∞∑
𝑗=0

𝛾𝑗+𝑁𝑟 (𝜈)

∫ ∞

0

𝜇𝑗

(
𝑧
𝜎2
𝑡

)𝑗+𝐾−1

𝑒
− (𝜇+1)𝑧

𝜎2
𝑡

𝑗! 𝜎2
𝑡

𝑑𝑧 (27)

=
𝑐

(1 + 𝜇)𝐾

∞∑
𝑗=0

(
𝜇

1 + 𝜇

)𝑗
(𝑗 +𝐾 − 1)!

𝑗!
𝛾𝑗+𝑁𝑟 (𝜈) (28)

=
𝑐

(1 + 𝜇)𝐾

∞∑
𝑗=0

(
𝜇

1 + 𝜇

)𝑗
(𝑗 +𝐾 − 1)!

𝑗!∫ 𝜈

0

𝑒−𝑎𝑎𝑗+𝑁𝑟−1

(𝑗 +𝑁𝑟 − 1)!
𝑑𝑎 (29)

=
𝑐

(1 + 𝜇)𝐾

∫ 𝜈

0

𝑒−𝑎𝑎𝑁𝑟−1
∞∑
𝑗=0

(𝑗 +𝐾 − 1)!

(𝑗 +𝑁𝑟 − 1)!

(
𝜇𝑎
1+𝜇

)𝑗
𝑗!

𝑑𝑎

(30)

=
𝑐

(1 + 𝜇)𝐾
(𝐾 − 1)!

𝐾−𝑁𝑟∑
𝑝=0

(
𝐾 −𝑁𝑟

𝑝

) (
𝜇

1+𝜇

)𝑝
(𝑁𝑟 + 𝑝− 1)!∫ 𝜈

0

𝑒−
𝑎

1+𝜇 𝑎𝑝+𝑁𝑟−1𝑑𝑎. (31)

Equation (28) is obtained using the relation∫ ∞

0

𝑒−𝛼𝑥𝑥𝑛𝑑𝑥 =
𝑛!

𝛼𝑛+1
when 𝑛 is an integer. Using

the definition of 𝛾𝑗+𝑁𝑟 (.) results in equation (29), while
equation (30) is obtained by interchanging the order of
summation and the integration. Equation (31) is obtained
using the simplification similar to that in equation (23).

Replacing 𝑎 with 𝑎
1+𝜇 and the integral with 𝛾𝑝+𝑁𝑟(.), we

get

𝑇1 =
𝑐

(1 + 𝜇)𝐾−𝑁𝑟
(𝐾 − 1)!

𝐾−𝑁𝑟∑
𝑝=0

(
𝐾 −𝑁𝑟

𝑝

)
𝜇𝑝𝛾𝑝+𝑁𝑟

(
𝛽

𝜎2
𝑟

)
.

(32)
As 𝑆𝑁𝑅 → ∞, 𝜎2

𝑟 → 1, 𝛽 ≈ 𝑆𝑁𝑅−(1−𝑟) and 𝜇 ≈ 𝑆𝑁𝑅𝛼.
Note that 𝛾𝑁 (𝑥) ≈ 𝑥𝑁

𝑁 ! for small 𝑥. The terms of 𝑇1, therefore
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decay with the rate 𝛼(𝐾 − 𝑁𝑟 − 𝑝) + (𝑝 + 𝑁𝑟)(1 − 𝑟), 𝑝 =
0, 1, ⋅ ⋅ ⋅ , (𝐾 −𝑁𝑟). Therefore, diversity gain

𝑑 = min
𝑝=0,1,⋅⋅⋅ ,𝐾−𝑁𝑟

𝛼(𝐾 −𝑁𝑟 − 𝑝) + (𝑝+𝑁𝑟)(1 − 𝑟).

When 𝛼 < (1 − 𝑟), 𝑝 = 0 yields the minimum value of
𝑑 = 𝑁𝑟(𝛼(𝑁𝑡−1)+(1−𝑟)), while for 𝛼 > 1−𝑟, 𝑝 = 𝐾−𝑁𝑟

leads to minimum value of 𝑑 = 𝑁𝑡𝑁𝑟(1− 𝑟). Therefore, the
rate of decay of 𝑇1 is 𝑁𝑟 (𝛼(𝑁𝑡 − 1) + 1− 𝑟) for 𝛼 ≤ (1−𝑟)
and 𝑁𝑡𝑁𝑟(1 − 𝑟) for 𝛼 > (1− 𝑟).
Analysis of Term 𝑇2:
𝑇2 can be written as

𝑇2 = 𝑐

∞∑
𝑗=0

𝛾𝑗+𝑁𝑟 (𝜈)

∫ ∞

𝐵

𝜇𝑗

(
𝑧
𝜎2
𝑡

)𝑗+𝐾−1

𝑒
− (1+𝜇)𝑧

𝜎2
𝑡

𝜎2
𝑡 𝑗!

𝑑𝑧 (33)

=
𝑐

(1 + 𝜇)𝐾−1

∞∑
𝑗=0

(
𝜇

1+𝜇

)𝑗
𝑗!

𝛾𝑗+𝑁𝑟 (𝜈)
1

𝜎2
𝑡∫ ∞

𝐵

(
(1 + 𝜇)𝑧

𝜎2
𝑡

)𝑗+𝐾−1

𝑒
− (1+𝜇)𝑧

𝜎2
𝑡 𝑑𝑧 (34)

=
𝑐

(1 + 𝜇)𝐾

∞∑
𝑗=0

(
𝜇

1+𝜇

)𝑗
𝑗!

𝛾𝑗+𝑁𝑟 (𝜈)

∫ ∞(
1+𝜇

𝜎2
𝑡

)
𝐵

𝑒−𝑥𝑥𝑗+𝐾−1𝑑𝑥,

(35)

where equation (35) is obtained using 𝑥 = (1+𝜇)𝑧
𝜎2
𝑡

. At high

SNR, 𝜈 ≈ (
1

𝑆𝑁𝑅

)1−𝑟−𝛼
.

When 𝛼 ≤ (1 − 𝑟), 𝜈 decreases with increasing SNR.
Therefore, at high SNR, 𝛾𝑗+𝑁𝑟 (𝜈) ≈ 𝜈𝑗+𝑁𝑟

(𝑗+𝑁𝑟)!
and 𝑇2 reduces

to

𝑇2 ≈ 𝑐

(
1

1 + 𝜇

)𝐾−𝑁𝑟
(

𝛽

𝜎2
𝑟

)𝑁𝑟

∞∑
𝑗=0

(
𝜇𝛽
𝜎2
𝑟

)𝑗
(𝑗 +𝑁𝑟)!𝑗!

∫ ∞(
1+𝜇

𝜎2
𝑡

)
𝐵

𝑒−𝑥𝑥𝑗+𝐾−1𝑑𝑥. (36)

It is clear that the value of the integral tends to zero as
𝑆𝑁𝑅 → ∞. Therefore, for 𝛼 ≤ (1 − 𝑟), 𝑇2 has terms that
are 𝑜(𝛼𝑁𝑟(𝑁𝑡 − 1) + (1− 𝑟)𝑁𝑟), i.e., decay faster than 𝑇1.

When 𝛼 > (1 − 𝑟), 𝜈 increases with SNR. Therefore, at
high SNR, 𝛾𝑗+𝑁𝑟 (𝜈) → 1 and 𝑇2 reduces to

𝑇2 = 𝑐

(
1

1 + 𝜇

)𝐾 ∞∑
𝑗=0

(
𝜇

1+𝜇

)𝑗
𝑗!

∫ ∞(
1+𝜇

𝜎2
𝑡

)
𝐵

𝑒−𝑥𝑥𝑗+𝐾−1𝑑𝑥

(37)
which is 𝑜(𝛼𝑁𝑟𝑁𝑡).

Therefore, rate of decay of 𝑇2 is higher than that of 𝑇1 for
all 𝛼, 𝑟.
Analysis of Term 𝑇3:
Now consider 𝑇3,

𝑇3 =
∞∑
𝑗=0

𝛾𝑗+𝑁𝑟 (𝜈)

∫ ∞

𝐵

𝑒
−
(

𝜇𝑧

𝜎2
𝑡

) (
𝜇𝑧
𝜎2
𝑡

)𝑗
𝑗!

𝑓𝑍(𝑧)𝑑𝑧 (38)
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Fig. 9. Probability of outage vs. SNR 2× 2 system, R = 2 nats/sec/Hz.

But
𝑒
−
(

𝜇𝑧

𝜎2
𝑡

)(
𝜇𝑧

𝜎2
𝑡

)𝑗

𝑗! ≤ Γ𝑗+1

(
𝜇𝑧
𝜎2
𝑡

)
, where Γ𝑗(𝑥) = 𝑒−𝑥

𝑗−1∑
𝑖=0

𝑥𝑖

𝑖!

is the regularized upper incomplete gamma function. Since
Γ𝑗(𝑥) is monotonically decreasing with 𝑥,

𝑇3 ≤
∞∑
𝑗=0

𝛾𝑗+𝑁𝑟 (𝜈)

∫ ∞

𝐵

Γ𝑗+1

(
𝜇𝑧

𝜎2
𝑡

)
𝑓𝑍(𝑧)𝑑𝑧

≤
∞∑
𝑗=0

𝛾𝑗+𝑁𝑟 (𝜈) Γ𝑗+1

(
𝜇𝐵

𝜎2
𝑡

)∫ ∞

𝐵

𝑓𝑍(𝑧)𝑑𝑧

≤
∞∑
𝑗=0

𝛾𝑗+𝑁𝑟 (𝜈) Γ𝑗+1

(
𝜇𝐵

𝜎2
𝑡

)
, (39)

which decays exponentially with increasing SNR.
Since 𝑇2 and 𝑇3 decay faster than 𝑇1, the asymptotic

diversity order is given by rate of decay of 𝑇1. This results in
the theorem.

The analytical asymptotic diversity order results are also
compared with Monte Carlo simulations in Fig. 9 for a 2× 2
system for 𝑅 = 2 nats/sec/Hz. It can be seen that the diversity
order is 2, 2.5 and 3 for 𝛼 = 0, 0.25, and 0.5 respectively.

V. CONCLUSIONS

The effect of feedback delay and channel estimation error
on the performance of a MIMO antenna selection system
have been analyzed. Feedback delay and channel estimation
error affect the outage probability in different ways. Channel
estimation error decreases with SNR and its effect is not
significant at high SNR. However, feedback delay leads to
significant degradation in outage probability as SNR increases.
Furthermore, for rate adaptive systems, feedback delay leads to
a significant reduction in the achievable rate for a given outage
probability requirement. Channel prediction can be used to
combat the effect of feedback delay. The calculation of the
value of 𝜌 required to limit degradation revealed that the 1−𝜌
should be proportional to 𝑆𝑁𝑅−1. This is later substantiated
by the asymptotic diversity order analysis as a function of
feedback quality. The length of the linear MMSE prediction
filter required to achieve the desired 𝜌 is also calculated and
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found to increase with SNR. The asymptotic diversity order
results show that as long as 1− 𝜌 ∝ 𝑆𝑁𝑅−1, the asymptotic
diversity order is unaltered by imperfect CSIT.
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