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Multiuser Channel Estimation and Tracking for
Long-Code CDMA Systems

Srikrishna BhashyanrMember, IEEEand Behnaam Aazhangellow, IEEE

Abstract—Channel estimation techniques for code-division  Recently, some channel estimation algorithms have been pro-
multiple access (CDMA) systems need to combat multiple accessposed in [7]-[12] for long-code CDMA systems. The techniques
interference (MAI) effectively. Most existing estimation techniques [7] and [9] are based on the knowledge of the spreading se-
are designed for CDMA systems with short repetitive spreading . onces channel estimates, and bits of the interfering users, and

codes. However, current and next-generation wireless systemsth the interf llati d th .
use long spreading codes whose periods are much larger than the €y use the Interrerénce cancellation an € minimum mean

symbol duration. In this paper, we derive the maximum-likelihood ~Squared error (MMSE) approach, respectively. In [8], an acqui-
channel estimate for long-code CDMA systems over multipath sition scheme for a single user entering the system is developed
channels using training sequences and approximate it using an using the knowledge of the spreading sequence and delays of
iterative algorithm to reduce the computational complexity in  the interfering users, who have already been acquired, without
each symbol duration. The iterative channel estimate is also \\qing their bit decisions. This leads to an estimator similar in

shown to be asymptotically unbiased. The effectiveness of the : ; . . . .
iterative channel estimator is demonstrated in terms of squared complexity to the linear decorrelating detector. Blind estimation

error in estimation as well as the bit error rate performance of a  Of the complex channel amplitudes is studied in [11] and [12],
multistage detector based on the channel estimates. The effect ofassuming the knowledge of the delays of the various propaga-
error in decision feedback from the multistage detector (used in tion paths, and [10] develops channel estimation algorithms for
the absence of training sequences) is also shown to be negligible forsynchronous downlink channels.

reasonable feedback error rates using simulations. The proposed “ |, qyr paper, we develop a multiuser maximum-likelihood

iterative channel estimation technique is also extended to track . . . .
slowly varying multipath fading channels using decision feedback. (ML) channel estimation algorithm given the knowledge of the

Thus, an MAl-resistant multiuser channel estimation and tracking  Pits of all the users and approximate the solution directly using
scheme with reasonable computational complexity is derived for an iterative algorithm. The knowledge of the bits is obtained ei-
long-code CDMA systems over multipath fading channels. ther using training sequences or decision feedback. Since the
Index Terms—Channel estimation, code-division multiple channel is time-vqrying, we update thg channel estimates O,f all
access, fading, long spreading codes, maximum-likelihood estima-the users all the time and do not consider users to be acquired.
tion, multipath, multiple access interference. The iterative approach allows the computation of the channel es-
timate using matrix multiplications during each bit duration and
spreads the computation over the length of the preamble. Thus,
this algorithm has reasonable complexity and should be imple-
ODE-DIVISION multiple access (CDMA) systems aremnentable in practice. Also, we estimate the effective channel
inherently interference limited. Receivers can comb&gSponse of a!l the users simultaneously asa single vector and
multiple access interference (MAI) by using multiuser channilfe it directly in detection instead of estimating the delays and
estimation, detection, and decoding algorithms. Several m@Tplitudes of each path separately [13]. We also show, using a
tiuser algorithms have been proposed for channel estimatiors]A'P'€ €xample, how the channel estimate can be further im-
[1]-[6]. These algorithms are developed for CDMA syste royed, using the knowlgdge of the number of paths and re-
with short spreading codes for the various users that rep Leing the size of the gshmated channel response vector. The
. . .%;ﬁgwledge of the significant channel coefficients can also be
every symbol. However, SPread'”g codes used in practi rived statistically from the ML estimate [14], [15], although
CDMA systems have a period m_uch larger than the symbQk 4o not describe it in our paper.
duration and are calleidng spreading code§ herefore, most e show the effectiveness of the proposed channel estimation
of the existing algorithms are either inapplicable or neeghd tracking algorithms in two ways. We first show the gains
prohibitive computational resources. achieved in mean squared error of the multiuser ML channel
estimate as compared to a single-user channel estimate. Then,
we simulate the bit error rate (BER) performance of a multiuser
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Design of the IEEE Communications Society. Manuscript received June f8rmance using multiuser channel estimation. The multistage
2000; revised January 31, 2001. This work was supported by the Nokia Cgietector is chosen due to its good performance—complexity

poration, the Texas Advanced Technology Program, and the National Scie . . S .
Foundation. t&deoff. It requires only matrix multiplication computations

S. Bhashyam was with the Department of Electrical and Computer End? €ach processing window while other multiuser detection
neering, Rice University, Houston, TX 77005 USA. He is now with Qualcommschemes like the linear decorrelating or MMSE detectors re-

. INTRODUCTION

Inc., Campbell, CA 95008 USA (e-mail: skrishna@rice.edu). _quire the calculation of a matrix inverse during each processing
B. Aazhang is with the Department of Electrical and Computer Engineeringd,. . . .

Rice University, Houston, TX 77005 USA (e-mail: aaz@rice.edu). indow due to the time-varying nature of the spreading codes.
Publisher Item Identifier 10.1109/TCOMM.2002.800808. The results indicate that iterative channel estimation algorithm

0090-6778/02$17.00 © 2002 IEEE



1082 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 50, NO. 7, JULY 2002

can perform as well as ML channel estimation while reducirgjart at an arbitrary timing reference at the receiver. If we as-
the complexity per bit duration by spreading the computaume that all the paths of all the users are within one symbol
tion over the preamble duration or the processing windoperiod from the arbitrary timing reference, we will have only
(during tracking). The proposed estimate is also shown to beo symbols of each user in each observation window, and we
asymptotically unbiased and the effect of errors in decisiaan develop a representation similar to that in [13]. This model
feedback, used in the absence of training sequences, on chanaelbe easily extended to include more general situations for the
estimation is also studied using simulations. delays without affecting the derivation of the channel estimation
The rest of the paper is organized as follows. In Section Bjgorithms [17]. The discrete received vector model is given by
the system and received signal model are developed. Then, the
ML channel estimate is derived in Section Ill. The iterative al- r; =U;Zb; +n; 3)
gorithm is developed and discussed in Section IV. Section V
presents the multiuser channel tracking scheme and extendsthere r; is the <th N x 1 observation vectorl{; is an
channel estimation results to time-varying channels. The simiy-x 2K (N + 1) spreading matrixZ is a2K (N + 1) x 2K
lation results are presented in Section VI to illustrate the effechannel response matrils; is a2K x 1 symbol vector, anah;
tiveness of the proposed techniques and the conclusions ar&sian N x 1 complex Gaussian zero-mean random vector with
Section VII. independent elements each of variamde In particular, the
spreading matrix/;, is constructed using the shifted versions
of the spreading codes corresponding to ttreand: + 1th
symbols of each user in the observation window. Th{jss of
We consider & -user asynchronous direct sequence cbmihe form [Ufi UlL,i+1 Ufi UQL,2‘+1 e Uf?,i ulLs’,i-i—l] where
system with long spreading codes. The spreading sequence
corresponding tdy, ;, the ith bit of the kth user, is denoted cri(1] 2] o era[N] O
by cx.i(t) and consists ofV chips, whereV is the spreading cr,i[2] 3] o 0 0
gain. The corresponding discrete chip sequence is denoted uk ‘ ‘ : :
by [cri[1]...cx:[N]]. The transmitted signal of thkth user
corresponding to an information sequence of lengik given
in baseband format by

Il. SYSTEM MODEL

Ckﬂ;[N — 1] Ckﬂ‘,[N] e 0 0
cx,i[ V] 0 0 0

is constructed with the right part of the spreading code of user
k corresponding to symbeland

L
= \/E_kz br,icn,i(t — 1) @)
=1

0 0 0 e Ckﬂ‘[l]

0 0 0 e Ck,i[2]
whereXl is the bit duration andz is the transmitted power of Ui = : : :
the kth user. ' : : :

0 0 ck,i-l—l[]-] e Ck7i[N — 1]

Let the channel be a multipath channel with paths for the
kth user and let the complex attenuation and the delay with re- 0 crini[l] ariwal2] - anilV]
spect to the timing reference at the receiver ofittepath of the
kth user be denoted hy; ,, andry, ,,, respectively. The received
signal can be represented as

is constructed using the left part of the spreading codes of
user k corresponding to symbal + 1. Since the spreading
codes change from symbol to symbol, the last columns
of U, and U;,, are used additionally as compared to

K Py the short code case. The channel response matriis of
Zzw’wsk — T p) + n(t) (2) the form diag(z1,%1, 22,22, - - -, 2K, 2k ) Where z; is the
PR — (N + 1) x 1 channel response vector for théh user. When

rectangular chip waveforms of duratioh. are used, the
wheren(t) is the additive white Gaussian noise (AWGN). Thex»th and(gx,, + 1)th elements ok, have a contribution of
channel attenuations and delays are assumed to be constant vi,p)wk, and (v p)ws, from the pth path of thekth
during the estimation process. The ML channel estimatioiser, wherer, , = (qxp + Vi) 7. FOr example, when usér
technique provides an estimate of the effective channel impuls&s only one path at delay, ;, then
response (described later in the discrete received signal model)
and not the estimates of the individual attenuations and delays. zx = [0 ... 0 (1 — v w1 (v )we 10 ... 0]T  (4)
Therefore, the information about the number of paths of each
user is not used in the derivation of the ML estimate. Thishere the nonzero elements are at ¢hgth and(gy 1 + 1)th
additional knowledge, if available, could be used in order foositions. The symbol vectds; = [b1; b1 ;41 b2 b2 11 ...
further improve the ML estimate as in Section IV-C. bk i b1(7i+1]Thas two symbols (chosen to be binary information

The received signal is discretized at the receiver by samplibgs £1 in this paper) corresponding to each user.

the output of a chip-matched filter at the chip rate [1], [4], [13]. While (3) is used to represent the received vector for detec-
The observation vectors are formed by collectiiguccessive tion, we rewrite the received vector for channel estimation as
outputs of the chip-matched filtefn]. The observation vectors
correspond to a time interval equal to one symbol period and r;, = U;B;z + n; (5)
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wherez = [z] z, ... z;]" isa(N+1)K x1channelresponse should be at least equal t& + [K/N]. The current and
vector andB; is a2K (N + 1) x (N + 1)K matrix defined as next generation standards provide enough preamble or pilot
resources to easily satisfy this condition. Therefore, assuming

[ b 0 0 0 0 7 thatR is full rank, we can write
biiva 0 0 0 0
0 by, O 0 0 2vn(L) = Rp'yr. (7
0 byiys O --- 0 O _ L . .
B — o In Sincer; is a jointly Gaussian random vector with mda&iB;z
@ : : : N+l ; i 2 i i
: : : and covariance matrix“I, any linear transformatiorilr;
: : of r; is also a jointly Gaussian random vector with mean
: : ' TU;B,z and covariance matrix2TT*. Using this property
0 0 0 -+ 0 by, ; .
0 0 0 - 0 brin of Gaussian random vectors, we can show #iat(L) is also

jointly Gaussian with meaa and covariance matrio<2RZ1 /L.
where® denotes the Kronecker product ahgl,; is the iden- This estimate has the following properties (similar to the
tity matrix of rank N + 1. Thus, we estimat&v + 1 channel properties of ML estimates described in [15], [18]):
parameters for each user. This effective channel response act) F[zy.(L)] = z (unbiased);
counts for all the paths under the assumption that their delays2) E[(zy(L) — z)(2yL(L) — 2)7] = (0*R;Y)/(L) =
are within one symbol duration. The number of nonzero coeffi-  Cramer—Rao Bound (efficient);
cients in this effective channel response vector is determined by3) lim; ., E[(ZmL(L) — z)7(2un(L) — 2z)] =
the number of paths and delays as in (4). Although the number  limy, . (c% trace(R;'))/(L) = 0 (consistent).
of zero coefficients that are being estimated affects the overall_ater, we will compare this multiuser estimate with the
estimation error, the location of them (which depends purely @fhgle-user channel estimate given by
the delays) does not affect the error. This is because the total re-
sponse vector size is stiV + 1 for each user. In the following R 1 & I
sections, we will develop MAl-resistant methods to estimate U= NL Z(UiBi) Ti- (®)
from several observations of the received veatousing the =1
knowledge of the spreading codes and the transmitted bits. This comparison will yield a better understanding of the sig-
nificance of MAI in channel estimation and illustrate the MAI
[ll. ML C HANNEL ESTIMATION resistance of the multiuser channel estimate in (7). The MAI
In this section, we obtain the ML estimate of the chann(ﬁ significant even though we use long and ra_lnc_iom s_pr(_aading
codes, i.e., the matriB 1, is not diagonal for realistid. This is

response of all the userz) using the knowledge of their . . .
spreading codes and transmitted bits. These known bits co%llésnated by the performance resuilts shown in Section VI and

be available either as a preamble before the data or as bit I discussior_l about the eigenvalues pf the correlation matrix
a separate pilot channel. In the estimation phase, training 6F as a function off. at the end of Section IV-A.

pilot sequences are assumed to be used and in the tracking
phase, which is discussed in Section V, data decisions from the
detector are fed back to the estimator. The joint conditionalIn this section, we will approximate the ML estimate

IV. I TERATIVE CHANNEL ESTIMATION

distribution of L received observation vectors,r;,...,ry, oObtained in the previous section using iterative algorithms
given the knowledge of the spreading sequences, channel, dadeloped using gradient-based adaptation. Iterative algo-
the bits is given by rithms based on the true gradient or an estimated stochastic
gradient have been used earlier for various adaptive filtering

p(re,ro, ..., v U, Us, ... UL, By, Ba, ..., Bp,2) and detection problems [19], [20]. We apply gradient-based
1 adaptation techniques using the exact gradient in our problem

I
= (ro?)NL P {—% > (ri —UiBz)" (r; — UiBiZ)} - of multiuser channel estimation. After we develop the iterative
i=1 channel estimation algorithm, we will briefly discuss methods
to improve the channel estimate for channels which are known
to have very few nonzero elements in the channel response
vectorz. Finally, we will discuss the computational complexity

The estimatez, (L) that uniquely maximizes this likelihood
function is the ML estimate, and it satisfies the equation

L L of the proposed iterative algorithms.
S @B)TUB) p o (L) = > B)Tr.. (6) A direct computation of the exact ML channel estimate in-
Py im1 volves the computation of the correlation matRy, and then

the computation onglyL at the end of the preamble. The
For simplicity, we will denote(l/L)Zf;l(UiBi)”(Z/IiBi) direct computation of the inverse of the correlation matrix at
by Rz, an (N + 1K x (N + 1)K matrix, and the end of the preamble is computationally intensive and could
(1/L)Zf=l(uiBi)Hri by yr, an (N + 1)K x 1 vector. delay the channel estimation process beyond the preamble du-
The rank of Ry, increases byV with each additional term ration and limit the information rate. In our iterative algorithms,
(U;B))?(;B,) in the summation. This is based on thave use the following ideas to approximate the ML solution.
assumption that random spreading codes are used and Rhst, we note that the produt; 'y, can be directly approx-
spreading codes over this duration are linearly independeimiated by solving the linear equatidz = y using iterative
Therefore, forRy, to be full rank (equal ta N + 1)K), L algorithms like the steepest descent algorithm. These iterative



1084 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 50, NO. 7, JULY 2002

algorithms take advantage of the symmetry property of the ¢ % ' ' ' ‘ ' '
tocorrelation matrixR.;, and reduce the complexity in the com:- — - MIN.BIG.
putation of the ML estimate given that we halkg, andy . 100+ Ny

Then, we also notice that the iterative algorithms can be mc
ified to update the channel estimate as the preamble is be
received instead of waiting until the end of the preamble. The- 8or
means that the computation is spread over the whole pream!9
thereby reducing the computational complexity per bit. We wi5
now describe two iterative algorithms that make use of the ide‘;‘
mentioned above to approximate the ML solution. First, we wig
describe a simple gradient descent algorithm with a const:* 4o
step size and then improve the speed of convergence using
steepest descent algorithm which chooses the optimal step 20l i
during each iteration [21]. B ittt

60

A. Gradient Descent Method 020 4.0 6.0 8I0 1(I)0 1é0 140 160 180 200

The simple gradient descent algorithm performs the fci-
lowing computations during thieh bit duration. Fig. 1. Maximum and minimum eigenvalues®f: number of users is 16, the

1) ComputeR,; = (l — 1)/(1)Rl—1 +(1/l)(UlBl)H(UlBl)- spreading gain is 31, and the preamble length is 1.

2) Computeyl = (l — 1)/(1)}’171 + (1/[)([/{1B1)H1‘1

3) Update the estimatgvia estimate. Simulation results will be shown in Section VI to il-
lustrate that the iterative estimate performs almost identically to
20 =300 _ (Rlﬁﬂ—l) — yl> (9) the exact ML estimate for reasonable preamble lengths.

whereR;z~Y — y; is the gradient of the squared errot" Steep(-ast Descen.t Method . .
surface (corresponding to the exponent in the likelihood In the simple gradient descent algorithm for channel estima-
function that needs to be minimized) apdshould be tion described in Section IV-A, the step size is chosen to be

chosen to ensure convergence and to control speedcgnstant for all iterations. To speed up convergence, the step

convergence. size can be chosen optimally for each iteration to minimize the
In each iteration, the estimate of the channel is updated by takff/ared error achieved by the updating step (i.e., step 3 which
a step along the gradient vector. updates the channel estimate along the direction opposite to the

In this algorithm, the ML estimate for a preamble of lengt§radient). This is achieved by the steepest descent algorithm
1 is approximated as soon as thk bit is received. In fact, the [21]- The squared error function to be minimized is given by

updating step (i.e., step 3) can be repeated to improve accuracy. L
It can be repeated as many times as allowed by the available H(z) = Z(ri —U;Biz) (r; — U;B;z).
computational resources. In our paper, we will assume that this =1

updating is done only once per bit. Therefore, the number
iterations is equal to the preamble length.

The mean of the iterative estimdt®) converges to the actual
channel(z), i.e., the estimate is asymptotically unbiased. Th
can be shown under the assumption that the eigenv@hfézs}
(1<j<(N+1)K andl = 1,2,...) of R; can be bounded
using positive real numbersand such thag? > )\5’) > afor
all 7 andy. The proof in the Appendix is done by bounding the (20)) _ (2071) + u(l)e(l)>
sequenceé[z("] by a converging geometric sequence in terms
of a andy, wherey: is chosen to be less tharij to ensure con- — (2(1—1)) — e lu(l)Qe(l) "Rie®
vergence. For the case of random codes, the required property 2
on the eigenvalues dR; is easily verified in the simulations. (10)

One sample set of eigenvalues are shown in Fig. 1 to illustrg{feree® — R,z —y,. The optima}«(? for thelth iteration

this. This plot of the maximum and minimum eigenvalueRef i, the steepest descent algorithm can be obtained by minimizing
as a function of also illustrates that the MAI is significant for ¢, squared error in (10) with respect;if). The solution for
realisticl. AlthoughR, is expected to gets closer to the identityhis minimization is given by

matrix asl goes to infinity, it cannot be considered diagonal for
the values of that are of interest. The maximum and minimum 0 IROLIRG)
eigenvalues do not get close enough to approximate the matrix W= m
by an identity matrix. € 1€

Since the variance of the iterative estimate is very hard The optimal step size can be easily calculated using the knowl-
compute analytically, it is estimated using simulations and coreelge ofR; and the gradient. Therefore, the steepest descent al-
pared with the Cramer—Rao bound which is satisfied by the Miorithm can be implemented with the same information needed

%is squared error function is the negative of the log of the like-
lihood function defined in Section IIl ignoring the constants in-
I%ependent of the channel Therefore, minimizing this squared
error function is the same as maximizing the likelihood func-
tion. The squared error after thith iteration can be written in
terms of the squared error after tfie- 1)th iteration as
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for the constant step size algorithm. Further acceleration in carsing the ideas in [14] and [15] that use the statistical properties
vergence can be achieved by choosing the search directionsfithe ML estimate described in Section IIl. These techniques
addition to choosing the step size for each iteration. This c@uld require more computation for possibly marginal perfor-
be done by the conjugate gradient algorithm [21]. In the conjphance improvement yielding an interesting complexity-perfor-
gate gradient algorithm, the search direction in any iterationig$ance tradeoff.

chosen to be orthogonal to the search directions used in the pre-

vious iterations. The steepest descent algorithm does not ensure ) )

this since it uses the gradient directly as the search directiéh. Computational Complexity

However, the implementation of the conjugate gradient algo-gefore we conclude the discussion on iterative channel

nthm would require ;lgnlflcant qddltlona] Comp_utatlon to Ob'estimation and discuss channel tracking, we will evaluate the
tain the search directions. We will show in Section VI that the

simple gradient descent algorithm and the steepest descengomputaﬂonal complexity of the proposed schemes. In both the

a ) ] o
gorithm perform very well in our case and the extra compth_-mposed iterative channel estimation schemes, the computa-
tion needed for using the conjugate gradient method may not

tipns (additions and multiplications) during tifh processing

worth it. window for the three-step update outlined above are:
1) computation oR: 2N(N + 1)?K? + (N + 1)?K?
C. Reduced Size Channel Estimate 2) computation ofy;: 2N(N + 1)K + (N + 1) K;

3) update of: 2(N + 1)2K? 4+ 3(N + 1)K for the simple
In the estimation methods proposed above, the channel could  gradient descent method amdd(N + 1)2K? + 7(N +

have any number of paths with delays lying within one symbol 1) i for the steepest descent method (due to the additional
period. All of these paths will be captured in the channel re-  computation to obtaip).

sponse vectat. We do not assume any parametric model on thlehe most complex step is the computationByf which has a

number of paths. Hov_vever, in some practical scenarios Wh%r(?mplexity of the order oN (N + 1)2K2. However, this matrix
the number of paths is small and rectangular chip waveforms

multiplication involves only multiplications of1's, and this
are used, we may not need the whaleector. For example, o .
. . can taken advantage of to speed up practical implementations
when there are just two paths for a user and the chip wa

. . 5_2 . The simple single-user estimafg,y, involves computa-
form is rectangular, the number of nonzero elemenisdarre- \f ] P 9 sy P

sponding to that user is at most four. For other nonrectangu}"':(ljrnS of the order ofV(V + 1) . Therefore, we have an addi-

chip waveforms, more coefficients might be nonzero based gﬁnal factor of NV K in complexity because of joint detection of

the autocorrelation of the pulse waveform used and the dela%/sthe(N + 1)K channel parameters.

of the paths. For the rectangular pulse, the support of the autlc%:rhe sllmple algorithm (;qr rgduqng It\r;ecsmefof;ge est|m]:e1ted
correlation function is only over the intervpt 1., T.]. If such channel vector proposed in Section |V-C perforkissorts o

information about the pulse shape and paths are available aﬁi‘?@N + 1 for the K" users. This has a complexity &f(V +

receiver, the iterative estimate obtained earlier can be further iH-lOg (V4 1). This is lower than the order of complexity of the

proved by using this knowledge. This information can be usétgrative algorithms and the single-user estimation technique.
to reduce the size of the estimated channel response \&ctor
One simplead hocmethod to reduce the size of the estimated
channel vectog is to choose a few large coefficients &f In

particular, we choose a few large coefficients, 3dyfor each  The jterative channel estimation scheme can be easily ex-
user. Thus, we are left with a smaller vector of sié(. If the  tended to track time variations in the channel after the preamble.
elements that were truly zero were dropped by this procedutge channel is assumed to be approximately constant over the
the error in estimation of the zero elements would be made zgjii@amble duration, and the tracking is performed by sliding the
and the total squared error in the estimate will be lower. Onestimation window and using data decisions instead of training
the M K significant elements are chosen, the error in thed€  sequences. In particular, a multishot multistage detection [16]
elements can be improved by repeating the ML estimation wiggheme is used in our case where bits are detected in blocks

a new reduced model of the discrete received signal given byand the MAl is canceled using a parallel interference cancel-
lation technique. The MAI for each user is canceled using the

estimated interference from the users obtained using their deci-
sions and the knowledge of their spreading codes and channel
estimate.

where (i4;B;), is N x MK andz, is MK x 1. The new |n the tracking scheme, the correlation mati, and the
Cramer-Rao bound will be* (R .);"* /L and will be better than matched-filter outputs ;, are averaged over a sliding window
the original bound given by?R '/ L since the size of the cor- of length equal to the preamble lengthas defined in (7). The
relation matrix is smaller. In Section VI, we will show the extracking is done as follows.

cellent performance of this simple size reduction method de- 1) Detect bits using multishot multistage detection with pre-
scribed above without reestimating the elements that are chosen vious channel estimate.

to be significant. Other complex statistical tests to choose the2) Compute the new correlation matrix and matched-filter
significant coefficients from the ML estimate can be derived vector: if R9!4 corresponds to the old window over the

V. TRACKING TIME-VARYING CHANNELS

r, = (UiBi),,z,, +n;
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time indicesT’ + 1,7 + 2, ...,T+ L andD bits of each i ' ' - SINGLE USER.
i i i \ —5— GRADIENT DESCENT (i = 0.002)
user are detected using multistage detection, then 08| T DESGENT i
=] s — ML
T+L+D gosh\| '\ o CRB
1d H = ’
RI™ =R{+ > UB)"UB) Gosl\ N
i=T+L+1 ] N
b4 N
T+D Zosf N 1
- > UB)"UB) 5 sl S ]
i=T+1 ° S
T+L+D T+D o4k T .
1d H H [a] -
yiv=y1+ Z UiB;)" r; — Z (UB;) r;. Hoal T |
i=T+L+1 i=T+1 z Tl
Loz2f 1
3) Update channel estimate =
0.1 i

Zuew _ iold - (R;lewiold _ y;lew) . ° 36 4,0 5.0 6|0 7,0 3‘0 910 50
1
As discussed for the estimation scheme, the updating step &g, mean squared error of channel estim@#|z — z]|2]): the number
be repeated to improve estimation accuracy. Since the channetisers is 16, the spreading gain is 31, the number of paths per user is 2, no
assumed to be roughly constant over the window length, the NPeppler spread, the SNR is 10 dB, the preamble length is 1, and all users have
channel estimate for the new window should be very close to i Power
previous ML estimate. Therefore, in practice, we notice that one
iteration per bit is sufficient, i.e., the channel estimate from th® Performance of Multiuser Channel Estimation
previous window is a very good initialization for both the simple

gradient descent with constant step size and the steepest descei€ €xact ML, iterative, and single-user channel estimation
algorithm to estimate the new channel estimate. methods are simulated for a 16-user asynchronous direct se-

guence CDMA system with spreading gain 31. All users are as-
sumed to have equal power and have two path channels to the
receiver. The channel is estimated using a 100-b preamble.

Fig. 2 shows the improvement in average squared error (over

In this section, we will show simulation results to illustrate th@00 simulations) of the various channel estimates—single-user
effectiveness of the channel estimation and tracking techniquésnnel estimate from (8), iterative estimate using the gradient
developed in Sections I, IV, and V. We will first show the perdescent algorithm with, = 0.002, iterative estimate using
formance gains for a constant multipath channel from multiusgteepest descent, and the exact ML estimate—with preamble
channel estimation in Section VI-A and later show the signiflength. The simulation results show the superior performance
cant gains for a slowly fading multipath channel with multiusesf the multiuser estimators compared to the single-user esti-
channel estimation and tracking in Section VI-B. For each sirator. The simulations also show that the iterative estimate per-
ulation, the complex fading coefficients for each path in (2) aferms almost as well as the ML estimate and can be further
generated randomly according to a complex Gaussian distmproved by performing more iterations after each bit is re-
bution (corresponding to Rayleigh fading) and the delays ateived or using the steepest descent method. The steepest de-
generated according to a uniform distribution from zero to orseent method achieves the performance of the actual ML es-
symbol duration. For the constant multipath channels, the faditigpate for fewer iterations (about 40). For realistic preamble
coefficients of all the paths are constant throughout the trargngths that are needed to get a normalized mean square of at
mission and are of equal magnitude. For the multipath faditepst 0.1 (10%), the iterative algorithms can match the perfor-
channels, the average power of the paths are equal and thenance of the exact ML estimate while spreading the computa-
stantaneous fading coefficients for each path are generated usioig over the entire length of the preamble. Thus, they reduce the
the Jakes fading model [23]. In this case, the fading coefficiertemputational resources needed per bit and provide the channel
change even within one frame of transmission. estimates at the end of the preamble without any further pro-

The significant gains provided by multiuser estimation tecltessing delay. The Cramer—Rao bound is also shown to illus-
niques compared to single-user estimation will be shown Iyate the fact that the ML estimate is efficient.
comparing the mean square error in the channel estimates aBig. 3 shows the BER performance of the multistage detector
well as the BER of a multistage detector that uses the estimateith a signal-to-noise ratio (SNR) for the following channel es-
channel. After demonstrating the excellent performance of thimation methods—single-user estimation, iterative estimation
proposed multiuser channel estimation and tracking methodsfsing constant step size, exact ML estimation, and actual
realistic multipath fading channels, we will finally show usinghannel knowledge. We show only one of the iterative channel
simulations, in Section VI-C, that the effect of decision feedsstimation methods since their performance is almost the same
back error on the performance of multiuser channel estimatitor the preamble length of 100 considered here. The preamble
is negligible for realistic simulation conditions. This is done téength is chosen to achieve reasonably low channel estimation
demonstrate that decision feedback can be successfully usedefoor. Trends similar to those observed in the mean squared error
channel estimation when training sequences are not availableomparison of the various channel estimates in Fig. 2 can be

VI. NUMERICAL RESULTS AND DISCUSSION
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methods: the number of users is 16, the spreading gain is 31, the number of patathods: the number of users is 16, the spreading gain is 31, the number of paths
per user is 2, no Doppler spread, all users have equal power, and the preameteiser is 2, no Doppler spread, interfering users have 6 dB higher power, and

length is 100. the preamble length is 100.
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Fig. 6. Performance of multistage detector with different channel estimation
Fig. 4. Mean squared error of channel estimate: number of users is 16, thethods with reduction in size: the number of users is 16, the spreading gain is
spreading gain is 31, the number of paths per user is 2, no Doppler spread, B&ethe number of paths per user is 2, no Doppler spread, all users have equal
1 (weak user) has 6 dB lower power than the other users, and the preamble lepgther, and the preamble length is 50.
is 100.

floor for the strong user. This is because multiuser interference
seen in the BER comparison in Fig. 3 also. As expected, therésisiot mitigated. However, for the iterative multiuser estimate,
a significant gain in performance achieved by using the iteratitlee normalized mean squared error decreases with increasing
multiuser channel estimator over the single-user estimator. AIS)\R and the performance is not interference-limited. In fact, the
the performance of the multistage detector with the iterative eaean squared error follows the linear relationship described in
timate is virtually the same as the performance with the ML eproperty 3 of the ML estimate (in Section Ill) between the mean
timate. It is also worth noting that this result shows significarsiquared error and the noise variance and reduces to zero as SNR
gains even in the equal power case. When users have differiesteases. The BER performance of the weak user is shown in
powers, i.e., in near—far situations, MAI can further degrade thég. 5. The performance of the multistage detector is signifi-
single-user estimate. Fig. 4 shows the normalized mean squaradtly affected by using single-user channel estimates that are
error of the channel estimate for the weak user (user 1) anot near—far resistant. However, the proposed iterative multiuser
strong users (user 2—15) for both the single-user channel estiannel estimates can perform well even in near—far situations.
mate and the iterative multiuser estimate. The strong users havEinally, we illustrate by a simple example how the reduction
6 dB more power than the weak user. It can be seen that the rinrsize of the channel response vector described in Section IV-C
malized mean squared error for the single-user channel estimatproves estimation performance. Fig. 6 shows the BER per-
has a floor for both the weak and the strong users, with a lowlermance of a multistage detector with the following channel
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Fig. 7. Performance of multistage detector with different channel estimati§fg- 8.  Tracking performance: the number of users is 8, the spreading gain is
and tracking methods: the number of users is 8, the spreading gain is 16, YRethe number of paths per user is 2, the Doppler spread is 17 Hz, all users have
number of paths per user is 2, the Doppler spread is 17 Hz, all users have e§G4@l average power, and the preamble length is 100.

average power, and the preamble length is 100.

channel variations much better than the single-user channel

estimates—reduced-size single-user estimate, reduced-siz€5himate can, thereby giving the gains in BER perform_a_nce.
erative estimate, and actual channel parameters. The reducidpilar performances can be observed for the other coefficients

in size is done for both the single-user and iterative estima®s Well

by just choosing the four largest channel coefficients for ea@ Effect of Decision Feedback Error on Channel Estimation
user. The preamble length is reduced to 50 to take advantage of

the lower channel estimation error. The simulations show thatm the simulation results for channel estimation, the bits of all
the performance of the multistage detector with reduced-sii€ users are assumed to be known. In practice, this knowledge is
iterative channel estimation is closer to the performance wiggrfectforthe users entering the system (estimation phase) since
the actual channel than the original iterative estimate in Fig. ey can be assumed to use training sequences that are known
The single-user estimate also performs better when its sizdQsthe receiver. For the other users in the tracking phase, the

reduced to use the knowledge of the number of paths. HoweWRif,estimates have to be obtained from the detector or decoder.
it still performs significantly worse than the iterative multiusef his decision feedback could be erroneous. However, the basis

method. of our approach is that this feedback is “reasonably accurate.”
Here, we will study the effect of possible errors in the feedback
B. Performance of Multiuser Channel Tracking on estimation.

] ] ) ) The multiuser channel estimate is obtained by solving the fol-
We will now present the simulation results for the smgle—us%wing linear equation:

and iterative multiuser tracking techniques for an eight-user
CDMA system with a spreading gain of 16 employing a Rz=y. (12)

multiuser multistage detector. All users have two paths an h q dth b " ina the | h of
are assumed to travel at 10 km/h corresponding to a slow re, we have dropped the subsctptenoting the length o

fading channel with a Doppler spread of 17.67 Hz. Their dag‘?e preamble for convgniencg. When an in_correct decisionis fed
is transmitted in 10-ms frames consisting of 2400 b. EadffCk: We end up solving a different equation

frame has a prea.mble of Ieng_th 100 gnd the channel for the (R+AR)(z+ A2) =y + Ay (12)

rest of the frame is tracked using decision feedback from the

multistage detector. Fig. 7 shows the tracking performaneétained by perturbing the matr®® and vectory. The relative

in terms of the BER performance of the multistage detectérror in the channel estimate due to erroneous feedback can be
with the various channel estimation and tracking methods. Theunded by the relative error IR andy using the condition
iterative multiuser estimator is able to track the fading channeimberk of the matrixR. SupposeAR = ¢E andAy = ce,

much better than a conventional single-user estimator (abowhereE ande are arbitrary matrices (of appropriate dimen-
3-dB gain in performance). Performance gains similar to thos@n), then from [21] and [24] we have

observed in the constant multipath case in Fig. 3 are seen for 1Az IAR|  ||Ay]|
the multipath fading scenario in Fig. 7 as well. To give an idea — <K <T + —) + O(2). (13)
of the variations in the channel and in the estimates, we show 2] IR ¥

in Fig. 8 the tracking performance of the algorithm at 8-dBrom (13), we can see that as long as the condition number of
SNR for a single element of the channel response vector. TReis low the relative error irz, denoted byAz, is bounded by
tracking is done in this case for a duration of 4000 b. We canreasonably small multiple of the relative erronandy. In

the see that the iterative channel estimate is able to track the simulation example shown in Fig. 1, the condition number
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VII. CONCLUSION

In this paper, we derive the ML channel estimate for mul-
tiple users in a CDMA system with long spreading codes using
training sequences or decision feedback. Then, we approximate
the ML estimate using an iterative algorithm to reduce the com-
putational complexity. The channel estimate is near—far resis-
tant and is determined as the effective channel impulse response
which can be directly used in multiuser detection and decoding.
We show that the iterative channel estimate is asymptotically
unbiased, i.e., the mean of the iterative estimate asymptotically
converges to the actual channel as the training sequence length
increases. Simulations are used to illustrate the significant per-
formance gains achievable using multiuser channel estimation
as opposed to single-user channel estimation techniques used in
current cellular systems. The results are shown in terms of mean
squared error in channel estimates as well as the BERs of a mul-
tistage detector using the various channel estimates. The simula-

Fig. 9. Effect of decision feedback error. Mean squared error of chanréPNS @lso show that the iterative scheme can perform as well as
estimate( E[||z — =|*]): number of users is 16, the spreading gain is 31, ththe ML estimation method with reasonable computational com-
number of paths per user is 2, no Doppler spread, SNR is 10 dB, the prean&gxity per bit comprising mainly of a matrix multiplication.

length is 1, and all users have equal power.
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This matrix multiplication involves only multiplications ef1’s

and this can taken advantage of to speed up practical imple-
mentations [22]. The proposed iterative scheme is also extended
to track fading channel variations using decision feedback. A
simple method to reduce the size of this estimated channel re-
sponse vector was also demonstrated to take advantage of the
knowledge of the number of paths. In fact, methods to statisti-
cally determine the size of the channel response vector required
for detection from the ML estimate can be derived [14], [15].
Thus, we see that the combined channel estimation and tracking
scheme can effectively estimate and track the channels of mul-
tiple users and provide significant performance gains over cur-
rently used single-user techniques for realistic multipath fading
channels.

APPENDIX

Proposition: LetR,; be the correlation matrix corresponding
to a preamble lengthin the CDMA system described above and
AP AHYE) b its eigenvalues. If there exist

with iterative channel estimation: number of users is 16, the spreading gairp®sitive real numbers andj3 such thats > )\gj) > aforalll
31, the number of paths per user is 2, no Doppler spread, all users have ewj then there exists a real numbesuch that

power, and the preamble length is 100.

of R for a preamble length of 100 is 5.75. The erroRrandy

will be small if the number of feedback errors is small comparegy - )

to the number of preamble bits.

Figs. 9 and 10 show the effect of feedback error on the per-

Jon B [40] =

is updated according to (9).
Proof: From (9), we can write

formance of the iterative channel estimator in terms of the mean 50—z =300 _z_, (Rli(lfl) _ yz) )
squared error and BER. The results are shown for two values of

feedback error rates (i.e., BER of the multistage detector used ! "

in decision feedback): 0.02 and 0.04. As can be seen, the @f'C€ yi= (/)3 5= UiBi)r; =
fect of erroneous feedback is not very significant, especially Rz + (1/0) 32;_, U4:B;)"n;, we obtain
terms of the BER. The feedback error rate is chosen to be con- .
stant for simplicity in simulations. Ideally, the feedback error . __ _ 1 _ (A(l—l) _ ) H Ry
rate should be dependent on the SNR. However, we choose a 7 (I-uRy) (2 2) T ;(UZBZ) -
feedback error rate that is approximately the error rate at 6 dB. B

This gives a conservative performance result for higher SNFBgcause the noise is zero-mean, we have

Feedback error rates that vary with SNR are used in the channel o 1)
tracking results in Section VI-B. E [Z } —z=(I-uRy) (E [Z } - Z) : (14)
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Now, R; is a symmetric matrix and can be expressed using thge] M. K. Varanasi and B. Aazhang, “Multistage detection in asyn-
eigenvalue decomposition &A;Q,' , whereQ is a unitary

matrix andA, is a diagonal matrix of the eigenvalues Rf.

Therefore,

Q (E [z@} - z) — (I— pA)QT (E [z“—ﬂ . z) .

We can choosg such that, < (1/8). Equivalently,1 > 1 —
pee > 0. SinceQ is a unitary matrix and\g’) > «, we have

o [57] o1 s 2]

where|| - || denotes th&, norm of a vector. Sincé > 1— i« >
0, ]| E[2] — 2|| converges to 0 ab— oc. |

(1]

(2]

(3]

4

(5]

(6]

(7]

(8]

El

(10]

(11]

[12]

(13]

(14]

(15]

(23]
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