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Cross-Layer Scheduling with
Infrequent Channel and Queue Measurements

C. Manikandan, Srikrishna Bhashyam, and Rajesh Sundaresan

Abstract—The downlink scheduling problem in multi-queue
multi-server systems under channel uncertainty is considered.
Two policies that make allocations based on predicted channel
states are proposed. The first is an extension of the well-known
dynamic backpressure policy to the uncertain channel case. The
second is a variant that improves delay performance under
light loads. The stability region of the system is characterised
and the first policy is argued to be throughput optimal. A
recently proposed policy of Kar et al [1] has lesser complexity,
but is shown to be throughput suboptimal. Further, simulations
demonstrate better delay and backlog properties for both our
policies at light loads.

Index Terms—Backpressure policy, CDMA, cross-layer
scheduling, max-weight scheduling, OFDM, polymatching,
throughput optimal policy, stability region.

I. INTRODUCTION

WE study resource allocation and stability in multi-queue
multi-server systems under channel uncertainty. The

multi-queue multi-server model can be used for downlink
of packet data systems based on orthogonal frequency divi-
sion multiplexing (OFDM) or code division multiple access
(CDMA). In an OFDM-based system, each subcarrier or a
group of subcarriers can be modeled as a server. In a CDMA-
based system, each spreading code can be modeled as a server.
Therefore, the code allocation and subcarrier allocation prob-
lems in CDMA and OFDM are special cases of the problem
considered here. Scheduling decisions are based on available
channel and queue state information. Success or failure of
a transmission is known only upon explicit feedback from
the receiver. Similarly channel state information in frequency-
division duplexed systems is known only upon explicit feed-
back from the receiver. The fedback data is usually received
after some delay. To model the delays, we assume that channel
states and the results of transmissions are known only once
every 𝑇 slots, a model used by Kar et al [1], [2]. In this paper,
we characterise the so-called stability region for a system with
such imperfect channel and queue state information. We also
propose a throughput optimal policy and a variant that is aimed
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at performing better at light loads. Our results may be easily
extended to the uplink.

Andrews et al [3], Kumaran & Viswanathan [5], Agarwal
et al [6], have proposed resource allocation policies for 1xEV-
DO Rev 0 [4] and other CDMA-based downlinks. Kittipiyakul
& Javidi [7] proposed an optimal server allocation policy
to minimise average delay under time-varying on-off con-
nectivities, and proposed a heuristic extension to the more
general connectivity case in [8]. Mohanram & Bhashyam
[9] considered joint power and server allocation to maximise
throughput. Tassiulas & Ephremides [10] characterised the
stability region of a network and proposed a policy that would
stabilise the queues, if at all it was possible to stabilise them.
Such policies are called throughput optimal policies. Their
policy did not depend on knowledge of arrival rates, and
roughly speaking routed traffic from the longest queue to
the shortest queue among connected links. The connections
were either on or off and were independent and identically
distributed (iid) from slot to slot. In the presence of channel
uncertainty, the probability of a connection was factored into
the weights. The states of all links in a slot were made
available to the scheduler at the end of the slot. These results
were extended by Neely et al [12] and Neely [13] to a wider
class of networks with general loss models, Markov channels,
and power control. See also the monograph on this topic by
Georgiadis et al [11]. Kar et al [1] recently considered a
practical setting where channel state information is available
only once every 𝑇 slots. They proposed a policy based on
virtual queueing, and showed that within such a framework,
if there is some policy that will stabilise a set of arrival rates,
then so will their policy. The virtual queueing enables easy
computation of the best virtual-queue-based schedule.

In this paper, we show that the system model of Kar et
al [1] for a multi-queue multi-server system with uncertain
connectivity fits within the framework of Georgiadis et al
[11] by viewing blocks of 𝑇 slots (frame) as a unit for
making decisions. The dynamic backpressure policy described
in Georgiadis et al [11, p.48] then yields a throughput optimal
policy under channel uncertainty as well (Policy 1 below).
This policy may also be thought of as an extension of the
policy of Kittipiyakul & Javidi [8] for the uncertain channel
case. We then argue via an example that the virtual-queue-
based policy of Kar et al may have a strictly smaller stability
region than that of Policy 1. A simple modification of Policy
1 improves backlog and delay performance at light loads. The
complexity of Policy 1 is that of Kar et al scaled by the frame
length. The modification requires even more computations.

The rest of the paper is organised as follows. Section II
describes the system model and Section III the proposed and
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other policies. Section IV presents the stability analysis for
the system, Section V presents simulation results, and Section
VI our conclusions.

II. SYSTEM MODEL

Consider a downlink system of 𝑁 users with one queue
each. There are 𝐾 servers1 serving these queues. Transmission
is slotted. In each slot, the scheduler decides how servers are
allocated across users. Users then transmit their packets on the
assigned servers. The effect of the fading channel is modeled
by the physical layer’s ability to transmit a certain number of
packets from the set ℂ = {0, 1, ⋅ ⋅ ⋅ , 𝑐max}. As each user may
see a different channel on each server (as in the OFDM case),
the instantaneous channel state at slot 𝑡 may be modeled as
𝐶(𝑡) ∈𝑀𝑁×𝐾(ℂ), a matrix of size 𝑁×𝐾 with entries from
ℂ. An entry 𝐶𝑛𝑘(𝑡) denotes the number of packets user 𝑛 can
transmit on server 𝑘 at slot 𝑡. For simplicity ℂ is the same
for all user-server pairs. The process (𝐶(𝑡) : 𝑡 = 0, 1, ⋅ ⋅ ⋅ ) is
taken to be an irreducible (finite-state) Markov chain.

Let 𝑏𝑛(𝑡) denote the queue size of user 𝑛 at slot 𝑡,
𝑏(𝑡) = (𝑏1(𝑡), ⋅ ⋅ ⋅ , 𝑏𝑁 (𝑡))† the queue state vector at slot 𝑡,
and

∑𝑁
𝑛=1 𝑏𝑛(𝑡) the backlog at slot 𝑡.

Scheduling is done based on available channel and queue
state information. Success or failure of a transmission is
known only upon explicit feedback from the receiver. Sim-
ilarly channel state information in frequency-division du-
plexed systems is known only upon explicit feedback from
the receiver. These are received with delays. To model the
delays, we assume that channel states and the results of
transmissions are known only once every 𝑇 slots, which we
call a frame. (The same model was used by Kar et al [1]).
More precisely, let the (𝑙 − 1)st frame be made of slots
(𝑙 − 1)𝑇, (𝑙 − 1)𝑇 + 1, ⋅ ⋅ ⋅ , 𝑙𝑇 − 1. Scheduling decisions for
the 𝑙th frame2 are made at the start of the frame based on
exact queue states and exact channel states for slot 𝑙𝑇 − 1.
Acknowledgements (ACKs) and negative acknowledgements
(NACKs) of all the intermediate slots are assumed to be
received only at the end of the frame.

In conformance with existing wireless systems, we assume
that a server can serve at most one queue in a slot. A queue
however may connect to several servers. We may therefore
think of a bipartite graph with queues on the left side and
servers on the right with connections only between queues
and servers, and the degree of any server being at most
1. A set of connections meeting these constraints is called
polymatching [1]. The scheduler further decides 𝑅𝑛𝑘(𝑡), the
number of packets that flows across the connection 𝑛 to 𝑘.
If 𝑅𝑛𝑘(𝑡) ≤ 𝐶𝑛𝑘(𝑡), the connection capacity, all packets
are received correctly. Otherwise the entire transmission fails.
Thus the number of received packets is 𝑅𝑛𝑘(𝑡)1{𝑅𝑛𝑘(𝑡) ≤
𝐶𝑛𝑘(𝑡)}, where 1{⋅} is the indicator function of an event. This

1In an OFDM-based system, a server may refer to each subcarrier or a
group of subcarriers. In a CDMA-based system, a server may refer to each
spreading code. A server is thus a minimal physical layer resource that is
allocable a queue.

2Analogous to algorithm FRAME in [12], scheduling, routing and power
control are done every slot and queue information is updated once every
frame. However, the decisions are based (among other things) on channel
information made available only once every frame, unlike algorithm FRAME
of [12].

all-or-none loss model is motivated by systems that encounter
outage when transmitted data rate is higher than the unknown
instantaneous link capacity for the slot. It is different from the
optimistic model of Kar et al [1] where min{𝑅𝑛𝑘(𝑡), 𝐶𝑛𝑘(𝑡)}
is received.

III. SCHEDULING POLICIES

We now present our policies for allocation under channel
uncertainty. For slot 𝑙𝑇 + 𝑚 in the 𝑙th frame, 0 ≤ 𝑚 < 𝑇 ,
define

𝐶𝑛𝑘(𝑙𝑇 +𝑚) = max
𝑟

𝑟Pr{𝑟 ≤ 𝐶𝑛𝑘(𝑙𝑇 +𝑚) ∣ 𝐶𝑛𝑘(𝑙𝑇 − 1)},
(1)

and 𝑅𝑛𝑘(𝑙𝑇 + 𝑚) to be the argument that achieves the
maximum. 𝐶𝑛𝑘(𝑙𝑇+𝑚) is the maximum expected throughput
for user 𝑛 on server 𝑘 in slot (𝑙𝑇 +𝑚), given 𝐶𝑛𝑘(𝑙𝑇 − 1).

Policy 1:

1) Assign 𝑤𝑛 ← 𝑏𝑛(𝑙𝑇 − 1) for 1 ≤ 𝑛 ≤ 𝑁 .
2) Repeat the following for each slot 𝑚 in the 𝑙th frame,

0 ≤ 𝑚 < 𝑇 .

a) Form the complete bipartite graph where every
queue is connected to every server.

b) Initialise 𝑋 = {1, 2, .....,𝐾}, the set of unallo-
cated servers

c) While 𝑋 ∕= ∅
i) Assign (𝑛∗, 𝑘∗)← argmax

𝑛,𝑘
𝑤𝑛𝐶𝑛𝑘(𝑙𝑇 +𝑚).

ii) Skip. (Policy 2 is different in this step.)
iii) Choose the connection (𝑛∗, 𝑘∗) for the poly-

matching and let 𝑅𝑛∗𝑘∗(𝑙𝑇 + 𝑚) packets
(see (1)) be transmitted in this slot3.

iv) Packets may be retransmitted. Packets are
chosen according to the lexicographical order
based on the pair (𝑣, 𝑠) that is maintained for
each packet, where 𝑣 is the number of times a
packet was transmitted and 𝑠 is the sequence
number4. Increment 𝑣 for chosen packets.

v) 𝑋 ← 𝑋 − {𝑘∗}.
3) Update queue states and channel states based on infor-

mation from the receivers at the last slot of the frame
and reset 𝑣 to 0 for all the packets at the start of every
frame.

Remark: In Step 2.c), the weights 𝑤𝑛 do not change. The
search for queue-server connections separates into 𝐾 inde-
pendent searches, one for each server, i.e., to each server 𝑘,
connect the queue 𝑛∗(𝑘) ← argmax

𝑛
𝑤𝑛𝐶𝑛𝑘(𝑙𝑇 + 𝑚). The

complexity is 𝑂(𝑇𝐾𝑁) operations.
Policy 2: This policy is the same as Policy 1, except for

the following insertion:

∙ Step 2.c.ii): Update 𝑤𝑛∗ ← [𝑤𝑛∗ − 𝐶𝑛∗𝑘∗(𝑙𝑇 + 𝑚)]+,
where [𝑥]+ = max{𝑥, 0}.
If all 𝑤𝑛 are zero, then reset 𝑤𝑛 ← 𝑏𝑛(𝑙𝑇 − 1) for 1 ≤
𝑛 ≤ 𝑁 .

3The queue that has the best queue-size weighted throughput on the server
is chosen.

4Preference is thus given to packets transmitted the fewest number of times
𝑣, and amongst those transmitted the same number of times, to one with
the smallest 𝑠, the earliest to arrive. Retransmissions may occur on different
servers.
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The motivation for these changes is that weights should
adapt to decisions taken, based on expected number of packets
that go through. When all weights become zero, all packets
have been transmitted roughly equal times, and we may
resume retransmissions with original weights. This policy
requires 𝑂((𝐾2 +𝐾𝑁)𝑇 ) operations.

The Kar-Luo-Sarkar (KLS) policy [1]: Maintain 𝐾 vir-
tual queues for a user, one associated to each server, in
addition to the input queue. In all, there are 𝑁𝐾+𝑁 queues.
Arrivals during a frame are held at the input queue and allowed
to enter the virtual queues only at the start of the frame. 𝑄𝑛𝑘

denotes size of that virtual queue of user 𝑛 associated with
server 𝑘.

1) Queueing: At the start of 𝑙th frame, all input-queued
packets of user 𝑛 will enter this user’s queue associated
to server 𝑘 if 𝑘 = argmin𝑘′ 𝑄𝑛𝑘′(𝑙𝑇 − 1).

2) Service: Compute for every queue-server pair, the
weight given by

𝐶𝑛𝑘(𝑙𝑇 ) =
1

𝑇
𝔼

⎡
⎣(𝑙+1)𝑇−1∑

𝑡=𝑙𝑇

𝐶𝑛𝑘(𝑡)
∣∣∣𝐶𝑛𝑘(𝑙𝑇 − 1)

⎤
⎦ .

3) To server 𝑘, assign the virtual queue 𝑛∗(𝑘) ←
argmax𝑛 𝑄𝑛𝑘(𝑙𝑇 − 1)𝐶𝑛𝑘(𝑙𝑇 ).

4) Transmit 𝑅𝑛∗(𝑘)𝑘(𝑙𝑇 + 𝑚) packets, the argument that
maximises (1), in slot (𝑙𝑇 +𝑚).

Remarks: The KLS policy requires 𝑂(𝐾𝑁) operations. The
KLS policy fixes the connections for the entire frame while our
policies adapt connections to changes in estimated queue sizes
and predicted channel conditions within a frame. Note that
Step 2 computes expected throughput based on the optimistic
loss model, while the transmission decision in Step 4 is
based on the all-or-none loss model. Changing either step
to be consistent with the other still renders the KLS policy
suboptimal because it does not adapt connections within a
frame.

IV. STABILITY CONSIDERATIONS

1) Stability region: A queue is called strongly stable if
lim sup𝐿→∞ 𝐿−1

∑𝐿−1
𝑡=0 𝔼 [𝑄(𝑡)] <∞. A network of queues

is strongly stable if all individual queues in the network are
strongly stable ([11, Defn. 3.1-3.2]). The stability region Λ is
the closure of the set of all arrival rates 𝜆 = (𝜆1, ⋅ ⋅ ⋅ , 𝜆𝑁 )†

such that there exists a policy (of routing, scheduling, and
resource allocation with perfect knowledge of future events)
that makes the network strongly stable ([11, Defn. 3.7]).

Let C(𝑙) = (𝐶(𝑙𝑇 + 𝑚), 0 ≤ 𝑚 < 𝑇 ). We assume that
the process (C(𝑙), 𝑙 = 0, 1, ⋅ ⋅ ⋅ ) is an irreducible (finite-state)
Markov chain with stationary distribution 𝑃𝐶 , and so we may
apply the result [11, Th. 3.8] to characterise the stability
region. We proceed to do this now.

Let 𝑟
(𝑚)
𝑛𝑘 ∈ ℂ packets be scheduled on link (𝑛, 𝑘) in the

𝑚th slot of the 𝑙th frame. The expected throughput on this
link, given 𝐶(𝑙𝑇 − 1) = 𝑐, is

𝔼

[
𝑟
(𝑚)
𝑛𝑘 1{𝑟(𝑚)

𝑛𝑘 ≤ 𝐶𝑛𝑘(𝑙𝑇 +𝑚)} ∣ 𝐶(𝑙𝑇 − 1) = 𝑐
]

= 𝑟
(𝑚)
𝑛𝑘 Pr

{
𝑟
(𝑚)
𝑛𝑘 ≤ 𝐶𝑛𝑘(𝑙𝑇 +𝑚) ∣ 𝐶(𝑙𝑇 − 1) = 𝑐

}
. (2)

The slot 𝑚 routing and scheduling matrix of packet flows
over all links 𝑟(𝑚) = (𝑟

(𝑚)
𝑛𝑘 , 1 ≤ 𝑛 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝐾)

should satisfy the condition that a server serves at most one
queue, i.e., each column of 𝑟(𝑚) has at most one nonzero entry.
Let 𝑟 = (𝑟(𝑚), 0 ≤ 𝑚 < 𝑇 ) be the routing and scheduling
matrices for all the 𝑇 slots in the frame. Let ℍ be the set of
all 𝑟 that satisfy the one-queue-per-server condition in every
slot. For a choice of 𝑟 ∈ ℍ, let

𝑔𝑛𝑘(𝑟, 𝑐) =

𝑇∑
𝑚=1

𝑟
(𝑚)
𝑛𝑘 Pr

{
𝑟
(𝑚)
𝑛𝑘 ≤ 𝐶(𝑙𝑇 +𝑚) ∣ 𝐶(𝑙𝑇 − 1) = 𝑐

}

be the conditional expected throughput on link (𝑛, 𝑘) when
queue 𝑛 is sufficiently loaded. Let 𝑔(𝑟, 𝑐) = (𝑔𝑛𝑘(𝑟, 𝑐), 1 ≤
𝑛 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝐾) be the matrix of conditional expected
throughputs on each link. Let 𝑅 be an ℍ-valued random
variable with conditional distribution 𝑃𝑅∣𝐶(⋅∣𝑐) and with the
interpretation that policy 𝑟 ∈ ℍ is picked with probability
𝑃𝑅∣𝐶(𝑟∣𝑐) when 𝐶(𝑙𝑇 − 1) = 𝑐. Thus 𝑃𝑅∣𝐶 represents a
randomised policy. Let 𝐺 = 𝔼 [𝑔(𝑅,𝐶)] /𝑇 be the per-slot
expected throughput matrix under full load for the randomised
policy 𝑃𝑅∣𝐶 , averaged over the channel realisations. Finally,
let Γ be the closure of the set of all such 𝐺.

From [11, Th. 3.8] the stability region Λ is the set of all
𝜆 ∈ ℝ𝑁

+ such that there is a 𝐺 ∈ Γ and a flow (𝑓𝑛𝑘 : 1 ≤
𝑛 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝐾) satisfying (a) 0 ≤ 𝑓𝑛𝑘 ≤ 𝐺𝑛𝑘 for every
(𝑛, 𝑘), and (b) 𝜆𝑛 =

∑𝐾
𝑘=1 𝑓𝑛𝑘 for every 𝑛. This completely

characterises the stability region.
2) Throughput optimality of Policy 1: Let int(Λ) denote

the interior points of the stability region. From the definition
of the stability region, if 𝜆 ∈ int(Λ), there exists a policy
that makes the network with arrival rates 𝜆 strongly stable.
However, [11, Th. 4.5] states the stronger result that every
𝜆 ∈ int(Λ) is strongly stabilised by a single policy, the
dynamic backpressure policy, that does not depend on 𝜆. A
policy with this property is called throughput optimal. It is
straightforward to verify that the dynamic backpressure policy
specialised to our system is indeed Policy 1. Consequently,
Policy 1 is throughput optimal.

If the arrivals are iid from slot to slot, the notion of
stability can be strengthened to one of positive recurrence
of the nontransient queue states as studied by Tassiulas &
Ephremides [10] and Kar et al [1]. See Neely et al [12] and
Georgiadis et al [11, pp.53-54] for this strengthening.

Note that Policy 2 is a heuristic modification of Policy 1
to achieve better delay performance at low traffic. Simulation
results are presented in Section V to show the improvement
in performance over Policy 1 using Policy 2. The question of
throughput optimality of Policy 2 remains open.

3) The KLS policy: We now compare the KLS policy with
the dynamic backpressure algorithm. Recall that we have a
two-hop network from users to servers, where user 𝑛 with an
input queue is connected to 𝐾 virtual queues, 𝑞𝑛𝑘, 1 ≤ 𝑘 ≤ 𝐾 ,
and 𝑞𝑛𝑘 is connected only to server 𝑘 and no other server. The
link from the input queue to each virtual queue is noiseless;
the throughput is just the number of packets flowing through
this link. The dynamic backpressure algorithm picks the virtual
queue 𝑘 that maximises (𝑏𝑛(𝑙𝑇 −1)−𝑄𝑛𝑘(𝑙𝑇−1))𝑏𝑛(𝑙𝑇−1)
for each 𝑛. Clearly the 𝑘 with the least 𝑄𝑛𝑘(𝑙𝑇 −1) is picked,
as done by the KLS policy.

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY MADRAS. Downloaded on December 14, 2009 at 05:12 from IEEE Xplore.  Restrictions apply. 



5740 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 8, NO. 12, DECEMBER 2009

Next, server 𝑘 should be connected to at most one
of the virtual queues 𝑞1𝑘, ⋅ ⋅ ⋅ , 𝑞𝑁𝑘. The dynamic back-
pressure algorithm picks that virtual queue 𝑛∗(𝑘,𝑚) in
slot 𝑚 that maximises the weighted expected through-
put 𝑄𝑛𝑘(𝑙𝑇 − 1)𝐶𝑛𝑘(𝑙𝑇 + 𝑚) under the all-or-none loss
model. (Alternatively, it picks 𝑛∗(𝑘,𝑚) that maximises
𝑄𝑛𝑘(𝑙𝑇 − 1)𝔼 [𝐶𝑛𝑘(𝑙𝑇 +𝑚)∣𝐶(𝑙𝑇 − 1)] under optimistic
channel model). Thus, the dynamic backpressure algorithm
adapts to changing statistics within the frame. However, the
KLS policy retains a single queue-server connection through
all slots in the frame, chosen to maximise weighted total
expected throughput in the frame. It will have a smaller
stability region than Policy 1 as illustrated in the fast fading
example below. For slow fading, the stability regions for
Policy 1 and KLS Policy are not significantly different (See
section V). Consider the probability transition matrices given
below.

[
𝛿 1− 𝛿

1− 𝛿 𝛿

]
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

𝛿
1− 𝛿

3

1− 𝛿

3

1− 𝛿

3
1− 𝛿

3
𝛿

1− 𝛿

3

1− 𝛿

3
1− 𝛿

3

1− 𝛿

3
𝛿

1− 𝛿

3
1− 𝛿

3

1− 𝛿

3

1− 𝛿

3
𝛿

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(3)
To model a fast fading channel, 𝛿 should be small. Let 𝑇 = 2
and 𝑐max = 1. Thus, we have only on-off channels; all-
or-none and optimistic loss models coincide. Consider two
queues (𝑁 = 2) and one server (𝐾 = 1) with identical
channel transition probabilities given by the left matrix in
(3). A static allocation as in the KLS policy will only get
the average, whereas an adaptive policy can match to the
near cyclic channel variation within a frame. The stationary
distribution puts equal mass on all four channel possibilities.
A sum rate (over the frame) of nearly 1 packet (in channel
state 00 at slot 𝑙𝑇 − 1), 1 packet (channel state 11), 2
(channel state 01), and 2 (channel state 10), yielding total
sum rate of nearly (1+1+2+2)/4/2 = 6/8 packets per slot can
be achieved. More precisely, the symmetric rate (𝑟(𝛿), 𝑟(𝛿))†

with 𝑟(𝛿) = (1+(1−𝛿)+(1−𝛿)2+𝛿2)/8 per slot is achievable,
yielding a sum rate 2𝑟(𝛿) → 6/8 as 𝛿 ↓ 0. The maximum
possible sum rate for the KLS policy is upper bounded by
(4+2𝛿(1−2𝛿))/8 < 5/8 for sufficiently small 𝛿. The stability
region of Policy 1 is therefore strictly larger than that of the
KLS policy. See Figure 1.

The above discussion also shows that the KLS policy is the
dynamic backpressure policy under virtual queueing subjected
to the constraint that connections cannot change within a
frame.

V. SIMULATION RESULTS

Consider a system with 𝑁 = 128 users and 𝐾 = 16 servers.
The channel state, in terms of the number of transmissible
packets in a slot, is modeled as a Markov chain. This Markov
chain is composed of smaller independently evolving and
identical Markov chains on four states, one for each user-
server pair. So ℂ = {0, 1, 2, 3}. The transition probabilities are
given by the right matrix in (3) with 𝛿 = 0.98, and the initial
distribution is the stationary distribution on each user-server
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Fig. 1. Average backlog comparison for on-off channel model for 𝛿 = 0.1.
The net arrival rate beyond which backlog rapidly increases signifies the
threshold of the stability region.
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Fig. 2. Average backlog comparison for 𝑇=8 for symmetric arrivals at high
traffic.

pair. Arrivals to queues are truncated Poisson with a maximum
of 100 arrivals. All users have the same mean number of
arrivals 𝜆 per slot. The abscissa in all plots is the mean total
arrivals per slot, summed over all users. Backlog and delay
are used as metrics for comparison. Backlog is measured only
at frame boundaries.

1) Average backlog comparison for a fixed 𝑇 : Average
backlog in packets/time-slot/user is calculated and plotted for
all described policies against total arrival rate in Figures 2 and
3. 𝑇 is set to 8. From the plots, we infer that all the policies
have similar performance at high rates. However, our proposed
policies outperform the KLS policy at low rates as can be
seen from the magnification in Figure 3. Simulation results
for other values of 𝑇 and asymmetric arrival rates exhibit the
same qualitative behaviour. Given the strongly diagonal nature
of the channel transition matrix, the channel remains nearly
static across the frame, and it should not be surprising that
all policies result in instability at roughly the same threshold
sum rate.

2) Delay comparison for a fixed 𝑇 : Figure 4 plots the delay
of all transmitted packets. For each policy, the figure contains
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Fig. 3. Average backlog comparison for 𝑇=8 for symmetric arrivals at low
traffic.
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Fig. 4. Delay comparison for symmetric arrivals, 𝑇=4, net arrival rate=25.6.

a best and worst case value for the delay distribution at each
value of delay. The proposed policies give significantly better
delay performance than the KLS policy. The net arrival rate
is 25.6. Similar results were obtained for rates in the range 5
to 40.

3) Average backlog comparison versus 𝑇 : Figures 5 plots
the backlog of Policy 2 for different 𝑇 . It is interesting to note
that the stabilisable sum rate remains roughly the same for all
the considered 𝑇 . This is due to the slow fading nature of the
channel and the adaptation using predicted channel states. The
transition behaviour from a stable system to unstable queues
is different across 𝑇 . The degradation in performance with
increasing 𝑇 is more pronounced in KLS policy than policy
2. This is illustrated in Figure 6 by comparing the two policies
for 𝑇 = 15. The gap between the two policies for 𝑇 = 15 is
higher than the gap for 𝑇 = 8 (shown in Figure 2). This is
due to the inability of the KLS policy to adapt to the channel
variations.

VI. CONCLUSIONS

We showed that scheduling and allocation for a specific
model of channel uncertainty falls within the framework
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Fig. 5. Average backlog of Policy 2 versus 𝑇 for symmetric arrivals.
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Fig. 6. Average backlog comparison for 𝑇=15 for symmetric arrivals at high
traffic.

described in Georgiadis et al [11]. For throughput optimality,
it is important to adapt to predicted channel states across
slots within a frame. The dynamic backpressure algorithm
(Policy 1) does this while the KLS policy does not. Policy
1 is throughput optimal. Moreover, Policies 1 and 2 out-
perform the KLS policy in the light load regime. Naturally,
our policies require more computations. The complexities of
the KLS policy, Policy 1, Policy 2 are 𝑂(𝐾𝑁), 𝑂(𝑇𝐾𝑁),
and 𝑂(𝑇 (𝐾2 +𝐾𝑁)) operations, respectively. Power control
based allocation can be easily added to the framework by
choosing the power allocation matrix that maximises the
queue-weighted sum of rates as in [12]. The proposed policies
can be directly applied to CDMA/OFDM based wireless
systems. The degradation due to infrequent channel and queue
measurements in realistic systems can be minimized by using
the proposed policies.
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