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On the Sum-Rate of the Gaussian MIMO Z Channel
and the Gaussian MIMO X Channel
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Abstract—In this paper, we study the Gaussian MIMO Z chan-
nel and the Gaussian MIMO X channel. The MIMO X channel
(XC) consists of two multiple antenna transmit-receive pairs,
where each transmitter communicates with both receivers. The
MIMO Z channel (ZC) is obtained from the MIMO X channel
by eliminating one of the links and its corresponding message.
First, we derive a sum-rate upper bound for the MIMO Z channel
and compare it with an existing bound in literature. Next, we
consider the MIMO X channel and propose a new sum-rate upper
bound by utilizing the sum-rate upper bound for the MIMO ZC.
Subsequently, we derive another upper bound for the MIMO XC
by assuming receiver cooperation and deriving the worst noise
covariance matrix for the resulting two-user MAC. We compare
the above two upper bounds for the MIMO XC with the Maddah-
Ali-Motahari-Khandani (MMK) scheme. Then, we consider some
consequences of the above results for the MIMO interference
channel. Finally, we present some numerical results. The numer-
ical results suggest that the proposed sum-rate capacity upper
bounds are tighter than existing bounds.

Index Terms—MIMO Z channel, MIMO X channel, MIMO
interference channel, sum capacity, upper bound, worst noise
covariance.

I. INTRODUCTION

AN interesting model to study the effect of interference
in communication systems is the single antenna two-

user interference channel, consisting of two point-to-point links
which interfere with each other. The interference channel (IC)
has been widely studied in literature. Although the capacity
region of the IC is unknown, several inner and outer bounds for
the capacity region and sum-rate capacity have been derived in
[1]–[3]. In [3], the capacity region of the IC is characterized to
within one bit/s/Hz and in [4]–[6], sum-rate capacity of the IC
is characterized in the low-interference regime: a regime where
using Gaussian inputs and treating interference as noise is
optimal.
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Fig. 1. Illustration of the X channel communication model in the cellular
downlink.

A related channel model, the one-sided interference channel,
also known as Z-interference channel, is obtained from the IC
by removing one of the cross links. Note that in the Z-IC, the
cross channel constitutes interference. The Z channel (ZC) is
obtained from the Z-IC by considering message transmission on
the cross link, and is studied in [7], [8]. By allowing messages
on all the links of the IC, we obtain the X channel, i.e., both
transmitters have an independent message for each receiver, for
a total of four messages in the channel [9], [10]. In this sense,
the X channel (XC) is a generalization of the IC.

A. Motivation

The XC can occur as a communication model in cellular
networks. Consider the illustration of the cellular downlink in
Fig. 1 where user 1 and user 2 are at the cell edges of their re-
spective base stations (BS). Each user can receive transmissions
from both base stations. Thus, we have a scenario where the
two BSs can communicate independent messages to each user
to improve the system throughput. By reversing the direction
of transmission, the same model is applicable to the cellular
uplink. Another scenario that could be envisaged in the down-
link is when large file transfers occur from the BSs to the users,
for example, say video files. One solution could be to split the
files among the two BSs. Then, both parts of the files could be
simultaneously communicated to the users to reduce the down-
load time.

A defining feature of most modern wireless communication
systems is the use of multiple antennas at some or all the termi-
nals. Multiple-input multiple-output (MIMO) techniques have
attracted attention in wireless communications, since they offer
significant increases in data rates without additional bandwidth
or increased transmit power. Due to these properties, MIMO
technology is an important part of several wireless standards
[11]. In this paper, we study three related MIMO channels,
namely, the Gaussian MIMO XC, the Gaussian MIMO ZC
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Fig. 2. MIMO X channel.

Fig. 3. MIMO Z channel.

and the Gaussian MIMO IC, which are obtained as the MIMO
counterparts of the single antenna channels mentioned earlier
(see Fig. 2 and Fig. 3).

B. Related Work and Limitations

The sum-rate of the MIMO IC is studied in [12]–[16]. In
[12], the capacity region of the MIMO IC is obtained in the so-
called aligned strong and very strong interference regimes. In
[12]–[14], the sum-rate of the MIMO IC is characterized in the
noisy-interference or the low-interference regime. The K-user
Gaussian MIMO IC is studied in [15], where three upper
bounds on the sum-rate are proposed. It is interesting to note
that the second bound is in fact the extension of the Etkin-Tse-
Wang (ETW) upper bound for the scalar Gaussian IC in [3] to
the MIMO case. In a departure from the above results, in [16],
the capacity region of the two-user Gaussian MIMO IC is
characterized to within a constant gap that is independent of
the channel matrices.

The only known upper bound on the sum-rate of the MIMO
ZC is obtained in [17, Theorem 1]. This upper bound is based
on the idea of reducing the noise at receiver 1 so that it is able
to decode all the three messages in the channel resulting in a
multiple access channel (MAC). The sum-rate of this MAC,
comprising of transmitters 1, 2 and receiver 1, is a sum-rate
upper bound for the MIMO ZC.

The MIMO XC has been studied in [17]–[26]. The MIMO
XC is especially interesting because of the role it played in the
development of the technique of interference alignment [18],
[19]. Interference alignment refers to the concept of aligning the
interfering signals at each receiver, while the desired signals are
separable at their respective receivers [17], [20]. The degrees of
freedom (DoF) of the MIMO XC was found in [17], and it was
shown to be 4M

3 , with M > 1 antennas at each node. Interference
alignment (IA) was shown to be a key idea for the achievability
of the degrees of freedom of the MIMO XC. In [21], the

authors combine dirty paper coding, zero forcing (ZF), and suc-
cessive decoding methods to obtain signaling schemes which
achieve the highest multiplexing gain or the degrees of freedom.
They eventually transform the XC into four parallel channels.
We refer to this scheme as the MMK (Maddah-Ali-Motahari-
Khandani) scheme. A gradient projection based IA for the
MIMO XC is developed in [22]. Algebraic expressions are de-
rived to obtain a locally optimum IA solution with the objective
of maximizing a utility function of the transmit rates. In [23],
linear IA transmit filters and ZF receive filters are designed for
the XC, based on generalized singular value decomposition. In
[24], the authors propose a perfect IA scheme for the K-user
MIMO X network, a system consisting of K transmitters and K
receivers, where all transmitters send independent messages to
all receivers. Space-time precoders with full diversity and low
decoding complexity for the XC are investigated in [25]. The
noisy-interference regime for the MIMO IC derived in [13] has
been extended to the MIMO XC in [26].

We note that results similar to those available for the scalar
Gaussian versions of the IC, ZC, and XC are generally much
harder to obtain for the multiple antenna case. For example, the
problem of characterizing the exact capacity of a MIMO IC can
be a challenging problem even for small and special classes.
Indeed, the sum-rate capacity of the MIMO IC in the noisy-
interference and aligned-strong regimes in [12], [13], respec-
tively, are characterized in terms of a matrix equation involving
the direct and cross link channel matrices. As pointed out in
[16], a negligible fraction of channel matrices satisfy such a
matrix equation.

This problem is partially addressed in the information theory
literature by calculating the DoF of the concerned MIMO chan-
nel. The DoF of a MIMO channel denotes the multiplicative
scaling of the sum-rate capacity in the high signal-to-noise ratio
(SNR) regime. However, more often than not, we are interested
in the behavior of sum-rate capacity at finite SNRs, and these
DoF capacity approximations fall short of providing an accurate
and reliable prediction of the sum-rate capacity at these SNRs.
This point is noted in [27], where they advocate the need for
stronger approximations to sum-rate capacity. To obtain such
stronger capacity approximations, another approach that is usu-
ally adopted is to characterize the capacity region or the sum-
rate capacity to within a constant gap, irrespective of the
channel coefficients and operating SNRs. In the seminal work
by Etkin, Tse, and Wang [3], the capacity of a two-user single-
input single-output (SISO) Gaussian IC was characterized to
within one bit/s/Hz for all values of the channel parameters. In
[27], the authors study the SISO Gaussian XC, where they
develop a novel deterministic channel model. For this deter-
ministic model, they obtain an approximately optimal com-
munication scheme, which is then translated to the original
Gaussian XC. It is shown that this scheme achieves the sum-rate
capacity of the Gaussian XC to within a constant gap. However,
extending the results of [27] to the MIMO case is non-trivial. In
fact, obtaining a good deterministic channel model for a MIMO
channel is hard [28]. The only known constant-gap capacity
characterization for a MIMO channel is obtained in [16]. In
this context, the study of sum-rate bounds for Gaussian MIMO
channels such as the ZC, XC, and the IC, that are applicable for
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all channel matrices and SNRs is of interest. In this paper, we
focus on such sum-rate upper bounds valid for all SNRs.

C. Problems Addressed and Contributions Made

In this paper, we make the following contributions:
1) We first derive a sum-rate upper bound for the Gaussian

MIMO ZC, obtained by appropriately reducing the noise
at receiver 1, resulting in a MAC upper bound at receiver 1.

2) The above upper bound for the MIMO ZC is utilized
to propose a new upper bound on the sum-rate of the
Gaussian MIMO XC.

3) We derive a second upper bound for MIMO XC by
assuming receiver cooperation and deriving the worst
noise covariance matrix for the resulting two-user MAC.

4) We compare the upper bounds with the achievable sum-
rate of the MMK scheme [21].

5) We specialize the upper bounds derived for the MIMO
XC to the MIMO IC and compare them with the sum-rate
upper bounds in [15], [16].

We denote the sum-rate upper bound for the MIMO ZC by
Sout

Z . Following the approach used in [17], the upper bound, Sout
Z ,

for the MIMO ZC is based on the concept of noise reduction
at receiver 1. We obtain a class of sum-rate upper bounds by
defining a class of noise covariance matrices after noise reduc-
tion. This class of noise covariance matrices is characterized
by two conditions. We observe that the sum-rate upper bound
in [17] can be obtained as a special case of this class of sum-
rate upper bounds. Further, we use a result in matrix theory to
simultaneously diagonalize the two conditions, leading to an
explicit solution for the noise covariance matrix. We show that
the sum-rate capacity of the reduced-noise channel is achieved
by the MAC formed by transmitters 1, 2 and receiver 1. Nume-
rical results suggest that the proposed bound is tighter than the
bound in [17].

Next, Sout
Z is utilized to propose a new upper bound on the

sum-rate of the Gaussian MIMO XC. We denote this bound
Sout−1

X . We observe that a MIMO ZC can be obtained from the
MIMO XC by eliminating one message and its correspond-
ing channel from the MIMO XC. There are four different Z
channels associated with the XC, depending on which message
and its corresponding channel are removed. Note that each of
the four MIMO ZCs associated with the MIMO XC defines an
upper bound on the sum-rate of the remaining three messages.
Subsequently, we make use of the sum-rate upper bounds for
these four MIMO ZCs to derive Sout−1

X .
A second upper bound for the MIMO XC, denoted Sout−2

X ,
is derived as follows. By assuming cooperation among the
receivers, we get a Gaussian MIMO MAC with an individual
power constraint at each transmitter. Since the MIMO MAC is
a MIMO XC with receiver cooperation, the sum-rate capacity
of the MIMO MAC is an upper bound on the sum-rate capacity
of the MIMO XC. This upper bound can be further tightened
by considering noise correlation among the two receivers. This
amounts to finding the worst noise covariance matrix for the
MAC which gives a much stronger bound. However, finding the
least favorable noise covariance matrix is a non-trivial problem
as it involves both a maximization over the input covariance

matrices and a minimization over the noise covariance matrices.
It is shown that the worst noise covariance matrix is a saddle-
point of a zero-sum, two-player convex-concave game, which is
solved through a primal-dual interior point method that solves
the maximization and the minimization parts of the problem
simultaneously [29].

Lastly, we consider some ramifications of the above results
for the MIMO IC. A sum-rate upper bound for MIMO IC,
Sout−1

I , is derived by utilizing the sum-rate upper bounds for the
MIMO ZC. We also observe that the second upper bound for
the XC, i.e., MIMO MAC with worst noise covariance sum-rate
upper bound essentially carries over to MIMO IC. We denote
this bound by Sout−2

I . We compare Sout−1
I and Sout−2

I with the
sum-rate upper bounds in [15], [16] and the achievable scheme
in [16].

D. Organization

The rest of this paper is organized as follows. The MIMO XC
system model is presented in Section II. The first and second
upper bounds for the MIMO XC are developed in Sections III
and IV, respectively. The MIMO IC is studied in Section V.
Numerical results are discussed in Section VI. Conclusions are
presented in Section VII.

Notation: Vectors are denoted by boldface lowercase letters,
and matrices are denoted by boldface uppercase letters. [·]T
denotes the transpose operation, [·]H denotes the Hermitian
operation, Tr(·) denotes the trace operation, and E[·] denotes the
expectation operation. Determinant of a matrix A is denoted by
|A| and I denotes the identity matrix. For Hermitian matrices A
and B, we use A � B to denote that A−B is positive semidefi-
nite, and A � B to denote that B−A is positive semidefinite.

II. SYSTEM MODEL

The MIMO XC system model with two transmitters and two
receivers is shown in Fig. 2. Transmitter t is equipped with Mt

antennas, t = 1, 2, and receiver r is equipped with Nr antennas,
r = 1, 2. In the MIMO XC, each transmitter communicates an
independent message to each receiver. Accordingly, the MIMO
XC has four independent messages, W11, W12, W21, W22, where
Wi j is the message transmitted from transmitter j to receiver i.
Let Hrt = [hi j] denote the Nr ×Mt channel gain matrix from
transmitter t to receiver r, where hi j is the channel gain from
the jth transmit antenna, j = 1,2, · · · ,Mt , to the ith receive
antenna, i = 1,2, · · · ,Nr. The MIMO XC is characterized by the
following input-output equations:

y1 =H11x1 +H12 x2 +n1

y2 =H21x1 +H22 x2 +n2,

where xt ∈ C
Mt×1 denotes the input vector at transmitter t for

t = 1, 2, yr ∈ C
Nr×1 denotes the output vector at receiver r for

r = 1, 2, and nr ∈ C
Nr×1 is the circularly symmetric complex

Gaussian (CSCG) noise vector at receiver r with zero mean
and identity covariance matrix, i.e., nr ∼ C N (0,I). The input
covariance matrices are denoted by St = E[xt xH

t ], t = 1, 2.
Transmitter t is subject to a power constraint Pt : Tr(St) ≤ Pt .
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The total power transmitted by both transmitters is denoted by
PT , i.e., PT = P1 +P2.

We assume perfect knowledge of all the channel matrices
Hrt , for r, t = 1, 2, at both transmitters and at both receivers. The
channel matrices are assumed to be the result of samplings in a
rich scattering environment. As such, we ignore the possibility
of the channel matrices being rank deficient.

The MIMO IC is characterized by the same input-output
equations as the XC, with the distinction that the cross mes-
sages are absent, i.e., W12 =W21 = φ.

III. UPPER BOUND FOR MIMO XC BASED ON MIMO ZC

In this section, we propose a new upper bound on the sum-
rate capacity of the Gaussian MIMO XC. This upper bound is
formulated by utilizing sum-rate upper bounds for MIMO ZCs.
In the following subsection, we first describe the relationship
between the MIMO XC and the MIMO ZC. Next, we derive a
new sum-rate upper bound for the MIMO ZC. Subsequently, we
make use of this upper bound to formulate a new upper bound
for the MIMO XC.

A. Obtaining the MIMO ZC From MIMO XC

Consider the MIMO XC shown in Fig. 2. By setting the mes-
sage W21 = φ and channel H21 = 0, we obtain the MIMO ZC
in Fig. 3. Thus, both the message as well as the communication
link between transmitter 1 and receiver 2 are absent. There are
four different ZCs associated with the XC, depending on which
message and its corresponding channel are removed. They are
denoted by Z(11), Z(12), Z(21) and Z(22), where Z(i j) denotes
the ZC obtained from the XC when Wi j and Hi j are removed.

B. A New Sum-Rate Upper Bound for the MIMO ZC

In this subsection, we derive a new sum-rate upper bound
for the MIMO ZC. The upper bound is based on the concept of
reducing the noise at receiver 1 so that it can decode all the three
messages in the channel, resulting in a MAC sum-rate upper
bound. We state this bound below.

Theorem 1: If N1 ≥ M2 and N2 ≥ M2, then for the MIMO
ZC: (i) the sum-rate capacity is bounded by the sum-rate of the
MAC formed by transmitter 1, transmitter 2 and receiver 1, with
the additive Gaussian noise at receiver 1 modified to C N (0,A),
where

A = I−H12
(
HH

12H12
)−1

HH
12 +H12WHH

12, (1)

where W is any M2×M2 positive semidefinite matrix satisfying
the following two conditions: W � (HH

12H12)
−1

and W �
(HH

22H22)
−1.

(ii) The M2 × M2 matrix W can be chosen as W =
Q−HLQ−1, where Q and ΛΛΛ are obtained as solutions to the
generalized eigenvalue problem

(
HH

12H12
)−1

Q =
(
HH

22H22
)−1

QΛΛΛ, (2)

and ΛΛΛ = diag(λ1,λ2, . . . ,λM2), λi > 0, ∀i. The matrix L =
diag(l1, l2, . . . , lM2) is a real diagonal matrix, i.e., a diagonal

matrix with real diagonal entries, whose elements are chosen
as li = min(λi,1). The sum-rate of the MIMO ZC is bounded as

SZ ≤ Sout
Z = max

Tr(Si)≤Pi
i=1,2

log

∣∣H11S1HH
11 +H12S2HH

12 +A
∣∣

|A| . (3)

Proof: See Appendix B for the proof of statement (i) of
Theorem 1. The key idea behind statement (ii) lies in using a
simultaneous diagonalization result in matrix theory to equiv-
alently write the two constraints on W in terms of diagonal
matrices, and appropriately choosing W to satisfy these equiv-
alent constraints. We first make use of the following results
in matrix theory to transform the two constraints on W:

Lemma 1 [30, Corollary 4.6.12]: If B and C be Hermitian
matrices with C positive definite, then there exists a nonsingular
matrix Q such that QHBQ = ΛΛΛ is a real diagonal matrix and
QHCQ = I.

Lemma 2 [31, Corollary 8.7.2]: The matrices Q and ΛΛΛ in
Lemma 1 are obtained as solutions to the generalized eigen-
value problem BQ = CQΛΛΛ.

Applying Lemma 1 to the RHS of the two conditions
on W, we observe that there exists a nonsingular matrix Q
such that QH(HH

12H12)
−1Q = ΛΛΛ is a real diagonal matrix and

QH(HH
22H22)

−1Q= I. Further, since QH(HH
12H12)

−1Q is a pos-
itive definite matrix, ΛΛΛ = (λ1,λ2, . . . ,λM2) is in fact a diagonal
matrix with positive real diagonal entries, i.e., λi > 0, ∀i. From
Lemma 2, Q, ΛΛΛ are obtained as solutions to the generalized
eigenvalue problem given in (2).

Using the above arguments, it is clear that we can write
(HH

12H12)
−1

= Q−HΛΛΛQ−1 and (HH
22H22)

−1
= Q−HQ−1. The

two conditions on W can now be written as W � Q−HΛΛΛQ−1

and W � Q−HQ−1, or equivalently as follows:

QHWQ �ΛΛΛ and QHWQ � I. (4)

The above two conditions can easily be satisfied by choosing
QHWQ = L, where L = diag(l1, l2, . . . , lM2) is a real diagonal
matrix whose elements are chosen as li = min(λi,1). Clearly,
it is true that L � ΛΛΛ and L � I. We now obtain an explicit
solution for W as W = Q−HLQ−1. It can be verified that this
choice of W indeed satisfies the two conditions in Theorem 1
by multiplying the LHS and RHS of both terms in (4) by Q−H

and Q−1, respectively, and applying Lemma 4 in Appendix A.�
Remark 1: The two conditions for the matrix W in Theorem 1

are sufficient to ensure that receiver 1 can decode all the
three messages in the MIMO ZC, resulting in a MAC upper
bound. Thus, we obtain a class of sum-rate upper bounds
for every choice of W satisfying the above two conditions.
The choice of W that leads to the sum-rate upper bound
for MIMO ZC obtained in [17, Theorem 1], derived in the
context of DoF analysis is given below. Let the eigenvalue
decomposition of (HH

12H12)
−1

be UΣΣΣ12UH , where U is a unitary
matrix of size M2 ×M2 and ΣΣΣ12 is a M2 ×M2 diagonal matrix
of eigenvalues of (HH

12H12)
−1

. Similarly, let VΣΣΣ22VH be the

eigenvalue decomposition of (HH
22H22)

−1. By setting W = αI,
the two conditions on W can be satisfied if αI � ΣΣΣ12 and
αI � ΣΣΣ22. Clearly, the two conditions are satisfied by choosing
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α=min(σmin[(HH
12H12)

−1
],σmin[(HH

22H22)
−1
]), wherein σmin(X)

denotes the minimum singular value of X. Thus, the upper
bound for MIMO ZC in [17, Theorem 1] is a special case of
Theorem 1.

Remark 2: The DoF result derived for the MIMO XC in
[17] based on the MIMO ZC bound in [17, Theorem 1] will
remain the same for any W chosen according to statement (i)
in Theorem 1, since the DoF depends only on the fact that the
bound arises from a MAC at receiver 1.

C. Upper Bound for MIMO XC Based on MIMO ZCs

Let SX denote the sum-rate capacity of the MIMO XC. Let
Ri j denote the rate of message Wi j. The upper bound for the
MIMO XC is based on the idea that the sum-rate of the MIMO
ZC obtained from the MIMO XC by removing one link and its
associated message forms an upper bound on the sum-rate of
the remaining three messages. Specifically, consider the Z(12)
channel obtained from the MIMO XC by eliminating W12 = φ
and channel H12 = 0. The above statement implies that the
sum-rate of the remaining three messages, R11 +R21 +R22 is
bounded by the sum-rate capacity of Z(12) channel. Since the
sum-rate capacity of the Z(12) channel is not known, we use
the sum-rate upper bound in Theorem 1, denoted by Sout

Z(12), for
bounding the rate of the remaining three messages. Thus, by uti-
lizing the sum-rate upper bounds for the four MIMO ZCs asso-
ciated with the MIMO XC, a new upper bound on the sum-rate
of the MIMO XC, Sout−1

X is obtained. The following theorem
gives a set of rate inequalities by considering all the

(4
3

)
combi-

nations of the rate vector (R11,R12,R21,R22), corresponding to
each of the four ZCs associated with the XC.

Theorem 2: If min(N1,N2)≥ max(M1,M2), then,

R12 +R21 +R22 ≤Sout
Z(11) (5)

R11 +R21 +R22 ≤Sout
Z(12) (6)

R11 +R12 +R22 ≤Sout
Z(21) (7)

R11 +R12 +R21 ≤Sout
Z(22). (8)

Proof: Consider the rate inequality (7). Consider any
achievable scheme for the MIMO XC. First, we pick W21 to be
a known sequence shared across all transmitters and receivers.
Next, knowledge of W11 is given to receiver 2. Thus, receiver 2
can cancel out the contribution of transmitter 1’s signal from
its received signal. This is equivalent to setting H21 = 0, so
that we obtain the Z(21) channel. Notice that setting W21 to a
known sequence and providing receiver 2 with W11 does not
affect the performance of the achievable scheme with respect to
the rate of the messages W11, W12 and W22. Thus, using the same
achievable scheme, the following sum-rate is also achievable
on the MIMO Z(21) channel: R11 +R12 +R22. The inequality
(7) follows, since Sout

Z(21) represents an upper bound on the sum-
rate of the MIMO Z(21) channel. The proof for the other rate
inequalities (5), (6) and (8) follow from repeating the above
arguments for the Z(11), Z(12), and Z(22) channels, respec-
tively. The condition min(N1,N2) ≥ max(M1,M2) is required
to satisfy the conditions of the upper bound in Theorem 1. �

The following theorem is a direct consequence of Theorem 2.

Theorem 3: If min(N1,N2)≥ max(M1,M2), then,

SX ≤ Sout−1
X =

1
3

[
Sout

Z(11) +Sout
Z(12) +Sout

Z(21) +Sout
Z(22)

]
. (9)

Proof: Consider the sum of the RHS of the rate inequali-
ties (5)–(8). It is clear that each variable is repeated thrice. Thus,
the sum-rate of the MIMO XC is bounded as in (9). �

IV. UPPER BOUND FOR MIMO XC BASED ON MIMO
MAC WITH WORST NOISE COVARIANCE

In this section, we take a different approach to the one
considered earlier and derive a new sum-rate upper bound.
Consider a MIMO XC where both receivers cooperate to form
a corresponding MIMO MAC with the same individual power
constraint at the transmitters. Let CMAC be the sum-rate capacity
of this MIMO MAC. It is clear that SX ≤ CMAC. The above
upper bound is in general loose and can be further tightened by
assuming noise correlation at both receivers. Note that the ca-
pacity region of the XC depends only on the marginal transition
probabilities of the channel (i.e., p(yi|x1,x2)) and not on the
joint distribution p(y1,y2|(x1,x2)). Hence, correlation between
the noise vectors at the receivers of the MIMO XC does not
affect the MIMO XC capacity region. However, it does affect
the sum-rate capacity of the MIMO MAC, which continues to
be an upper bound on the sum-rate capacity of the MIMO XC.
Let z = [nT

1 nT
2 ]

T
be the noise vector in the MAC and let Z =

E[z zH ] denote the noise covariance matrix. We let E[ninH
i ] = I,

i = 1, 2, and E[n1nH
2 ]

Δ
= X̃. Define S to be the set of all positive

semidefinite noise covariance matrices satisfying the MAC
upper bound conditions, i.e.,

S=

{
Z : Z � 0, Z =

[
IN1 X̃
X̃H IN2

]}
. (10)

Thus, for any Z ∈ S, the MIMO MAC sum-rate capacity CMAC

is still an upper bound to SX . Noise correlation between the
multiple antennas within a single receiver affects the capacity
of the MIMO XC, and hence is not considered.

We further tighten this upper bound by minimizing CMAC

over all the admissible noise covariance matrices Z to get

SX ≤ Sout−2
X = inf

Z∈S
CMAC. (11)

Let HT
1 = [HT

11HT
21] denote the channel from transmitter 1 to

the receiver in the MAC. Similarly, HT
2 = [HT

12HT
22]. The MAC

upper bound (11) can be written as a min-max problem

Sout−2
X = min

Z
max
S1,S2

log

∣∣H1S1HH
1 +H2S2HH

2 +Z
∣∣

|Z|
s.t. Si � 0, Z ∈ S, Tr(Si)≤ Pi, i = 1,2, (12)

where the maximization is over the set of input covariance
matrices Si at transmitter i, and the minimization is over all
possible noise covariance matrices in S. The computation of the
minimizing noise covariance matrix Z above is not necessarily
easy, even though the objective function in (12) is convex in
Z. Observe that (12) is similar in form to the sum-rate capacity
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problem of the broadcast channel which can be written as a min-
imax problem [32], [33]. In [32]–[34], the sum-rate capacity
problem of the BC was solved by converting it to a single con-
vex minimization problem. However, it was shown in [29] that
when M1 > 1 and M2 > 1, the solution approaches in [32]–[35]
cannot be used to convert (12) to a single convex minimization
problem. Hence, packages such as CVX [36] cannot be used to
solve (12). In Appendix C, we develop a primal-dual interior
point method to solve the minimax problem (12). Primal-dual
interior point methods are a class of interior point methods
which simultaneously solve the primal problem and the dual
problem [37]. We closely follow the development of the primal-
dual interior point method outlined in [37, Section 11.7].

V. MIMO INTERFERENCE CHANNEL

Here, we consider some implications of the results for the
MIMO XC on the MIMO IC.

A. Upper Bound Based on MIMO Z Channels

We note that a sum-rate upper bound for the MIMO IC can
be derived by making use of the sum-rate upper bounds for
the MIMO ZC. There are however some crucial differences.
In the MIMO IC, the cross links always constitute interference.
Therefore, removing one of the cross links enlarges the capacity
region. To be more precise, by removing one of the links of the
MIMO IC, we obtain the MIMO Z-interference channel. Note
that the sum-rate of the MIMO ZC is an upper bound on the
sum-rate of the MIMO Z-IC, which in turn is an upper bound
on the sum-rate of MIMO IC. Thus, unlike in the MIMO XC,
the sum-rate of the MIMO ZC forms an upper bound on the
sum-rate of the MIMO IC. The sum-rate upper bound, Sout−1

I ,
is characterized in the following theorem.

Theorem 4: If min(N1,N2) ≥ max(M1,M2), then the sum-
rate of MIMO IC is bounded as

SI ≤ Sout−1
I = min

[
Sout

Z(12), Sout
Z(21)

]
. (13)

Proof: Note that there are two MIMO ZCs associated
with the MIMO IC depending on which of the cross links are
removed, i.e., Z(12) and Z(21). The sum-rate of each of these
MIMO ZCs forms an upper bound on the sum-rate of the
MIMO IC. A sum-rate upper bound for the MIMO IC, Sout−1

I ,
can now be obtained by considering the minimum of the sum-
rate upper bounds for these two MIMO ZCs, i.e., Sout

Z(12) and

Sout
Z(21). The condition min(N1,N2)≥ max(M1,M2) is needed to

satisfy the conditions of the upper bound in Theorem 1. �

B. Upper Bound Based on MIMO MAC With Worst
Noise Covariance

In Section IV, we derived an upper bound for the sum-rate
of the MIMO XC by considering cooperation among the two
receivers and further tightened this upper bound by assuming
noise correlation and deriving the worst noise covariance ma-
trix. This upper bound is given by SX ≤ Sout−2

X and is described
by the minimax problem given in (12). Since the sum-rate of
the MIMO XC forms an upper bound on the sum-rate of the

MIMO IC, it is clear that SI ≤ Sout−2
I = Sout−2

X , where we have
used Sout−2

I to denote the upper bound for the MIMO IC.
Remark 3: The sum-rate upper bounds in [15], [16] are

formulated for given input covariance matrices, S1, S2. Thus,
to compare the upper bounds Sout−1

I and Sout−2
I with those in

[15], [16], we consider input covariance constraints: Si � S∗
i ,

i = 1, 2 instead of the trace constraint Tr(Si) ≤ Pi. Below, we
consider the implications of the covariance constraints on the
upper bounds, Sout−1

I and Sout−2
I . Since Sout−1

I is formulated
in terms of the MIMO ZC upper bound in Theorem 1, we
evaluate the upper bound (3) in Theorem 1 for the above
covariance constraints. Note that H11S1HH

11+H12S2HH
12+A �

H11S∗
1HH

11 + H12S∗
2HH

12 + A. Using the identity |E| ≥ |F|, if
E � F [30, Corollary 7.7.4], the sum-rate upper bound in (3)
can be written as

SZ ≤ log
∣∣H11S∗

1HH
11 +H12S∗

2HH
12 +A

∣∣/|A|. (14)

The second upper bound is given by the minimax problem
in (12), with the trace constraints replaced by the covariance
constraints. Using similar arguments as above, we rewrite the
second upper bound as

Sout−2
I = min

Z∈S
log

∣∣H1S∗
1HH

1 +H2S∗
2HH

2 +Z
∣∣

|Z| . (15)

Equation (15) follows since S∗
i , i = 1, 2, maximize the inner

maximization of the minimax problem (12) with covariance
constraints.

VI. NUMERICAL RESULTS

In this section, we numerically evaluate the proposed upper
bounds for the MIMO ZC, MIMO XC, and MIMO IC, and
compare them with other upper bounds and achievable schemes
in literature.

A. MIMO ZC

The proposed sum-rate upper bound for MIMO ZC is given
in (3), and is formulated in terms of the sum-rate capacity
of a two-user MAC with channel matrices H11 and H12, and
noise covariance matrix A. The matrices Q and ΛΛΛ in (2) can
be found using the methods in [30, Corollary 4.6.12], [31,
Algorithm 8.7.1], or using the MATLAB command eig as fol-
lows: [Q,ΛΛΛ]=eig((HH

12 H12)
−1
,(HH

22 H22)
−1
). The optimizing

input covariance matrices, S1, S2, that maximize the objective
function in (3) can be easily found using the algorithm in [38].

We compare the above upper bound with the sum-rate upper
bound for the MIMO ZC derived in [17, Theorem 1]. We note
that the upper bound in [17] is derived in the context of DoF
analysis, and is generally not expected to be tight at finite SNRs.
However, since this is the only sum-rate upper bound available
for the MIMO ZC, we compare the upper bound obtained in (3)
with that in [17]. The sum-rate upper bound in [17, Theorem 1]
can be obtained from Theorem 1 by setting W = αI, where α =

min(σmin[(HH
12H12)

−1
],σmin[(HH

22H22)
−1
]), wherein σmin(X)

denotes the minimum singular value of X.
We consider a MIMO ZC with M = 3 antennas at the

transmitters and receivers and randomly generate the channel
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Fig. 4. A plot of the average sum-rates of the proposed upper bound in
Theorem 1 and the MIMO ZC upper bound in [17] for 5000 realizations of
CSCG channel matrices. M1 = M2 = N1 = N2 = 3.

matrices, with the channel gain hi j chosen to be a C N (0,1)
random variable, j = 1,2, · · · ,Mt , i = 1,2, · · · ,Nr, ∀r, t. We use
5000 realizations of these randomly generated channels and
compute the average sum-rates to evaluate the upper bounds.
The total power PT is divided equally between the two transmit-
ters, P1 = P2 = PT/2, and the SNR is defined as PT/σ2

n, where
σ2

n is the variance of the CSCG noise at a receive antenna. We
plot these results in Fig. 4 and compare the upper bounds in
Theorem 1 and [17, Theorem 1]. We also show the achievable
sum-rate of the MAC formed by transmitter 1, transmitter 2
and receiver 1 without noise reduction. Also plotted is another
upper bound for the MIMO ZC, obtained as a special case of the
second upper bound for the MIMO XC, Sout−2

X , by setting H21=
0 in Section IV. For the choice of W in Theorem 1, we observe
that the average sum-rate upper bound of Theorem 1 is lower
than the average sum-rate upper bound of [17, Theorem 1].

Note that we are unable to prove analytically that the bound
in Theorem 1 is tighter than [17]. Since the sum-rate of either
bound depends on the noise at receiver 1, it is intuitively clear
that the bound with more noise would yield a tighter bound.
To gain more insight, we performed the following experiment.
We considered a MIMO ZC with M = 3 antennas at the
transmitters and receivers and generated 1 million realizations
of random CSCG channel matrices and compared the sum-rate
upper bounds of Theorem 1 and [17, Theorem 1]. For each
realization, we consistently observed that the sum-rate upper
bound of Theorem 1 was tighter than the sum-rate upper bound
of [17, Theorem 1]. We also checked if W � αI or αI � W
was satisfied. We found that αI � W was never true, while
W � αI was true for 0.2% of the channel realizations. For
the vast majority of the channel realizations, no such positive
definite ordering amongst W and αI was observed.

B. MIMO XC

In this subsection, we compare the upper bounds for the
MIMO XC, Sout−1

X and Sout−2
X , developed in Sections III-C and

Fig. 5. A plot of the average sum-rates of the proposed upper bounds along
with the lower bounds in [20], [21] for a MIMO XC with M1 = M2 = N1 =
N2 = 3 for 5000 random realizations of CSCG channel matrices.

IV, respectively, with the achievable sum-rate of the MMK
scheme [21] in literature. The first upper bound, Sout−1

X can
be computed using (9). Each of the terms Sout

Z(i j) in (9) can in

turn be computed by rewriting the MIMO Z(i j) channel in the
standard form shown in Fig. 3 and using (3). The second upper
bound, Sout−2

X can be evaluated numerically using the interior
point algorithm given in Appendix C. We compare these upper
bounds with two closely related schemes, namely, the MMK
scheme in [21] and the scheme in [20] called MMK Joint De-
sign, for reference. The sum-rate achieved by the MMK scheme
is given by expression (28) in [21] and that of MMK Joint
Design can be obtained from the results in [20, Section V].

In Fig. 5, we consider a MIMO XC with M = 3 antennas at
the transmitters and receivers and plot the average sum-rates of
the upper bounds and lower bounds considered above for 5000
realizations of randomly generated channels. Also plotted is the
upper bound based on MIMO ZCs in (9), with the terms Sout

Z(i j)
computed using the upper bound in [17, Theorem 1] instead of
that in Theorem 1.

We make the following observations for the plot in Fig. 5. It
is seen that the MIMO MAC with worst noise covariance upper
bound is quite close to the achievable sum-rate of the MMK
scheme at low SNRs, and is moderately close in the medium
SNR regime. However, the difference between the bounds
increases rapidly, once we approach higher SNRs. Note that
with M = 3 antennas at each node, the degrees of freedom of
this MAC is 2M = 6, whereas the degrees of freedom of the
MIMO XC is 4M

3 = 4. Since the MMK scheme is able to achieve
4 degrees of freedom, there is a difference of 2 degrees of
freedom between the MMK scheme and the MAC upper bound.
This results in the upper bound being loose in the high SNR
regime. However, the upper bound based on ZCs derived in
Section III-C, Sout−1

X , although loose at low to medium SNRs, is
much better at high SNRs. We would like to point out that Fig. 5
is a representative plot for cases where the number of transmit
antennas is equal to the number of receive antennas, i.e.,
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Fig. 6. A plot of the average sum-rates of the proposed upper bounds, along
with the upper bounds in [15], [16] for a MIMO IC with M1 = M2 = 2,
N1 = N2 = 4 for 5000 random realizations of CSCG channel matrices, with
the covariance constraints given in (16).

M1 = M2 = N1 = N2. A similar trend is observed for a higher
number of antennas at the transmitters and receivers. For exam-
ple, plots similar to Fig. 5 were obtained for M = 4, N = 4 and
M = 3, N = 4 as well, where M1 = M2 = M and N1 = N2 = N.

C. MIMO IC

In Fig. 6, we consider a MIMO IC with M1 = M2 = 2,
N1 = N2 = 4 and evaluate the sum-rate upper bounds for
MIMO IC, Sout−1

I and Sout−2
I , in (14) and (15), respectively, for

5000 random realizations of CSCG channels with the following
covariance constraints:

S∗
1 = (P/2)I, S∗

2 =
P
2

[
1 0.2+0.2i

0.2−0.2i 4

]
, (16)

where P/2 denotes power scaling, and compute the average
sum-rates, for different values of P.

We also compute the minimum of the sum-rate upper bounds
in [15] and [16], respectively. We compare these upper bounds
with the achievable sum-rate obtained by treating interference
as noise at both receivers. We also plot the achievable sum-rate
of the explicit coding scheme in [16, Section III-C]. We see
that Sout−1

I is tighter than the other upper bounds and is closer
to the achievable sum-rate of the explicit coding scheme in [16,
Section III-C].

VII. CONCLUSION

We investigated the sum-rate capacities of the Gaussian
MIMO Z channel, the Gaussian MIMO X channel, and the
Gaussian MIMO interference channel. First, we derived a sum-
rate upper bound for the MIMO ZC. We then considered the
MIMO XC and proposed a new sum-rate upper bound by
utilizing the sum-rate upper bound for the MIMO ZC. Subse-
quently, we derived another upper bound for the MIMO XC
by assuming receiver cooperation and deriving the worst noise
covariance matrix. We compared these upper bounds with the

achievable sum-rate of the schemes in [20], [21]. We considered
some consequences of the above results for the MIMO IC.
Finally, we presented some numerical results and showed that
the proposed sum-rate capacity upper bounds are tighter than
existing bounds.

APPENDIX

We assume that the channel is used n times. The transmitted
and received vector sequences are denoted by xn

i and yn
i for

user i = 1, 2, and xn
i satisfies the power constraint Pi. By Fano’s

inequality, we have for the MIMO ZC

H (Wii|yn
i )≤ nεn, i = 1,2,

H (W12|yn
1)≤ nεn, (17)

where εn → 0 as n → ∞. We first introduce some lemmas which
will be used in the proofs.

A. Preliminaries

Lemma 3: Let y = H x+n, where H is a N×M matrix, N ≥
M with full column rank, and n ∼ C N (0,I). Denote by H−1

l =

(HHH)
−1HH the left inverse of H, i.e., H−1

l H = I. Define y′ Δ
=

H−1
l y = x+n′, where n′ ∼ C N (0,(HH H)

−1
). Then, I(x;y) =

I(x;y′) implying that y′ is a lossless representation of y.
Proof: From the definition of y′, we have the following

Markov chain: x → y → y′. Define ỹ Δ
= Hy′ = Hx + Hn′ =

Hx + ñ, where ñ ∼ C N (0,PH), PH = H(HHH)
−1HH . We

observe that PH is in fact the unique orthogonal projection
matrix onto the column space of H. Consequently, it follows
from the definition of a projection matrix that PH � I [31],
[39]. Thus, we can write y = ỹ+ n̂, where n̂ ∼ C N (0,I−PH).
Using the above, we have the following inverse Markov chain
x → y′ → ỹ → y. From the above two Markov chains, we have
I(x;y) = I(x;y′). �

Lemma 4 [30, Observation 7.7.2]: If A � B and C is any
other matrix, then CACH � CBCH .

B. Proof of Statement (i) of Theorem 1

See Appendix A for some lemmas which are used in the
proof. The proof is divided into two parts. In the first part of
the proof, we transform the channel between transmitter 2 and
receiver 2 into an equivalent channel. In the second part, we
show that by appropriately reducing the noise at receiver 1 and
using the zero-forcing (ZF) receive filter, receiver 1 can decode
message W22 resulting in a MAC sum-rate upper bound.

Since a part of the proof is similar to the proofs of the sum-
rate upper bounds for the MIMO ZC and the MIMO IC derived
in [17], [40], respectively, we summarize the steps that are
similar and highlight by giving additional details the steps that
are different.

Since N2 ≥ M2, by the assumption of full column rank,
HH

22H22 is an invertible matrix. We use zero-forcing filter,

denoted by TZF = (HH
22H22)

−1HH
22 at receiver 2 to get

y′2
Δ
= TZF y2 = x2 +TZF n2 = x2 +n′

2, (18)
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Fig. 7. Sequence of operations to show the decodability of W22 at receiver 1
in the MIMO ZC.

where n′
2 ∼ C N [0,TZF TH

ZF = (HH
22H22)

−1
]. Using Lemma 3,

y′2 is an equivalent representation of y2 and has resulted in
dropping receive signal dimensions. These are not useful for
decoding x2 at receiver 2, since they consist of only noise
components.

Now, we use the following strategy to show the decodability
of W22 at receiver 1. First, we reduce the noise appropriately
at receiver 1 and then apply the zero forcing filter and show
that receiver 1 can obtain a better channel to transmitter 2 than
receiver 2. The sequence of operations employed at receiver 1
is illustrated in Fig. 7.

As shown in Fig. 3, W11 → xn
1 is the only message emanating

from transmitter 1. From (17), receiver 1 can decode message
W11 with an arbitrarily low probability of error. Now, replace
the noise n1 at receiver 1 with ñ1, where ñ1 ∼ C N (0,A), with
A � I. We note that the reduction in the noise at receiver 1 does
not hamper its ability to decode the intended messages W11,
W12, since the original noise statistics can be obtained by adding
appropriate noise. Let ỹ1 denote the output at receiver 1 after
xn

1 is decoded and canceled out, i.e., ỹ1 = H12x2 + ñ1. Since
N1 ≥ M2, by the assumption of full column rank, HH

12H12 is an
invertible matrix. We use zero-forcing filter, denoted by RZF =

(HH
12H12)

−1HH
12 at receiver 1 to get

y′1
Δ
= RZF ỹ1 = x2 +RZF ñ1 = x2 +n′

1, (19)

where n′
1 ∼ C N (0,RZF ARH

ZF). Comparing (19) with (18), if

RZF ARH
ZF � (HH

22H22)
−1, then we have,

I
(
xn

2;y′n1
)
≥ I

(
xn

2;y′n2
) (a)
= I (xn

2;yn
2) ,

where the equality in (a) follows from Lemma 3. Therefore,
we have

h
(
xn

2|y′n1
)
≤ h

(
xn

2|y′n2
)
= h(xn

2|yn
2) .

Thus, receiver 1 can get a better channel to transmitter 2 than re-
ceiver 2. This in turn makes W22 decodable at receiver 1, which
implies that receiver 1 can decode all three messages in the
MIMO ZC. The sum-rate of the MAC formed by transmitters
1, 2 and receiver 1 is an upper bound on the sum-rate of the
original MIMO ZC. Note that this MAC sum-rate upper bound
is dependent on the noise covariance matrix A which must
satisfy the two conditions: A� I and RZF ARH

ZF � (HH
22H22)

−1.
Below, we derive a solution to the noise matrix A, by making
use of the concept of projection matrices [31].

We observe that multiplication of ỹ1 by RZF to get y′1 ∈
C

M2×1 in (19) has resulted in a reduction of the received signal

dimension. As the name implies, the zero-forcing filter ‘forces
to zero’ both signal and noise components that lie in the null
space of HH

12, or equivalently those that are orthogonal to the
column space of H12.

We denote by W the space spanned by the columns of H12

and the space orthogonal to W is denoted by W ⊥. From the
above observation, it is clear that, we need only reduce the
noise components that lie in the subspace W . Let P denote
the orthogonal projection onto W , P2 = P, PH = P. Since
the columns of H12 form a basis for this subspace, we have
P = H12(HH

12H12)
−1HH

12 and I−P is the orthogonal projection
onto W ⊥ [39]. Any noise vector n1 ∈ C

N1×1 can be uniquely
decomposed as n1 = Pn1 + (I − P)n1 with Pn1 ∈ W and
(I−P)n1 ∈ W ⊥. Note that RZF(I−P)n1 = 0. Using the above
arguments, we decompose the reduced noise vector ñ1 as

ñ1 = (I−P)n1 +w1,

where w1 ∈ W . In the above decomposition, we have retained
noise components of n1 that lie in W ⊥, since they are forced to
zero by the ZF filter. Since the columns of H12 form a basis for
W , we can write w1 = H12w2, where w2 ∈ C

M2×1, i.e., ñ1 =
(I−P)n1 +H12w2. By definition, we have

A =E
[
ñ1ñH

1

]
= E

[
(I−P)n1nH

1 (I−P)H +H12w2wH
2 HH

12

]
=(I−P)+H12WHH

12. (20)

where W Δ
= E[w2wH

2 ]. Since we require A � I, this translates
to H12WHH

12 � P. From Lemma 4, we get the condition W �
(HH

12H12)
−1.

Using (20) and substituting for A, the second condition
RZF ARH

ZF � (HH
22H22)

−1 can be written as

RZF
[
(I−P)+H12WHH

12

]
RH

ZF �
(
HH

22H22
)−1

⇒ W
(a)
�

(
HH

22H22
)−1

,

where (a) follows from the fact that RZF(I − P) = 0,
and RZF H12 = I. Thus, we have the two conditions W �
(HH

12H12)
−1 and W � (HH

22H22)
−1. Note that for every choice

of W satisfying the above conditions, we get an upper bound.
The noise covariance matrix A is now given by A = I −
H12(HH

12H12)
−1HH

12 +H12WHH
12.

C. Primal-Dual Interior Point Algorithm

Consider the minimax problem formulation in (12). Let C1 =
diag(IN1 ,0N2×N2) and C2 = diag(0N1×N1 ,IN2). The constraint
that Z ∈ S can be expressed as ∑2

i=1 CiZCi = IN with Z � 0.
First, we write the objective function in (12) as f0(Z,S1,S2).
Forming the Lagrangian for (12), we have

f0(Z,S1,S2)+
2

∑
i=1

λi (Tr(Si)−Pi)+
2

∑
i=1

Tr(ΦΦΦi(−Si))

+Tr(ΣΣΣ(C1ZC1 +C2ZC2 − IN))+Tr(ΓΓΓ(−Z)) ,

where λi is the dual variable associated with the power con-
straint Pi, i = 1, 2. ΦΦΦi, ΓΓΓ are matrices of dual variables asso-
ciated with the semidefinite constraint on Si, Z, respectively,
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and ΣΣΣ is a block diagonal matrix of dual variables associated
with the equality constraint on Z. The starting point for the
derivation of the interior point method is the modified KKT
conditions for (12). For i = 1, 2, we have

Z∗ � 0, S∗
i � 0, λ∗

i ≥ 0, ΓΓΓ∗ � 0, ΦΦΦ∗
i �0, (21)

C1Z∗C1 +C2Z∗C2 =IN , (22)

Z∗ΓΓΓ∗ =ΓΓΓ∗Z∗ = 0, S∗
i ΦΦΦ∗

i =ΦΦΦ∗
i S∗

i =0, (23)

−λ∗
i (Tr(S∗

i )−Pi) =1/a, (24)

C1ΣΣΣ∗C2 +C2ΣΣΣ∗C1 =0, (25)

−∇Si f0 (Z,S∗
i ,S j)+λ∗

i I−ΦΦΦ∗
i

T =0, i �= j, (26)

∇Z f0(Z∗,S1,S2)+
2

∑
i=1

CiΣΣΣ∗T Ci −ΓΓΓ∗T =0, (27)

where a > 0 and (·)∗ indicates the optimal value of the variable
at the saddle point. Since strong duality holds in case of (12),
(23)–(24) represent the modified complementary slackness con-
ditions. To find the saddle point, we need to simultaneously
solve the system of (21)–(27). For i = 1, 2, let

Z∗ =Z+ΔZ, S∗
i = Si +ΔSi, λ∗

i = λi +Δλi, (28)

ΓΓΓ∗ =ΓΓΓ+ΔΓΓΓ, ΦΦΦ∗
i =ΦΦΦi +ΔΦΦΦi, ΣΣΣ∗ = ΣΣΣ+ΔΣΣΣ, (29)

where ΔSi,ΔZ are the primal search directions, and Δλi, ΔΦΦΦi,
ΔΓΓΓ and ΔΣΣΣ are the dual search directions.

We describe the algorithm used to solve (12) in Algorithm 1.
Let xz = vec([Z ΓΓΓ ΣΣΣ]) and xSi = vec([Si ΦΦΦi λi]), i = 1, 2. µ,
ε are parameters of the algorithm and m denotes the number
of modified complementary slackness conditions, where m =
2 from (24). In the interest of brevity, we refrain from going
into the details of the algorithm. See [37, Section 11.7] for a
detailed exposition of the different nuances associated with the
interior point algorithm. The details of the algorithm specific to
the minimax problem in (12) are given in [29].

The updated primal and dual variables in the kth iteration
of the algorithm do not satisfy the KKT conditions (21)–(27),
except in the limit as the algorithm converges. Hence, we define
the primal and dual residuals w.r.t Z and Si, i = 1, 2 at the kth
iteration as:

Rdual
Si

=∇Si f0 −λiIMi +ΦΦΦT
i , i = 1,2,

Rdual
Z =∇Z f0 +(ΣΣΣ−ΓΓΓ)T ,

Rpri
Z =C1ZC1 +C2ZC2 − IN . (30)

The primal and dual search directions, Δxz, ΔxSi can be com-
puted by substituting (28), (29) in (21)–(27), and using the
first-order Taylor’s approximation for the resulting system of
matrix equations. The line search in Algorithm 1 is a standard
backtracking line search, based on the norm of the primal and
dual residuals, modified to ensure that Z � 0, Si � 0, ΦΦΦi � 0,
ΓΓΓ � 0 and λi > 0 for i = 1, 2 [37]. The parameter η̂ is called
the surrogate duality gap. This would be the duality gap if the
primal and the dual residuals in (30) were equal to zero. It is
given by

η̂ηη=
2

∑
i=1

[
λi (Pi −Tr(Si))+Tr

(
ΦΦΦiSiST

i ΦΦΦT
i

)]
+Tr(ΓΓΓZZTΓΓΓT ).

The convergence of Algorithm 1 follows from the convergence
of the primal-dual interior point method [37]. Lastly, we ob-
served that values of the parameter µ on the order of 10 resulted
in faster convergence.

Algorithm 1 Primal-dual interior point method

1) Initialize Z � 0, ΓΓΓ � 0, ΣΣΣ = 0, Si � 0, ΦΦΦi � 0, λi > 0,
i = 1, 2, µ > 1, ε > 0.

2) Evaluate a = µm/η̂.
3) Compute primal-dual search directions, ΔxZ, ΔxSi , i =

1, 2.
4) Line search and update: Determine step length v> 0, ui >

0 and set xZ = xZ + vΔxZ, xSi = xSi +uiΔxSi .
5) Compute primal and dual residuals: Rdual

Si
, Rpri

Z , Rdual
Z

and surrogate duality gap η̂.
6) If ‖Rdual

Si
‖

F
≤ ε, ‖Rpri

Z ‖F ≤ ε, ‖Rdual
Z ‖F ≤ ε and η̂ ≤ ε,

stop. Otherwise go to step 2.
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