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Multiuser Channel Estimation and Tracking for
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Srikrishna Bhashyam, Member, IEEE,and Behnaam Aazhang, Fellow, IEEE

Abstract—Channel estimation techniques for code-division
multiple access (CDMA) systems need to combat multiple access
interference (MAI) effectively. Most existing estimation techniques
are designed for CDMA systems with short repetitive spreading
codes. However, current and next-generation wireless systems
use long spreading codes whose periods are much larger than the
symbol duration. In this paper, we derive the maximum-likelihood
channel estimate for long-code CDMA systems over multipath
channels using training sequences and approximate it using an
iterative algorithm to reduce the computational complexity in
each symbol duration. The iterative channel estimate is also
shown to be asymptotically unbiased. The effectiveness of the
iterative channel estimator is demonstrated in terms of squared
error in estimation as well as the bit error rate performance of a
multistage detector based on the channel estimates. The effect of
error in decision feedback from the multistage detector (used in
the absence of training sequences) is also shown to be negligible for
reasonable feedback error rates using simulations. The proposed
iterative channel estimation technique is also extended to track
slowly varying multipath fading channels using decision feedback.
Thus, an MAI-resistant multiuser channel estimation and tracking
scheme with reasonable computational complexity is derived for
long-code CDMA systems over multipath fading channels.

Index Terms—Channel estimation, code-division multiple
access, fading, long spreading codes, maximum-likelihood estima-
tion, multipath, multiple access interference.

I. INTRODUCTION

CODE-DIVISION multiple access (CDMA) systems are
inherently interference limited. Receivers can combat

multiple access interference (MAI) by using multiuser channel
estimation, detection, and decoding algorithms. Several mul-
tiuser algorithms have been proposed for channel estimation in
[1]–[6]. These algorithms are developed for CDMA systems
with short spreading codes for the various users that repeat
every symbol. However, spreading codes used in practical
CDMA systems have a period much larger than the symbol
duration and are calledlong spreading codes. Therefore, most
of the existing algorithms are either inapplicable or need
prohibitive computational resources.
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Recently, some channel estimation algorithms have been pro-
posed in [7]–[12] for long-code CDMA systems. The techniques
in [7] and [9] are based on the knowledge of the spreading se-
quences, channel estimates, and bits of the interfering users, and
they use the interference cancellation and the minimum mean
squared error (MMSE) approach, respectively. In [8], an acqui-
sition scheme for a single user entering the system is developed
using the knowledge of the spreading sequence and delays of
the interfering users, who have already been acquired, without
using their bit decisions. This leads to an estimator similar in
complexity to the linear decorrelating detector. Blind estimation
of the complex channel amplitudes is studied in [11] and [12],
assuming the knowledge of the delays of the various propaga-
tion paths, and [10] develops channel estimation algorithms for
synchronous downlink channels.

In our paper, we develop a multiuser maximum-likelihood
(ML) channel estimation algorithm given the knowledge of the
bits of all the users and approximate the solution directly using
an iterative algorithm. The knowledge of the bits is obtained ei-
ther using training sequences or decision feedback. Since the
channel is time-varying, we update the channel estimates of all
the users all the time and do not consider users to be acquired.
The iterative approach allows the computation of the channel es-
timate using matrix multiplications during each bit duration and
spreads the computation over the length of the preamble. Thus,
this algorithm has reasonable complexity and should be imple-
mentable in practice. Also, we estimate the effective channel
response of all the users simultaneously as a single vector and
use it directly in detection instead of estimating the delays and
amplitudes of each path separately [13]. We also show, using a
simple example, how the channel estimate can be further im-
proved, using the knowledge of the number of paths and re-
ducing the size of the estimated channel response vector. The
knowledge of the significant channel coefficients can also be
derived statistically from the ML estimate [14], [15], although
we do not describe it in our paper.

We show the effectiveness of the proposed channel estimation
and tracking algorithms in two ways. We first show the gains
achieved in mean squared error of the multiuser ML channel
estimate as compared to a single-user channel estimate. Then,
we simulate the bit error rate (BER) performance of a multiuser
multistage detector [16] to show the gains in error rate per-
formance using multiuser channel estimation. The multistage
detector is chosen due to its good performance–complexity
tradeoff. It requires only matrix multiplication computations
in each processing window while other multiuser detection
schemes like the linear decorrelating or MMSE detectors re-
quire the calculation of a matrix inverse during each processing
window due to the time-varying nature of the spreading codes.
The results indicate that iterative channel estimation algorithm
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can perform as well as ML channel estimation while reducing
the complexity per bit duration by spreading the computa-
tion over the preamble duration or the processing window
(during tracking). The proposed estimate is also shown to be
asymptotically unbiased and the effect of errors in decision
feedback, used in the absence of training sequences, on channel
estimation is also studied using simulations.

The rest of the paper is organized as follows. In Section II,
the system and received signal model are developed. Then, the
ML channel estimate is derived in Section III. The iterative al-
gorithm is developed and discussed in Section IV. Section V
presents the multiuser channel tracking scheme and extends the
channel estimation results to time-varying channels. The simu-
lation results are presented in Section VI to illustrate the effec-
tiveness of the proposed techniques and the conclusions are in
Section VII.

II. SYSTEM MODEL

We consider a -user asynchronous direct sequence CDMA
system with long spreading codes. The spreading sequence
corresponding to , the th bit of the th user, is denoted
by and consists of chips, where is the spreading
gain. The corresponding discrete chip sequence is denoted
by .The transmitted signal of theth user
corresponding to an information sequence of lengthis given
in baseband format by

(1)

where is the bit duration and is the transmitted power of
the th user.

Let the channel be a multipath channel withpaths for the
th user and let the complex attenuation and the delay with re-

spect to the timing reference at the receiver of theth path of the
th user be denoted by and , respectively. The received

signal can be represented as

(2)

where is the additive white Gaussian noise (AWGN). The
channel attenuations and delays are assumed to be constant
during the estimation process. The ML channel estimation
technique provides an estimate of the effective channel impulse
response (described later in the discrete received signal model)
and not the estimates of the individual attenuations and delays.
Therefore, the information about the number of paths of each
user is not used in the derivation of the ML estimate. This
additional knowledge, if available, could be used in order to
further improve the ML estimate as in Section IV-C.

The received signal is discretized at the receiver by sampling
the output of a chip-matched filter at the chip rate [1], [4], [13].
The observation vectors are formed by collectingsuccessive
outputs of the chip-matched filter . The observation vectors
correspond to a time interval equal to one symbol period and

start at an arbitrary timing reference at the receiver. If we as-
sume that all the paths of all the users are within one symbol
period from the arbitrary timing reference, we will have only
two symbols of each user in each observation window, and we
can develop a representation similar to that in [13]. This model
can be easily extended to include more general situations for the
delays without affecting the derivation of the channel estimation
algorithms [17]. The discrete received vector model is given by

(3)

where is the th observation vector, is an
spreading matrix, is a

channel response matrix, is a symbol vector, and
is an complex Gaussian zero-mean random vector with
independent elements each of variance. In particular, the
spreading matrix, , is constructed using the shifted versions
of the spreading codes corresponding to theth and th
symbols of each user in the observation window. Thus,is of
the form where

...
...

...
...

is constructed with the right part of the spreading code of user
corresponding to symboland

...
...

...
...

is constructed using the left part of the spreading codes of
user corresponding to symbol . Since the spreading
codes change from symbol to symbol, the last columns
of and are used additionally as compared to
the short code case. The channel response matrixis of
the form where is the

channel response vector for theth user. When
rectangular chip waveforms of duration are used, the

th and th elements of have a contribution of
and from the th path of the th

user, where . For example, when user
has only one path at delay then

(4)

where the nonzero elements are at theth and th
positions. The symbol vector

has two symbols (chosen to be binary information
bits in this paper) corresponding to each user.

While (3) is used to represent the received vector for detec-
tion, we rewrite the received vector for channel estimation as

(5)
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where is a channel response
vector and is a matrix defined as

...
...

...
...

...
...

where denotes the Kronecker product and is the iden-
tity matrix of rank . Thus, we estimate channel
parameters for each user. This effective channel response ac-
counts for all the paths under the assumption that their delays
are within one symbol duration. The number of nonzero coeffi-
cients in this effective channel response vector is determined by
the number of paths and delays as in (4). Although the number
of zero coefficients that are being estimated affects the overall
estimation error, the location of them (which depends purely on
the delays) does not affect the error. This is because the total re-
sponse vector size is still for each user. In the following
sections, we will develop MAI-resistant methods to estimate
from several observations of the received vectorusing the
knowledge of the spreading codes and the transmitted bits.

III. ML C HANNEL ESTIMATION

In this section, we obtain the ML estimate of the channel
response of all the users using the knowledge of their
spreading codes and transmitted bits. These known bits could
be available either as a preamble before the data or as bits in
a separate pilot channel. In the estimation phase, training or
pilot sequences are assumed to be used and in the tracking
phase, which is discussed in Section V, data decisions from the
detector are fed back to the estimator. The joint conditional
distribution of received observation vectors ,
given the knowledge of the spreading sequences, channel, and
the bits is given by

The estimate that uniquely maximizes this likelihood
function is the ML estimate, and it satisfies the equation

(6)

For simplicity, we will denote
by , an matrix, and

by , an vector.
The rank of increases by with each additional term

in the summation. This is based on the
assumption that random spreading codes are used and the
spreading codes over this duration are linearly independent.
Therefore, for to be full rank (equal to ),

should be at least equal to . The current and
next generation standards provide enough preamble or pilot
resources to easily satisfy this condition. Therefore, assuming
that is full rank, we can write

(7)

Since is a jointly Gaussian random vector with mean
and covariance matrix , any linear transformation
of is also a jointly Gaussian random vector with mean

and covariance matrix . Using this property
of Gaussian random vectors, we can show that is also
jointly Gaussian with meanand covariance matrix .
This estimate has the following properties (similar to the
properties of ML estimates described in [15], [18]):

1) (unbiased);
2)

Cramer–Rao Bound (efficient);
3)

(consistent).
Later, we will compare this multiuser estimate with the

single-user channel estimate given by

(8)

This comparison will yield a better understanding of the sig-
nificance of MAI in channel estimation and illustrate the MAI
resistance of the multiuser channel estimate in (7). The MAI
is significant even though we use long and random spreading
codes, i.e., the matrix is not diagonal for realistic . This is
illustrated by the performance results shown in Section VI and
the discussion about the eigenvalues of the correlation matrix

as a function of at the end of Section IV-A.

IV. I TERATIVE CHANNEL ESTIMATION

In this section, we will approximate the ML estimate
obtained in the previous section using iterative algorithms
developed using gradient-based adaptation. Iterative algo-
rithms based on the true gradient or an estimated stochastic
gradient have been used earlier for various adaptive filtering
and detection problems [19], [20]. We apply gradient-based
adaptation techniques using the exact gradient in our problem
of multiuser channel estimation. After we develop the iterative
channel estimation algorithm, we will briefly discuss methods
to improve the channel estimate for channels which are known
to have very few nonzero elements in the channel response
vector . Finally, we will discuss the computational complexity
of the proposed iterative algorithms.

A direct computation of the exact ML channel estimate in-
volves the computation of the correlation matrix and then
the computation of at the end of the preamble. The
direct computation of the inverse of the correlation matrix at
the end of the preamble is computationally intensive and could
delay the channel estimation process beyond the preamble du-
ration and limit the information rate. In our iterative algorithms,
we use the following ideas to approximate the ML solution.
First, we note that the product can be directly approx-
imated by solving the linear equation using iterative
algorithms like the steepest descent algorithm. These iterative
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algorithms take advantage of the symmetry property of the au-
tocorrelation matrix and reduce the complexity in the com-
putation of the ML estimate given that we have and .
Then, we also notice that the iterative algorithms can be mod-
ified to update the channel estimate as the preamble is being
received instead of waiting until the end of the preamble. This
means that the computation is spread over the whole preamble,
thereby reducing the computational complexity per bit. We will
now describe two iterative algorithms that make use of the ideas
mentioned above to approximate the ML solution. First, we will
describe a simple gradient descent algorithm with a constant
step size and then improve the speed of convergence using the
steepest descent algorithm which chooses the optimal step size
during each iteration [21].

A. Gradient Descent Method

The simple gradient descent algorithm performs the fol-
lowing computations during theth bit duration.

1) Compute .
2) Compute .
3) Update the estimatevia

(9)

where is the gradient of the squared error
surface (corresponding to the exponent in the likelihood
function that needs to be minimized) andshould be
chosen to ensure convergence and to control speed of
convergence.

In each iteration, the estimate of the channel is updated by taking
a step along the gradient vector.

In this algorithm, the ML estimate for a preamble of length
is approximated as soon as theth bit is received. In fact, the

updating step (i.e., step 3) can be repeated to improve accuracy.
It can be repeated as many times as allowed by the available
computational resources. In our paper, we will assume that this
updating is done only once per bit. Therefore, the number of
iterations is equal to the preamble length.

The mean of the iterative estimate converges to the actual
channel , i.e., the estimate is asymptotically unbiased. This
can be shown under the assumption that the eigenvalues
( and ) of can be bounded
using positive real numbersand such that for
all and . The proof in the Appendix is done by bounding the
sequence by a converging geometric sequence in terms
of and , where is chosen to be less than to ensure con-
vergence. For the case of random codes, the required property
on the eigenvalues of is easily verified in the simulations.
One sample set of eigenvalues are shown in Fig. 1 to illustrate
this. This plot of the maximum and minimum eigenvalues of
as a function of also illustrates that the MAI is significant for
realistic . Although is expected to gets closer to the identity
matrix as goes to infinity, it cannot be considered diagonal for
the values of that are of interest. The maximum and minimum
eigenvalues do not get close enough to approximate the matrix
by an identity matrix.

Since the variance of the iterative estimate is very hard to
compute analytically, it is estimated using simulations and com-
pared with the Cramer–Rao bound which is satisfied by the ML

Fig. 1. Maximum and minimum eigenvalues ofR : number of users is 16, the
spreading gain is 31, and the preamble length is 1.

estimate. Simulation results will be shown in Section VI to il-
lustrate that the iterative estimate performs almost identically to
the exact ML estimate for reasonable preamble lengths.

B. Steepest Descent Method

In the simple gradient descent algorithm for channel estima-
tion described in Section IV-A, the step size is chosen to be
constant for all iterations. To speed up convergence, the step
size can be chosen optimally for each iteration to minimize the
squared error achieved by the updating step (i.e., step 3 which
updates the channel estimate along the direction opposite to the
gradient). This is achieved by the steepest descent algorithm
[21]. The squared error function to be minimized is given by

This squared error function is the negative of the log of the like-
lihood function defined in Section III ignoring the constants in-
dependent of the channel. Therefore, minimizing this squared
error function is the same as maximizing the likelihood func-
tion. The squared error after theth iteration can be written in
terms of the squared error after the th iteration as

(10)

where . The optimal for the th iteration
in the steepest descent algorithm can be obtained by minimizing
the squared error in (10) with respect to . The solution for
this minimization is given by

The optimal step size can be easily calculated using the knowl-
edge of and the gradient. Therefore, the steepest descent al-
gorithm can be implemented with the same information needed
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for the constant step size algorithm. Further acceleration in con-
vergence can be achieved by choosing the search directions in
addition to choosing the step size for each iteration. This can
be done by the conjugate gradient algorithm [21]. In the conju-
gate gradient algorithm, the search direction in any iteration is
chosen to be orthogonal to the search directions used in the pre-
vious iterations. The steepest descent algorithm does not ensure
this since it uses the gradient directly as the search direction.
However, the implementation of the conjugate gradient algo-
rithm would require significant additional computation to ob-
tain the search directions. We will show in Section VI that the
simple gradient descent algorithm and the steepest descent al-
gorithm perform very well in our case and the extra computa-
tion needed for using the conjugate gradient method may not be
worth it.

C. Reduced Size Channel Estimate

In the estimation methods proposed above, the channel could
have any number of paths with delays lying within one symbol
period. All of these paths will be captured in the channel re-
sponse vector. We do not assume any parametric model on the
number of paths. However, in some practical scenarios where
the number of paths is small and rectangular chip waveforms
are used, we may not need the wholevector. For example,
when there are just two paths for a user and the chip wave-
form is rectangular, the number of nonzero elements incorre-
sponding to that user is at most four. For other nonrectangular
chip waveforms, more coefficients might be nonzero based on
the autocorrelation of the pulse waveform used and the delays
of the paths. For the rectangular pulse, the support of the auto-
correlation function is only over the interval . If such
information about the pulse shape and paths are available at the
receiver, the iterative estimate obtained earlier can be further im-
proved by using this knowledge. This information can be used
to reduce the size of the estimated channel response vector.
One simplead hocmethod to reduce the size of the estimated
channel vector is to choose a few large coefficients of. In
particular, we choose a few large coefficients, say, for each
user. Thus, we are left with a smaller vector of size . If the
elements that were truly zero were dropped by this procedure,
the error in estimation of the zero elements would be made zero
and the total squared error in the estimate will be lower. Once
the significant elements are chosen, the error in these
elements can be improved by repeating the ML estimation with
a new reduced model of the discrete received signal given by

where is and is . The new
Cramer-Rao bound will be and will be better than
the original bound given by since the size of the cor-
relation matrix is smaller. In Section VI, we will show the ex-
cellent performance of this simple size reduction method de-
scribed above without reestimating the elements that are chosen
to be significant. Other complex statistical tests to choose the
significant coefficients from the ML estimate can be derived

using the ideas in [14] and [15] that use the statistical properties
of the ML estimate described in Section III. These techniques
would require more computation for possibly marginal perfor-
mance improvement yielding an interesting complexity-perfor-
mance tradeoff.

D. Computational Complexity

Before we conclude the discussion on iterative channel
estimation and discuss channel tracking, we will evaluate the
computational complexity of the proposed schemes. In both the
proposed iterative channel estimation schemes, the computa-
tions (additions and multiplications) during theth processing
window for the three-step update outlined above are:

1) computation of
2) computation of ;
3) update of for the simple

gradient descent method and
for the steepest descent method (due to the additional

computation to obtain ).

The most complex step is the computation of which has a
complexity of the order of . However, this matrix
multiplication involves only multiplications of ’s, and this
can taken advantage of to speed up practical implementations
[22]. The simple single-user estimate, , involves computa-
tions of the order of . Therefore, we have an addi-
tional factor of in complexity because of joint detection of
all the channel parameters.

The simple algorithm for reducing the size of the estimated
channel vector proposed in Section IV-C performssorts of
size for the users. This has a complexity of

. This is lower than the order of complexity of the
iterative algorithms and the single-user estimation technique.

V. TRACKING TIME-VARYING CHANNELS

The iterative channel estimation scheme can be easily ex-
tended to track time variations in the channel after the preamble.
The channel is assumed to be approximately constant over the
preamble duration, and the tracking is performed by sliding the
estimation window and using data decisions instead of training
sequences. In particular, a multishot multistage detection [16]
scheme is used in our case where bits are detected in blocks
and the MAI is canceled using a parallel interference cancel-
lation technique. The MAI for each user is canceled using the
estimated interference from the users obtained using their deci-
sions and the knowledge of their spreading codes and channel
estimate.

In the tracking scheme, the correlation matrix and the
matched-filter outputs are averaged over a sliding window
of length equal to the preamble length, as defined in (7). The
tracking is done as follows.

1) Detect bits using multishot multistage detection with pre-
vious channel estimate.

2) Compute the new correlation matrix and matched-filter
vector: if corresponds to the old window over the
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time indices and bits of each
user are detected using multistage detection, then

3) Update channel estimate

As discussed for the estimation scheme, the updating step can
be repeated to improve estimation accuracy. Since the channel is
assumed to be roughly constant over the window length, the ML
channel estimate for the new window should be very close to the
previous ML estimate. Therefore, in practice, we notice that one
iteration per bit is sufficient, i.e., the channel estimate from the
previous window is a very good initialization for both the simple
gradient descent with constant step size and the steepest descent
algorithm to estimate the new channel estimate.

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, we will show simulation results to illustrate the
effectiveness of the channel estimation and tracking techniques
developed in Sections III, IV, and V. We will first show the per-
formance gains for a constant multipath channel from multiuser
channel estimation in Section VI-A and later show the signifi-
cant gains for a slowly fading multipath channel with multiuser
channel estimation and tracking in Section VI-B. For each sim-
ulation, the complex fading coefficients for each path in (2) are
generated randomly according to a complex Gaussian distri-
bution (corresponding to Rayleigh fading) and the delays are
generated according to a uniform distribution from zero to one
symbol duration. For the constant multipath channels, the fading
coefficients of all the paths are constant throughout the trans-
mission and are of equal magnitude. For the multipath fading
channels, the average power of the paths are equal and the in-
stantaneous fading coefficients for each path are generated using
the Jakes fading model [23]. In this case, the fading coefficients
change even within one frame of transmission.

The significant gains provided by multiuser estimation tech-
niques compared to single-user estimation will be shown by
comparing the mean square error in the channel estimates as
well as the BER of a multistage detector that uses the estimated
channel. After demonstrating the excellent performance of the
proposed multiuser channel estimation and tracking methods for
realistic multipath fading channels, we will finally show using
simulations, in Section VI-C, that the effect of decision feed-
back error on the performance of multiuser channel estimation
is negligible for realistic simulation conditions. This is done to
demonstrate that decision feedback can be successfully used for
channel estimation when training sequences are not available.

Fig. 2. Mean squared error of channel estimate(E[kz � zk ]): the number
of users is 16, the spreading gain is 31, the number of paths per user is 2, no
Doppler spread, the SNR is 10 dB, the preamble length is 1, and all users have
equal power.

A. Performance of Multiuser Channel Estimation

The exact ML, iterative, and single-user channel estimation
methods are simulated for a 16-user asynchronous direct se-
quence CDMA system with spreading gain 31. All users are as-
sumed to have equal power and have two path channels to the
receiver. The channel is estimated using a 100-b preamble.

Fig. 2 shows the improvement in average squared error (over
200 simulations) of the various channel estimates—single-user
channel estimate from (8), iterative estimate using the gradient
descent algorithm with , iterative estimate using
steepest descent, and the exact ML estimate—with preamble
length. The simulation results show the superior performance
of the multiuser estimators compared to the single-user esti-
mator. The simulations also show that the iterative estimate per-
forms almost as well as the ML estimate and can be further
improved by performing more iterations after each bit is re-
ceived or using the steepest descent method. The steepest de-
scent method achieves the performance of the actual ML es-
timate for fewer iterations (about 40). For realistic preamble
lengths that are needed to get a normalized mean square of at
least 0.1 (10%), the iterative algorithms can match the perfor-
mance of the exact ML estimate while spreading the computa-
tion over the entire length of the preamble. Thus, they reduce the
computational resources needed per bit and provide the channel
estimates at the end of the preamble without any further pro-
cessing delay. The Cramer–Rao bound is also shown to illus-
trate the fact that the ML estimate is efficient.

Fig. 3 shows the BER performance of the multistage detector
with a signal-to-noise ratio (SNR) for the following channel es-
timation methods—single-user estimation, iterative estimation
using constant step size, exact ML estimation, and actual
channel knowledge. We show only one of the iterative channel
estimation methods since their performance is almost the same
for the preamble length of 100 considered here. The preamble
length is chosen to achieve reasonably low channel estimation
error. Trends similar to those observed in the mean squared error
comparison of the various channel estimates in Fig. 2 can be
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Fig. 3. Performance of a multistage detector with different channel estimation
methods: the number of users is 16, the spreading gain is 31, the number of paths
per user is 2, no Doppler spread, all users have equal power, and the preamble
length is 100.

Fig. 4. Mean squared error of channel estimate: number of users is 16, the
spreading gain is 31, the number of paths per user is 2, no Doppler spread, user
1 (weak user) has 6 dB lower power than the other users, and the preamble length
is 100.

seen in the BER comparison in Fig. 3 also. As expected, there is
a significant gain in performance achieved by using the iterative
multiuser channel estimator over the single-user estimator. Also,
the performance of the multistage detector with the iterative es-
timate is virtually the same as the performance with the ML es-
timate. It is also worth noting that this result shows significant
gains even in the equal power case. When users have different
powers, i.e., in near–far situations, MAI can further degrade the
single-user estimate. Fig. 4 shows the normalized mean squared
error of the channel estimate for the weak user (user 1) and
strong users (user 2–15) for both the single-user channel esti-
mate and the iterative multiuser estimate. The strong users have
6 dB more power than the weak user. It can be seen that the nor-
malized mean squared error for the single-user channel estimate
has a floor for both the weak and the strong users, with a lower

Fig. 5. Performance of multistage detector with different channel estimation
methods: the number of users is 16, the spreading gain is 31, the number of paths
per user is 2, no Doppler spread, interfering users have 6 dB higher power, and
the preamble length is 100.

Fig. 6. Performance of multistage detector with different channel estimation
methods with reduction in size: the number of users is 16, the spreading gain is
31, the number of paths per user is 2, no Doppler spread, all users have equal
power, and the preamble length is 50.

floor for the strong user. This is because multiuser interference
is not mitigated. However, for the iterative multiuser estimate,
the normalized mean squared error decreases with increasing
SNR and the performance is not interference-limited. In fact, the
mean squared error follows the linear relationship described in
property 3 of the ML estimate (in Section III) between the mean
squared error and the noise variance and reduces to zero as SNR
increases. The BER performance of the weak user is shown in
Fig. 5. The performance of the multistage detector is signifi-
cantly affected by using single-user channel estimates that are
not near–far resistant. However, the proposed iterative multiuser
channel estimates can perform well even in near–far situations.

Finally, we illustrate by a simple example how the reduction
in size of the channel response vector described in Section IV-C
improves estimation performance. Fig. 6 shows the BER per-
formance of a multistage detector with the following channel
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Fig. 7. Performance of multistage detector with different channel estimation
and tracking methods: the number of users is 8, the spreading gain is 16, the
number of paths per user is 2, the Doppler spread is 17 Hz, all users have equal
average power, and the preamble length is 100.

estimates—reduced-size single-user estimate, reduced-size it-
erative estimate, and actual channel parameters. The reduction
in size is done for both the single-user and iterative estimates
by just choosing the four largest channel coefficients for each
user. The preamble length is reduced to 50 to take advantage of
the lower channel estimation error. The simulations show that
the performance of the multistage detector with reduced-size
iterative channel estimation is closer to the performance with
the actual channel than the original iterative estimate in Fig. 3.
The single-user estimate also performs better when its size is
reduced to use the knowledge of the number of paths. However,
it still performs significantly worse than the iterative multiuser
method.

B. Performance of Multiuser Channel Tracking

We will now present the simulation results for the single-user
and iterative multiuser tracking techniques for an eight-user
CDMA system with a spreading gain of 16 employing a
multiuser multistage detector. All users have two paths and
are assumed to travel at 10 km/h corresponding to a slowly
fading channel with a Doppler spread of 17.67 Hz. Their data
is transmitted in 10-ms frames consisting of 2400 b. Each
frame has a preamble of length 100 and the channel for the
rest of the frame is tracked using decision feedback from the
multistage detector. Fig. 7 shows the tracking performance
in terms of the BER performance of the multistage detector
with the various channel estimation and tracking methods. The
iterative multiuser estimator is able to track the fading channel
much better than a conventional single-user estimator (about a
3-dB gain in performance). Performance gains similar to those
observed in the constant multipath case in Fig. 3 are seen for
the multipath fading scenario in Fig. 7 as well. To give an idea
of the variations in the channel and in the estimates, we show
in Fig. 8 the tracking performance of the algorithm at 8-dB
SNR for a single element of the channel response vector. The
tracking is done in this case for a duration of 4000 b. We can
the see that the iterative channel estimate is able to track the

Fig. 8. Tracking performance: the number of users is 8, the spreading gain is
16, the number of paths per user is 2, the Doppler spread is 17 Hz, all users have
equal average power, and the preamble length is 100.

channel variations much better than the single-user channel
estimate can, thereby giving the gains in BER performance.
Similar performances can be observed for the other coefficients
as well.

C. Effect of Decision Feedback Error on Channel Estimation

In the simulation results for channel estimation, the bits of all
the users are assumed to be known. In practice, this knowledge is
perfect for the users entering the system (estimation phase) since
they can be assumed to use training sequences that are known
to the receiver. For the other users in the tracking phase, the
bit estimates have to be obtained from the detector or decoder.
This decision feedback could be erroneous. However, the basis
of our approach is that this feedback is “reasonably accurate.”
Here, we will study the effect of possible errors in the feedback
on estimation.

The multiuser channel estimate is obtained by solving the fol-
lowing linear equation:

(11)

Here, we have dropped the subscriptdenoting the length of
the preamble for convenience. When an incorrect decision is fed
back, we end up solving a different equation

(12)

obtained by perturbing the matrix and vector . The relative
error in the channel estimate due to erroneous feedback can be
bounded by the relative error in and using the condition
number of the matrix . Suppose and ,
where and are arbitrary matrices (of appropriate dimen-
sion), then from [21] and [24] we have

(13)

From (13), we can see that as long as the condition number of
is low the relative error in , denoted by , is bounded by

a reasonably small multiple of the relative error inand . In
our simulation example shown in Fig. 1, the condition number
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Fig. 9. Effect of decision feedback error. Mean squared error of channel
estimate(E[kz � zk ]): number of users is 16, the spreading gain is 31, the
number of paths per user is 2, no Doppler spread, SNR is 10 dB, the preamble
length is 1, and all users have equal power.

Fig. 10. Effect of decision feedback error. Performance of multistage detector
with iterative channel estimation: number of users is 16, the spreading gain is
31, the number of paths per user is 2, no Doppler spread, all users have equal
power, and the preamble length is 100.

of for a preamble length of 100 is 5.75. The error inand
will be small if the number of feedback errors is small compared
to the number of preamble bits.

Figs. 9 and 10 show the effect of feedback error on the per-
formance of the iterative channel estimator in terms of the mean
squared error and BER. The results are shown for two values of
feedback error rates (i.e., BER of the multistage detector used
in decision feedback): 0.02 and 0.04. As can be seen, the ef-
fect of erroneous feedback is not very significant, especially in
terms of the BER. The feedback error rate is chosen to be con-
stant for simplicity in simulations. Ideally, the feedback error
rate should be dependent on the SNR. However, we choose a
feedback error rate that is approximately the error rate at 6 dB.
This gives a conservative performance result for higher SNRs.
Feedback error rates that vary with SNR are used in the channel
tracking results in Section VI-B.

VII. CONCLUSION

In this paper, we derive the ML channel estimate for mul-
tiple users in a CDMA system with long spreading codes using
training sequences or decision feedback. Then, we approximate
the ML estimate using an iterative algorithm to reduce the com-
putational complexity. The channel estimate is near–far resis-
tant and is determined as the effective channel impulse response
which can be directly used in multiuser detection and decoding.
We show that the iterative channel estimate is asymptotically
unbiased, i.e., the mean of the iterative estimate asymptotically
converges to the actual channel as the training sequence length
increases. Simulations are used to illustrate the significant per-
formance gains achievable using multiuser channel estimation
as opposed to single-user channel estimation techniques used in
current cellular systems. The results are shown in terms of mean
squared error in channel estimates as well as the BERs of a mul-
tistage detector using the various channel estimates. The simula-
tions also show that the iterative scheme can perform as well as
the ML estimation method with reasonable computational com-
plexity per bit comprising mainly of a matrix multiplication.
This matrix multiplication involves only multiplications of ’s
and this can taken advantage of to speed up practical imple-
mentations [22]. The proposed iterative scheme is also extended
to track fading channel variations using decision feedback. A
simple method to reduce the size of this estimated channel re-
sponse vector was also demonstrated to take advantage of the
knowledge of the number of paths. In fact, methods to statisti-
cally determine the size of the channel response vector required
for detection from the ML estimate can be derived [14], [15].
Thus, we see that the combined channel estimation and tracking
scheme can effectively estimate and track the channels of mul-
tiple users and provide significant performance gains over cur-
rently used single-user techniques for realistic multipath fading
channels.

APPENDIX

Proposition: Let be the correlation matrix corresponding
to a preamble lengthin the CDMA system described above and
let be its eigenvalues. If there exist
positive real numbers and such that for all
and , then there exists a real numbersuch that

when is updated according to (9).
Proof: From (9), we can write

Since
, we obtain

Because the noise is zero-mean, we have

(14)
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Now, is a symmetric matrix and can be expressed using the
eigenvalue decomposition as , where is a unitary
matrix and is a diagonal matrix of the eigenvalues of .
Therefore,

We can choose such that . Equivalently,
. Since is a unitary matrix and , we have

where denotes the norm of a vector. Since
converges to 0 as .
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