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Abstract—We study the use of Low-Density Parity-Check
(LDPC) codes for two-phase, network-coded bidirectional relay-
ing with higher-order modulation. In the multiple-access phase,
the sum of transmitted symbols scaled by the channel gains is the
received relay constellation, which is network-mapped (clustered)
to a transmit constellation for the ensuing broadcast phase. This
operation at the relay is termed Clustered-Scaled-Sum (CSS)
decoding. We propose a CSS coding scheme for bidirectional
relaying using a single LDPC code over a ring with higher-order
PAM or QAM alphabets. We design a message-passing decoder
for CSS decoding with trade-offs possible between complexity and
performance. We suggest a method for completing a Constrained
Partially-filled Latin Square (CPLS) to a latin square, which
is used in the construction of network maps at the relay for
any channel fading state. The performance of the CSS coding
scheme with LDPC codes over rings is shown to be very close to
information-theoretic outer bounds.

I. INTRODUCTION

The bidirectional (or two-way) relay problem has attracted
significant attention in the past few years. The setting is shown

BA Ch1 h2

Fig. 1. Bidirectional relaying problem.

in Fig. 1, where node A wishes to send a message to C, while
node C has to send a message to A. The relay node B facilitates
this exchange of information. We assume that there is no direct
link between the two communication nodes A and C. Nodes
are half-duplex, average power limited with receiver Additive
White Gaussian Noise (AWGN) of variance σ2

N . The gains
of channels AB (also, BA) and CB (also, BC) are denoted h1
and h2, respectively. The pair (h1, h2) is said to be the channel
fading state.

Bidirectional relaying was introduced in [1] [2] [3], and
most of the evolution and prior work are summarized in the
surveys [4] [5]. Though the exact capacity region is not known,
schemes based on lattice coding have been shown to achieve
rates within a small gap of the capacity region [6], [7]. In [6],
a lattice coding scheme that achieves rates close to symmetric
capacity for high SNR has been proposed for the h1 = h2 case.
In [7], lattice coding schemes that achieve rates within 1/2 bit
for each direction and within log (3/2) bits of sum capacity are
proposed for general (h1, h2). While the same lattice code is

used at both nodes A and C in the h1 = h2 case in [6], different
lattice codes are needed at nodes A and C for the general
channel in [7]. In [8] [9], lattices over Eisenstein integers are
studied. The relay attempts to decode a linear combination of
transmitted symbols, where the coefficients are Eisenstein inte-
gers. The coefficients are chosen such that the achievable rate
while decoding at the relay can be maximized. In [8], nested
lattices are considered. Also, a practical implementation using
Low-Density Parity-Check (LDPC) codes over a prime-sized
field Fq is suggested. Standard message-passing algorithm for
decoding over Fq is used. The modulation alphabet is chosen
from a ring of Eisenstein integers. In [10], the authors study
Physical-layer Network Coding (PNC) using nested lattice
codes in an algebraic framework. Design examples based on
lattice network codes in conjunction with convolutional and
turbo codes are given.

Practical codes are usually designed based on finite alphabet
constellations. Most of the initial code designs for bidirec-
tional relaying used binary codes, binary modulation schemes,
and XOR decoding at the relay [11]. However, higher order
modulation schemes are required to achieve higher spectral
efficiency. Recently, there has been an increased interest in
the study of higher-order constellations [12]–[16] for bidirec-
tional relaying. In [12], codes over higher-order fields have
been employed. In particular, multiple network-coded linear
combinations over fields are decoded at the relay. In [13],
multi-level coding is used for compute-forward at the relay
with network maps chosen using non-singular matrices over
finite fields. The network coding map to be employed at the
relay when higher-order constellations like M -PSK and M -
QAM are used has been recently studied in [14]–[16]. The
singular channel states that cause a collapse of the received
alphabet are characterized in [15] and the channel conditions
(h1, h2) for which the choice of network map is important
are determined. While uncoded transmission is studied in
[14]–[16], the network coding map is also required for coded
transmission, and we use it appropriately in our work.

In [11], [17], [18], bidirectional relaying with coded modu-
lation is studied. In [17], a non uniform M -PAM constellation
is proposed along with the use of binary codes. But only the
case of symmetric channels, where h1 = h2, is considered.
Authors suggest the use of power control at the transmitting
nodes in the case of asymmetric case, h1 6= h2. But, this is
possible only when the channel gains h1, h2 are known at the
transmitting nodes.
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In [18], the transmitting nodes use a convolutional code and
binary phase shift keying for modulation. The relay decodes
the XOR of messages using a Viterbi algorithm. In [11], RA
codes are used at the transmitting nodes. The relay decodes
the XOR of messages using a belief propagation algorithm.
In both the cases, irrespective of the channel gains, a single
linear function is decoded by the relay.

In this work, we propose and study a coding scheme based
on Low Density Parity Check (LDPC) codes for network-
coded bidirectional relaying with higher order modulation. Our
design differs from existing designs in the following ways.

1) We consider the use of LDPC codes over integer residue
rings (specifically ring of integers or Gaussian integers
modulo 2r) for the standard M -PAM and M2-QAM
constellations. This is unlike the constellations considered
in [8], [9], which is based on lattices over Eisenstein
integers, and in [17] which uses a non-uniform M -PAM.

2) We consider both linear and non-linear network maps for
decoding at the relay. So far, the combination of coded
modulation and non-linear network map in the context of
bidirectional relaying is not reported in literature.

3) Since we also consider non-linear maps, the standard
message-passing decoding algorithm over the ring ZM
cannot be used. We therefore propose the Clustered
Scaled Sum (CSS) decoding algorithm.

4) In [15], the construction of a network map for a fad-
ing state is translated to a problem of completing a
Constrained Partially-filled Latin Square (CPLS). While
specific cases in which a CPLS could be completed are
studied, no general methods exist for completing a CPLS
with minimal number of distinct entries. In this work, we
suggest randomized algorithms for completing a CPLS
using weighted bipartite graph matching that attempts to
minimize the number of distinct entries.

5) We design message-passing decoders that perform CSS
decoding on the Tanner graph of the LDPC code. To
ameliorate the complexity involved in decoding over
higher-order rings, we propose modified decoders whose
complexity and message size are reduced with a marginal
decrease in performance.

6) Simulation results show that the proposed scheme can
achieve: (1) rates close to the symmetric capacity for
given (h1, h2), and (2) frame error rates close to the out-
age probability under a block fading model for (h1, h2).

7) Simulation results also show that regular LDPC codes
over rings combined with an appropriate method for
choosing network coding maps offer performance better
than field-based schemes such as [12] and binary XOR-
based schemes.

The rest of the paper is organized as follows. Clustering
and network coding in a bidirectional relay are introduced
in Section II. The CSS coding scheme with LDPC codes
over rings and binary LDPC codes is described in Section III
along with the message-passing CSS decoder. The completion
of CPLS to construct a network coding map is discussed in
Section IV followed by LLR compression in the CSS decoder
in Section V. Simulation results are presented in Section VI
followed by concluding remarks.

II. CLUSTERING AND NETWORK CODING MAP

Bidirectional relaying between nodes A and C happens in
two phases - Multiple Access and Broadcast. In this section
we consider the multiple access phase, in which nodes A and
C are in transmit mode and the relay B is in receive mode.
Let A denote the modulation alphabet. If node A transmits a
symbol s1 ∈ A and node C transmits a symbol s2 ∈ A, the
received value at the relay is given by

y = h1s1 + h2s2 + zB , (1)

where zB is additive Gaussian noise.
The symbol h1s1 + h2s2 received at the relay belongs to

the received constellation

MB = {s(u, v) = h1u+ h2v : u, v ∈ A}.

The map s(u, v) : A2 →MB may be many-to-one, in general,
and can cause a collapsing of points in A2 depending on the
relative values of h1 and h2 and the modulation alphabet A.

A. Network coding map
Following [14] [15], we define a network coding map or

simply a network map f : MB → ABC (ABC is the
constellation used by the relay in the broadcast phase), which is
said to be valid if it satisfies the following three conditions: (i)
u can be uniquely computed given f(s(u, v)) and v, (ii) v can
be uniquely computed given f(s(u, v)) and u, and (iii) super-
imposed symbols in MB are mapped to the same symbol in
ABC . While (i) and (ii) are important for final decoding in
the broadcast phase at nodes A and C, (iii) is important for
successful network-mapped decoding at the relay. The network
map f is chosen based on the channel gains h1, h2. For every
u ∈ ABC , the cluster f−1(u) = {v ∈ MB : f(v) = u}
denotes the set of points in MB that are all network-mapped
to the same point in ABC .

One possible clustering and network map for 4-PAM are
illustrated in Fig. 2 for some fading states with ABC also set
as 4-PAM. In Fig. 2, the values in MB are shown below the
axis, while the network-mapped values f(·) are shown on top.
From Fig. 2, we see that the transmitted symbols are scaled,
summed and clustered by the network map before decoding
at the relay. Hence, the terminology Clustered-Scaled-Sum or
CSS decoding.

B. PAM/QAM constellations and integer residue rings
In this work, we consider the cases where the multiple

access phase constellation A is either the standard M -PAM
alphabet P(M) = {−(M − 1), . . . ,M − 3,M − 1} or the
M2-QAM alphabet Q(M2) = {u + iv : u, v ∈ P(M)},
where M is a power of 2.

For the broadcast phase, the size of the constellation needs
to be |ABC |. If A is the M -PAM alphabet, we choose the
broadcast constellation alphabet ABC to be a lowest-energy,
|ABC |-subset of the MBC-PAM alphabet P(MBC), where
MBC ≥ |ABC |. If A is M2-QAM, we choose ABC to be
a lowest-energy, |ABC |-subset of the M2

BC-QAM alphabet
Q(M2

BC), where M2
BC ≥ |ABC |.
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(e) Clustering for h1 = 3, h2 = 1

Fig. 2. Relay constellation and clustering for 4-PAM.

For the M -PAM or M2-QAM constellations, the network
map can be conveniently described using integer residue rings.
Let Zq = {0, 1, · · · q − 1} denote the ring of integers with
addition and multiplication performed modulo q. The one-to-
one map sP : ZM → P(M) with sP (a) = 2a − (M − 1) is
used to map symbol a ∈ ZM to the PAM alphabet P(M). The
map sP is illustrated in Fig. 2(a) for 4-PAM, where the ring
elements {0, 1, 2, 3} are shown on top and the corresponding
PAM alphabet values {−3,−1, 1, 3} are shown at the bottom.
The one-to-one map sQ : ZM [i] → Q(M2) with sQ(ax +
iay) = sP (ax) + isP (ay) = 2(ax + iay)− (1 + i)(M − 1) is
used to map ax + iay ∈ ZM [i] to the QAM alphabet.

Similar to sP , we define the one-to-one map s′P : ZMBC
→

P(MBC) for the relay transmit constellation ABC . Since sP
and s′P are one-to-one maps, any network map f : MB →
ABC is equivalent to a map between rings fM : Z2

M → ZMBC

by setting fM (a, b) = s′−1P (f(s(sP (a), sP (b)))). The map fM
is said to be a valid network map if it satisfies the following
three conditions analogous to the three conditions for the map
f : (i) Given a and fM (a, b), b can be uniquely determined,
(ii) Given b and fM (a, b), a can be uniquely determined, and
(iii) fM (a, b) = fM (a′, b′) if h1a + h2b = h1a

′ + h2b
′ for

a, b, a′, b′ ∈ ZM .
Similar to the M -PAM case, for the M2-QAM case, we

define a one-to-one map s′Q : ZMBC
[i] → Q(M2

BC). So, any
network map f :MB → ABC is equivalent to a map fMi :
ZM [i]2 → ZMBC

[i], and the criteria for validity for fM can
be readily extended to fMi as well.

For constructing a network map, we will equivalently design
an integer residue ring function fM or fMi satisfying the three
properties required for validity. Methods for such constructions
are given in [16] for some cases. We postpone the description
of our proposed methods for constructing valid network maps
to Section IV. In the next section, we assume that a valid
network map is available and proceed to describe our coding

scheme using LDPC codes.

III. LDPC CODES AND CSS DECODING

Low Density Parity Check (LDPC) codes are standard today
in many communication systems. LDPC codes over rings are
well-known for their performance in higher order modulation
over the point-to-point Gaussian channel [19]. In this work,
we employ LDPC codes, both binary and over integer residue
rings, for decoding the clustered-scaled-sum (CSS) of trans-
mitted symbols in a bidirectional relay. Next, the coding setup
with LDPC codes over the ring ZM is described for M -PAM
for simplicity. The extension to M2-QAM is briefly mentioned
later.

A. Coding setup for LDPC codes over rings
We target symmetric or equal rates of bidirectional relaying

from both A and C. Interestingly, only a single LDPC code
is used even though the channel gains h1, h2 are different.
Using nested codes, the same coding setup can be extended
to asymmetric rates. For simplicity, we describe only the
symmetric-rate case.
Multiple access phase: An (n, k) LDPC code C over the ring
ZM is used at both the nodes A and C for encoding messages.
Message vectors from nodes A and C are denoted m1 and
m2, respectively, where mi ∈ ZkM . The codewords at A and
C are denoted c1 = [c11 · · · c1n] and c2 = [c21 · · · c2n],
respectively, with cij ∈ ZM . After modulation at nodes A and
C, we have the symbol vectors si = sP (ci). The relay receives
a vector y whose i-th symbol is given by

yi = h1sP (c1i) + h2sP (c2i) + zBi, (2)

where zBi is additive Gaussian noise. The relay uses a valid
network map fM and attempts to decode to the vector cB =
[cB1 · · · cBn], where cBi = fM (c1i, c2i) ∈ ZMBC

, using a
message-passing decoder that is described in Section III-D. We
refer to this decoding as CSS decoding. The relay’s estimate
after CSS decoding is denoted ĉB . The multiple access phase
is illustrated in Fig. 3.

Encoder
Node B

Symbol
Mapper

Encoder
Node A

Symbol
Mapper

+ + CSS
Decoder

m2

m1

c2

c1

s2

s1

y ĉB

zB

Fig. 3. Multiple access phase.

Broadcast phase: The estimated cluster-index vector ĉB ∈
ZnMBC

is modulated to the vector s3 = s′P (ĉB) ∈ AnBC ,
and is broadcast by the relay. Note that there is no further
coding employed at the relay. As mentioned before, we choose
ABC to be a lowest-energy, |ABC |-subset of the MBC-
PAM alphabet P(MBC), where MBC is chosen such that
MBC ≥ |ABC |. The received vectors at nodes A and C
are denoted yA and yC, respectively, with zA and zC being
additive Gaussian noise vectors. The decoded vectors at nodes
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Fig. 4. Broadcast phase.

A and C are denoted ĉ2 ∈ ZnM and ĉ1 ∈ ZnM , respectively.
The broadcast phase is illustrated in Fig. 4.

The received values at A and C are

yAi = h1s
′
P (ĉBi) + zAi, (3)

yCi = h2s
′
P (ĉBi) + zCi, (4)

for 1 ≤ i ≤ n.
Decoding at A and C: Nodes A and C use a message-passing
decoder for the code C. Decoder at node A takes as input,
the probabilities P(c2i|yAi, c1i), while, at node C, the input
probabilities are P(c1i|yCi, c2i), 1 ≤ i ≤ n. Note that this is
standard decoding of LDPC codes over rings [19].

As remarked earlier, we are targeting an equal rate of
(k log2M)/2n bits per symbol from A to C and from C
to A. Secondly, only a single code C over the ring ZM is
used in both the multiple access and the broadcast phase of
the communication protocol for either encoding or decoding.
Next, we characterize the information-theoretic achievable rate
region of a two-way relay in which the relay does CSS
decoding. This is useful for comparisons with simulation
results.

B. Upper Bound on Achievable Rate Region
Let U , V be random variables corresponding to transmitted

symbols from nodes A and C, respectively, each chosen
uniformly at random from a transmit constellation A. The
received symbol at the relay is given by h1U+h2V , where h1
and h2 are gains of the channels AB and CB, respectively. Let
YB = h1U +h2V +ZB be the random variable corresponding
to the received value at the relay with ZB being indepen-
dent Gaussian noise. The relay uses a valid network map
f :MB → ABC and attempts to decode W = f(h1U+h2V ).

As shown in the appendix, the achievable region in the
MAC-phase is bounded on the outside by the region RMAC

defined as follows:

RMAC = {rx, ry : 0 ≤ rx, ry ≤ I(W ;YB)}. (5)

In the broadcast phase, to upper bound the achievable region,
we suppose that the relay transmits W . Under this assumption,
as shown in the appendix, the achievable rate region of the
broadcast phase is bounded on the outside by the region RBC
defined as follows:

RBC = {rx, ry ≥ 0 : rx ≤ I(YA;W |U), ry ≤ I(YC ;W |V )},
(6)

where YA = h1W + ZA and YC = h2W + ZC denote the
received values at A and C, respectively, with ZA and ZC
being independent Gaussian noise.

Let α ∈ [0, 1] be the fraction of channel uses for MAC-
phase, and (1 − α) the fraction for the broadcast-phase. The
achievable rate region with CSS decoding is bounded on the
outside by the region RCSS defined as follows:

RCSS = {RAC , RCA : RAC ≤ min{αR1, (1− α)R2},
RCA ≤ min{αR3, (1− α)R4},

(R1, R3) ∈ RMAC , (R2, R4) ∈ RBC}. (7)

Note that the evaluation of RCSS , can be done numerically
assuming suitable constellations for A, ABC and a network
map f .

C. Review of LDPC decoding over ZM
For completion and ease of future description, we first

describe a standard message-passing decoder for an LDPC
code over the ring ZM . Note that this decoder is the one
employed at nodes A and C in the broadcast phase. We will
be brief and refer the reader to [19] for details. We describe
the decoder in the probability domain, but there are equivalent
descriptions and implementations in the log domain.

We assume that encoding is done with the LDPC code C
over the ring ZM with parity-check matrix H . The Tanner
graph of H is a bipartite graph with two sets of nodes -
Variable nodes and Check nodes. The variable nodes represent
the columns of H , and the check nodes the rows. An edge
exists between a variable node Vi and check node Cj if the
(i, j)-th entry of H , denoted hij , has a non-zero value, with
this value being called the weight of that edge. Note that hij
will be assumed to be a multiplicatively invertible element or
unit in the ring ZM .

Let us consider transmission over an AWGN channel with
M -PAM modulation. The i-th received value yi is given as

yi = hsP (ci) + zi, 1 ≤ i ≤ n, (8)

where ci ∈ ZM , zi is additive Gaussian noise, and h is the
channel gain. The channel input to the variable node Vi is the
length-M probability mass function (PMF) p(0)i = [ Pr(ci =
a|yi) : a ∈ ZM ], which is computed from the received value
yi.

Decoding takes place iteratively with messages passed be-
tween the variable and check nodes. The message passed
between the variable node Vi and the check node Cj (in either
direction) is a length-M PMF [Pr(ci = a) : a ∈ ZM ]. The
following three steps are involved in each iteration of decoding:

1) At a variable node, the outgoing PMF along an edge is
computed as the element-wise product of all other in-
coming PMFs with suitable normalization. The incoming
PMF from the channel p(0)i is included at Vi, and, for the
first iteration, there are no other incoming PMFs.

2) Because of the weights associated with the edges, the
message vectors are permuted before and after every
check node operation. The permutation πij that maps
a ∈ ZM to hija (well-defined because hij is a unit) is



0090-6778 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCOMM.2015.2433293, IEEE Transactions on Communications

5

applied to the PMF from variable node Vi to check node
Cj , while π−1ij is applied in the reverse direction.

3) After the permutation, each check node imposes the parity
check constraint that all incoming variables need to add
to zero in the ring. Under this constraint, the outgoing
PMF along an edge from a check node is computed as
the one-dimensional discrete circular convolution of all
other incoming PMFs along the other edges.

After every iteration, the output estimate of the PMF of ci is
computed at Vi as the normalized, element-wise product of all
incoming PMFs. The decision ĉi is set to be the ring element
with maximum output PMF value.

D. CSS decoder over ZM
Clustered-Scaled-Sum (CSS) decoding at the relay is dif-

ferent from the standard decoding of LDPC codes described
above. Consider the multiple access phase, where we have

yi = h1sP (c1i) + h2sP (c2i) + zi, (9)

where cj = [cj1cj2 · · · cjn], cji ∈ ZM , j = 1, 2 are the
codewords transmitted, zi is additive Gaussian noise, h1, h2
are the channel gains, and yi is the received value.

In CSS decoding, the scaled sum, h1sP (c1i) + h2sP (c2i),
is decoded up to a cluster defined by the network map fM .
This is equivalent to estimating the transmitted pair c1i and
c2i in a way that pairs within a cluster resulting in the
same cBi = fM (c1i, c2i) need not be distinguished. The CSS
Decoder, as shown in Fig. 5, takes as input, the joint PMF
{Pr(c1i = a, c2i = b|yi)}ni=1 computed from the received
values {yi}ni=1 and gives an estimate of {cBi}ni=1.

CSS
Decoder

{Pr(c1i, c2i|yi)}ni=1 {ĉBi}ni=1

Fig. 5. Input and output of a CSS Decoder.

The message passed between the variable node Vi and check
node Cj is an M × M matrix, whose rows and columns
are indexed by the M elements of ZM . The (a, b)-th entry
is an estimate of the joint probability Pr(c1i = a, c2i = b).
So, basically, we perform joint message-passing decoding of
(c1i, c2i) in the Tanner graph.
Channel input: At variable node Vi, the channel input proba-
bility matrix is denoted S0, and its (a, b)-th entry is computed
as Pr(c1i = a, c2i = b|yi) using (9). This is a fairly straight-
forward computation and we skip the details.
Variable node update: At every iteration, the variable node
Vi receives joint PMFs S1, S2, . . ., Sd from the d (say)
check nodes connected to it. Assuming that these messages
are statistically independent, the outgoing message to the first
check node is computed as the element-wise product

S0 � S2 � S3 � · · · � Sd, (10)

which is normalized to ensure that the sum of all entries is
1. Note that the (i, j)-th element of A � B is AijBij . The
other outgoing messages are computed using products similar
to (10) with Si omitted for the i-th check node.

Reordering on edges: The columns and rows of a message ma-
trix S from variable node Vi to check node Cj are reordered to
account for the multiplication by hij ∈ ZM . The permutation
of the rows and columns is the permutation πij on ZM induced
by multiplication by the invertible element hij , and the element
at (a, b)-th location of S is moved to the (πij(a), πij(b))-th
location. In the reverse direction, the columns and rows of a
message matrix S from check node Cj to variable node Vi are
reordered with the permutation π−1ij .
Check node constraint: Since multiplication by hij is taken
into account in the reordering, the constraints enforced by
check node Cj are

∑
l∈N(j) c1l mod M = 0 and

∑
l∈N(j) c2l

mod M = 0, where N(j) denotes the set of variable nodes
connected to Cj . It is readily seen that the message matrices
are to be circularly convolved in two dimensions to enforce
these constraints.
Check node update: At every iteration, the check node Cj
receives messages S1, S2, . . ., Sd from the d (say) variables
nodes connected to it. The outgoing message to the first
variable node is computed as

S2 ⊗M S3 ⊗M · · · ⊗M Sd, (11)

where ⊗M denotes 2D circular convolution. The other outgo-
ing messages are computed using products similar to (11) with
Si omitted for the i-th variable node.
Decision: For a ∈ ZM , the probability that cBi equals a is
computed as

Pr(cBi = a) =
∑

(b1,b2)∈f−1
M (a)

[S0 � S1 � S2 � · · · � Sd]b1,b2

for a degree-d variable node vi and f−1M (a) = {(b1, b2) ∈
Z2
M : fM (b1, b2) = a} is the set of cluster points.

Stopping Criteria: If the estimated vector [ĉB1 · · · ĉBn] is
same in two consecutive iterations or if the total number
of iterations done equals a maximum number, decoding is
stopped.
Extension to QAM: For the case where M2-QAM constellation
is used in the multiple access and broadcast phases, an (n, k)
LDPC code over the ring ZM [i] is used with the nonzero
entries chosen as units in ZM [i]. The CSS decoder can be
readily extended to the M2-QAM case. The main difference
is that the messages are M2 ×M2 joint PMFs with rows and
columns indexed by elements of ZM [i]. The (a1+ib1, a2+ib2)-
th entry of the message matrix represents the joint probability
Pr(c1i = a1 + jb1, c2i = a2 + jb2).

In summary, we see that CSS decoding differs from standard
LDPC message-passing decoding in the following ways: (1)
The messages are joint PMFs of two transmit symbols - one
from node A and the other from node C, (2) The check node
constraints are on the individual transmit symbols, but are
enforced on the joint PMF during update, (3) The stopping rule
uses the network coding map as opposed to the correctness of
the individual codewords.

E. Binary LDPC codes and CSS Decoding
In this section we consider the use of binary LDPC codes

with higher order modulation with the relay doing CSS decod-
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ing. We begin by briefly explaining the coding setup assuming
that M -PAM constellation is used.

1) Coding setup for binary LDPC codes: Once again, we
target symmetric rates and a single binary LDPC code is used
for both phases of communication. The main modification in
the binary case is the mapping of bits into ZM -valued vectors
and vice versa.
Multiple access phase: An (n, k) binary LDPC code C is
used at both the nodes A and C for encoding messages.
The binary codewords at A and C are denoted b1 =
[b11 · · · b1n] and b2 = [b21 · · · b2n], respectively, with
bij ∈ Z2. Let us define an arbitrary bits-to-symbol map
eP : Zlog2M

2 → ZM . With this map, each block of
log2M bits within b1 and b2 is respectively mapped to
get ZM -valued vectors c1 = [c11c12 · · · c1ns ] and c2 =
[c21c22 · · · c2ns ], respectively, where ns = n/ log2M and
cij = eP ([bi(1+(j−1) log2M) · · · bi(j log2M)]), i = 1, 2 and
j = 1, 2, · · · , ns. We assume that n is a multiple of log2M .
The relay receives

yi = h1sP (c1i) + h2sP (c2i) + zBi, (12)

for 1 ≤ i ≤ ns, where zBi is additive Gaussian noise. The
relay uses a valid network map fM and attempts to decode to
the vector cB = [cB1 · · · cBns

], where cBi = fM (c1i, c2i),
using a CSS decoder (adapted to binary codes) that is described
in Section III-E2. The relay’s estimate after CSS decoding is
denoted ĉB .
Broadcast phase: The estimated vector ĉB is broadcast to the
nodes A and C in the broadcast phase after modulating to the
broadcast constellation ABC .
Decoding at A and C: The received values at A and C are

yAi = h1sP (ĉBi) + zAi, (13)
yCi = h2sP (ĉBi) + zCi, (14)

for 1 ≤ i ≤ ns, where zAi and zCi are additive Gaussian
noises at A and C, respectively. Nodes A and C use a binary
LDPC decoder for the code C. Decoder at node A takes as
input, the probabilities Pr(b2i|yAj , b1i), while at node C, the
input probabilities are Pr(b1i|yCj , b2i), where 1 ≤ i ≤ n and
j = d i

log2M
e provides the symbol index corresponding to i.

2) CSS Decoder with binary codes: The main modifications
to the CSS decoder over higher order rings are the computa-
tions corresponding to the mapping and demapping operations.
We will mostly emphasize the changes in our description of
the decoder for the binary case.

In the binary case, iterative message-passing decoder takes
place on the Tanner graph of the binary LDPC matrix. The
channel input to the variable node Vi and message passed
between the variable node Vi and check node Cj are 2 × 2
matrices, whose rows and columns are indexed by 0 and 1.
These matrices are estimates of the joint PMF of bits b1i and
b2i with the (β1, β2)-th entry being Pr(b1i = β1, b2i = β2).
Channel input: At variable node Vi, the channel input PMF is
denoted S0, and its (β1, β2)-th entry is computed as Pr(b1i =
β1, b2i = β2|yj), where j = d i

log2M
e is the symbol index of

the bit index i. This is computed by marginalizing the joint

PMF P(c1j , c2j |yj) using the bits-to-symbol map eP . The joint
PMF of (c1j , c2j) is, in turn, computed as

Pr(c1j = α1,c2j = α2|yj) =
p(yj |c1j = α1, c2j = α2)P (α1, α2)

p(yj)
, (15)

where P (α1, α2) = Pr(c1j = α1, c2j = α2) =
1
M2 for the first

iteration, and p(·) denotes the PDF as per (12). For subsequent
iterations, we use the estimated Pr(c1j = α1, c2j = α2) (17)
from the previous iteration.

The variable and check node updates involve element-wise
multiplication and the standard binary XOR rule for combining
probabilities, and we omit the details.
Decision: The output joint PMF of (b1i, b2i) is given by the
2× 2 matrix SB computed as

SB = S0 � S1 � S2 � · · · � Sd, (16)

for a degree-d variable node Vi with incoming PMFs S0

through Sd. Using the joint PMF of (b1i, b2i), the output joint
PMF of (c1j , c2j), 1 ≤ j ≤ ns, can be computed assuming
that the bits within a block are independent. That is,

Pr(c1j , c2j) =
j log2M∏

k=(1+(j−1) log2M)

Pr(b1k, b2k), (17)

where cij = eP ([bi(1+(j−1) log2M) · · · bi(j log2M)]), i = 1, 2.
This assumption is clearly sub-optimal, and results in loss of
performance as confirmed by simulation later.

Finally, for a ∈ ABC , the probability that cBj equals a is
computed as

P(cBj = a) =
∑

(b1,b2)∈f−1
M (a)

P(clj , ckj). (18)

IV. CONSTRUCTION OF NETWORK MAP

The choice of the network map f :MB → ABC depends
on the fading state (h1, h2). Each possible valid network
map f implies a specific clustering of the points of the
received constellation at the relay MB . Following [20], we
define minimum cluster distance, denoted df (h1, h2), as the
minimum of the cluster distances between all possible distinct
pairs of clusters. That is,

df (h1, h2) = min
s,s′∈MB :f(s)6=f(s′)

|s− s′|. (19)

Notice that the minimum cluster distance depends on f , h1
and h2. Clearly, for a given (h1, h2), it is best to pick a
valid network map that maximizes df (h1, h2), so that the
clusters can be decoded at the relay with low probability
of error. This maximization problem becomes complicated
very quickly with increasing constellation size because of the
difficulty in characterizing the validity of the network map
analytically. To obtain a simple and intuitive solution, we use
the following approach (that is later justified by simulations)
based on singular fading states.
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A. Singular fading states
The pair (h1, h2) is said to be a singular fade state [16]

if the size of the relay constellation MB is smaller than
the maximum possible, i.e. |MB | < |A|2. Note that, up to
scaling, singular fading states are finite in number for a given
constellation and can be found easily [16].

Up to scaling and sign, the singular fading states for M -
PAM correspond to h1 = l, h2 = m, where l,m ∈
{1, 2, . . . ,M − 1}. Therefore, for singular fading states, we
have MB = {lu +mv : u, v ∈ P(M)}. Letting u = sP (a)
and v = sP (b) for a, b ∈ ZM and simplifying, we can write

MB = {2(la+mb)− (l +m)(M − 1) : a, b ∈ ZM}. (20)

For M2-QAM, the singular fade states will correspond to h1 =
l = lx + ily , h2 = m = mx + imy , where lx, ly,mx,my ∈
{1, 2, . . . ,M−1}. Suppose M2-QAM symbols u = sQ(a) and
v = sQ(b) are transmitted from A and C. The relay receives
h1u+ h2v, which results in the constellation

MB = {2(la+mb)− (l+m)(1+ i)(M − 1) : a, b ∈ ZM [i]}.
(21)

In this work, we construct and store (at nodes A, B and C)
valid network maps for each singular fading state. For an
arbitrary fading state (h1, h2), the network map that maximizes
the minimum cluster distance among the ones constructed for
singular fading states is chosen. This search is finite and can
be done offline and the results stored in look-up tables, if
necessary. The chosen network map is assumed to be conveyed
to nodes A and C, subsequently, before the broadcast phase.

The use of singular fading states has a direct effect on cluster
distance. This can be seen from the example (1.12, 1) shown
in Fig. 2(c). Notice how the clustering for the nearby singular
fading state (1, 1) results in good minimum cluster distance for
the state (1.12, 1). If the fading state were far from a singular
fading state, then the minimum cluster distance is likely to be
good for many network maps. Therefore, clustering as per the
nearest singular fading state (based on Euclidean distance) is
an important heuristic for maximizing the minimum cluster
distance, and we use this heuristic in the construction of
network maps.

From now on, we focus on constructing valid network maps
for singular fading states.

B. Linear network maps
Specifying the network map in terms of the ring ZM

for M -PAM and the ring ZM [i] for M2-QAM results in
simplifications in some cases. For M -PAM singular fade states
h1 = l, h2 = m, if l and m are both odd, we readily see that

fM (a, b) = la+mb mod M (22)

is a valid network map. The conditions for validity are clearly
satisfied because odd integers have multiplicative inverses
modulo a power of 2. In addition to being a valid network
map, the fM in (22) is linear over ZM , which simplifies
decoders at the relay. However, if either l or m is even, we
need to construct network maps fM that are non-linear over
ZM . Examples of both the linear (h1 = h2, h1 = 3h2) and

the non-linear case (h1 = 2h2) are illustrated in Fig. 2(b,d,e)
for 4-PAM.

We note that, by considering rings of higher size (ZR, R >
M ), we can construct linear network maps for all singular
fading states [21]. We also need R to be prime to ensure that
the network map is valid. We may still need to consider non-
linear network maps if it is required that the number of clusters
in the received constellation at the relay, MB , is to be kept
minimum.

For M2-QAM singular fade states h1 = l, h2 = m with
l,m ∈ ZM [i], consider the ZM [i]-linear map

fMi(a, b) = la+mb mod M (23)

with multiplication and addition performed over ZM [i]. The
above linear map clearly satisfies the validity conditions if l =
lx + ily and m = mx + imy are invertible in ZM [i]. This is
true, whenever l2x+ l

2
y and m2

x+m
2
y are invertible modulo M .

Since M is a power of 2, we see that l and m are invertible
in ZM [i] and fMi in (23) is a valid network map whenever
l2x+ l

2
y and m2

x+m
2
y are both odd. However, if either of these

are even, a non-linear (in ZM [i]) network map fMi needs to
be used at the relay.

So, we see that, for a subset of singular fading states, a
simple ring-linear network map is valid. We now move on to
the more general case using latin squares.

C. Network maps using latin squares
The use of latin squares in the construction of network map

for bidirectional relaying was suggested in [20]. In general,
construction of a valid network map for a singular fading
state reduces to completing a Constrained Partially-filled Latin
Square (CPLS) [20]. Next, we define latin squares and describe
its relevance for network map construction. Following this,
we suggest methods for constructing a CPLS and for its
completion to a latin square.

1) Latin squares in bidirectional relaying: A latin square of
order n is a set of n×n cells. Each cell is identified using its
row and column index, and has an associated value or entry
in it. An entry can occur not more than once in any row or
column.

Consider a bidirectional relaying setup in which nodes A and
C use the constellation A during the MAC phase. The received
constellation MB and the network map f :MB → ABC can
be associated to an order-|A| latin square with the rows and
columns indexed by the points of A. The row and column
index of each cell corresponds to a symbol pair transmitted
from nodes A and C, respectively. The entries of the latin
square cell indexed by (u, v) is the network-mapped value
f(s(u, v)) ∈ ABC (we can equivalently choose the entries
from the set {0, 1, · · · |ABC | − 1}, which has a one-to-one
map with the elements of ABC). By the conditions of validity
of the network map, the above is readily seen to be a latin
square.

Given a singular fading state (l,m), we consider the problem
of constructing a valid network map as a latin square. We
will start with an empty order-|A| square and start filling it
with integer values starting from 0 such that a valid network
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map is obtained. After the construction, we readily see that
the number of distinct entries is equal to |ABC |, the size of
the broadcast transmit constellation. So, an important goal in
the construction is that the size of the set of entries for the
latin square should be kept to a minimum. Since the network
map needs to be valid, symbol pairs from A and C (u1, v1)
and (u2, v2) resulting in the same relay constellation value
s(u1, v1) = s(u2, v2) should be assigned the same network-
mapped value. In terms of latin squares, the cells (u1, v1) and
(u2, v2) should be constrained to have the same entry. So, the
construction of a latin square corresponding to a valid network
map has two steps:

1) Construction of a Constrained Partially-filled Latin
Square (CPLS).

2) Completion of CPLS to a full latin square.
From the literature, it is readily seen that completion of
partially-filled latin squares and other similar problems are
quite difficult [22]. Specifically, the general problem of com-
pleting a partially-filled latin square is known to be NP-
complete. So, we do not obtain provably optimal algorithms for
the above constructions. In most cases, our approach is to use
randomized algorithms and repeat them for a sufficient number
of times, and we have found this approach to be effective.

2) Construction of CPLS: For a given singular fading state,
we construct the ordered set of subsets L = {Si}qi=1, where
Si ⊂ A2 are sets of points that need to be network-mapped
to the same value, i.e. for (u1, v1), (u2, v2) ∈ Si, we have
s(u1, v1) = s(u2, v2). Also, these sets are ordered such that,
|S1| ≥ |S2| ≥ · · · |Sq| > 1. Note that we consider sets Si that
have at least two or more points. Cells corresponding to points
in each set Si need to be filled (as ordered in L) with the same
entry chosen from {0, 1, · · · q−1} with the number of distinct
entries kept to a minimum.

We have employed a simple randomized strategy for this
construction and found it to be effective. We proceed in the
order i = 1, 2, 3, . . .. For i = 1, fill the cells in S1 with 0. For
the cells corresponding to Si, one of the previous entries is
chosen at random and accepted if the latin square conditions
are not violated. If violated, we proceed to the next available
new entry from {0, 1, . . . , q − 1}. This procedure is repeated
for a sufficiently large number of times and the CPLS with
minimal entries is retained. For good results, proceeding in
the order of decreasing |Si| is observed to be important.

3) Completion of CPLS to a latin square: We describe
two methods for completing the CPLS to a Latin Square.
The first method is a simple extension of the method used
for constructing the CPLS. The second method is based on
weighted matching on bipartite graphs. In cases where most of
the cells of CPLS are filled, both the methods perform equally
well in attempting to complete to a latin square with minimum
number of distinct entries. In other cases, the second method
gives better results.

Method 1: While constructing a CPLS, we considered L =
{Si}qi=1 such that |Si| > 1, i = 1, 2, · · · q. That is, only the
sets |Si| with at least two or more points were considered. If
we also include the sets that have |Si| = 1 , the construction
would lead to a latin square which is completely filled. That is,

we consider L = {Si}q
′

i=1 such that |Si| ≥ 1, i = 1, 2, . . . , q′.
The cell entries are chosen from {0, 1, · · · , q′ − 1}, and we
repeat the randomized construction retaining the latin square
with minimum number of entries.

Method 2: In the second method, after the construction of a
CPLS, we attempt to complete the partially-filled latin square
row-wise, starting from the first row. It is easy to see that
filling cells in a row with constraints on the possible values
for each cell is similar to a problem of matching in a bipartite
graph, with the left vertices representing the cells and the
right vertices representing the possible entries. Each left vertex
representing a cell is connected to a right vertex, if it represents
a possible entry for that cell.

To minimize the number of distinct entries, the edges are
given weights. Suppose we have completed filling of the
first r − 1 rows and currently at the r-th row. The edges
connected to already used entries till the (r − 1)-th row are
given a lower weight and rest of the edges are given a higher
weight. By performing minimum-weight bipartite matching,
we give a higher preference to reusing entries and obtain latin
squares with minimum number of distinct symbols. If there
are multiple minimum-weight matchings for a row, we sample
a matching at random with uniform probability [23]. If there
are no matchings, the attempt to complete fails.

The whole process is run as a randomized algorithm starting
from row 1 with an initial number of distinct entries, which
we take to be |A| typically. After several attempts, if the
completion fails, the number of distinct entries is increased
and the randomized algorithm is run again. It is clear that this
randomized algorithm will eventually succeed. The steps of
the second method are summarized below.

1) Initialize the set of entries to be {0, 1, 2, . . . , l − 1} with
l = |A|. Set r = 1.

2) For row r, construct a bipartite graph G = (V1, V2, E),
where the left vertices V1 = {1, 2, . . . ,m} represent
the vacant cells in row r and the right vertices V2 =
{0, 1, . . . , l−1} correspond to entries. The edge (i, j) ∈ E
only if j ∈ Pri, where Pri, the set of possible en-
tries for the i-th vacant cell, is the set-difference of
{0, 1, 2, . . . , l − 1} and the set of entries above the i-th
vacant cell.

3) Assign weight w1 to the edges (i, j) ∈ E, if j is used in
rows 1 through r − 1. Else, assign weight w2.

4) If a matching exists, sample a minimum-weight matching
at random, say using the method suggested in [23].
Increment r and go to step (2).

5) If a matching does not exist, reset r = 1 and increment
number of attempts. If maximum attempts have been
reached, increment l. Go to step (2).

The number of attempts depends on the size of the constel-
lation A which is used at nodes A and C. For a 4-PAM
constellation, we have used w1 = 1 and w2 = 2 with 1000
attempts. For 16-QAM, we use w1 = 1, w2 = 2 with 50000
attempts for good results.

D. Network map construction for 16-QAM
Now, we provide results for network map construction using

latin squares for 16-QAM constellation. We have 388 singular
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TABLE II. LATIN SQUARE CONSTRUCTED FOR h2
h1

= 2+i4
2+i6

= 0.7− i0.1 FOR 16-QAM.

13 12 9 6 5 15 4 14 16 7 11 10 8 2 1 3
1 7 2 14 12 11 5 16 13 10 9 8 15 6 3 4
11 10 14 8 1 13 9 4 2 16 12 15 3 5 6 7
8 15 12 11 2 5 16 7 3 6 10 14 1 4 13 9
16 13 15 1 11 9 10 2 6 5 14 3 12 7 4 8
4 14 13 2 8 16 15 3 7 12 5 1 9 10 11 6
15 8 10 16 3 12 13 6 1 14 4 7 2 9 5 11
3 9 16 10 4 14 11 15 5 2 1 12 6 8 7 13
12 16 5 3 6 10 7 1 15 11 8 2 4 13 9 14
2 1 3 4 16 7 12 5 11 9 15 6 13 14 8 10
6 3 4 13 7 2 14 11 8 15 16 9 5 1 10 12
5 6 7 15 9 8 2 12 10 4 3 13 11 16 14 1
14 2 1 7 10 4 3 8 9 13 6 5 16 11 12 15
7 4 8 9 13 3 6 10 12 1 2 11 14 15 16 5
10 11 6 5 14 1 8 9 4 3 13 16 7 12 15 2
9 5 11 12 15 6 1 13 14 8 7 4 10 3 2 16

fading states for 16-QAM, of which 44 cases allow for a
valid linear network map. Following the procedure discussed in
Section IV we obtain a valid network map for each singular
fading state. The results are summarized in Table I. We see

TABLE I. STATISTICS OF NETWORK MAP FOR 16-QAM.

Number of clusters |ABC | Number of network maps
16 163
17 183
18 24
19 18

that out of the 388 network maps constructed, 346 maps
have a broadcast constellation size |ABC | less than or equal
to seventeen. With reference to the procedure outlined in
Section IV, we used 50000 attempts for the construction with
weights w1 = 1 and w2 = 2. Table II shows a latin square
that is constructed for 16-QAM constellation for the singular
fading state h2

h1
= 1+2i

1+3i = 0.7 − i0.1. The network map
constructed with this latin square groups points of the received
constellation at the relay to form 16 clusters.

Next, we compare the effectiveness of Methods 1 and 2 in
completing a CPLS to a latin square with minimum number of
distinct entries. We consider the CPLS that are constructed for
some of the singular fading states of a 16-QAM constellation.

We group the CPLS into different sets such that all the CPLS
in a set have the same number of entries. The CPLS in each set
are completed to latin squares using both the methods. For each
set, we compute the average of the number of distinct entries in
the completed latin squares. This is done for both the methods.
The results are listed in Table III. The first column lists the
number of entries in CPLS. The second and third column lists
the average number of distinct entries in the completed latin
squares for Method 1 and Method 2, respectively. For instance,
the first row corresponds to the set of CPLS with 16 entries. To
complete these CPLS to a latin square, Method 1 on an average
requires 17.875 distinct entries, while Method 2 on an average
requires 16.125 distinct entries. From Table III we infer that, as
the number of entries in the CPLS increases, the gap between
the two methods in terms of the number of distinct entries
required decreases. Even though Method 1 is computationally
less intensive than Method 2, for the case when most of the
cells of CPLS are filled, the number of distinct entries required

on average for Method 1 is same as that for Method 2.

TABLE III. COMPARISON OF METHOD 1 AND METHOD 2

No. of entries Average no. of distinct Average no. of distinct
in CPLS entries required, method 1 entries required, method 2

16 17.875 16.125
48 17.8929 16.6429
112 18 17
136 18 17.375
192 19 18.5
232 17 17
240 16 16

V. LLR COMPRESSION IN THE CSS DECODER

In typical implementations, storage space of edge messages
dominates the power and area of LDPC decoders. For the
CSS decoder of Section III-D, the message contains M2

probabilities, which is unmanageable in implementations. Even
for the LDPC decoders over ZM that are used in nodes
A and C in the broadcast phase, the message contains M
probabilities, which is a major source of complexity. Therefore,
it is important to consider sub-optimal implementations of
decoders that use smaller message lengths.

A. Simplifications from linear network map
For cases, where the singular fading state admits a linear

network map, such as the cases described in (22) and (23),
the CSS decoder reduces to an LDPC decoder over the ring
because the target codeword [cB1 · · · cBn], being a linear
combination of the codewords [c11 · · · c1n] and [c11 · · · c1n],
belongs to the LDPC code C. Since the network map chosen
for a non-singular fading state is that of a nearby singular
fading state, several fading states admit a linear network map,
and the message length reduction from M2 to M is effective
for several cases.

For fading states that do not admit a linear network map over
the ring (such as h1 = 2h2 for 4-PAM), the number of message
probabilities remains at M2. Also, LDPC decoders over ZM
involve M message probabilities, and it is desirable to reduce
this to 2, which is the number for messages of binary LDPC
codes. Note that two binary message probabilities adding to 1
reduce to one log likelihood ratio (LLR).
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B. Message compression

In the message-passing decoders over rings (both CSS de-
coding and decoding LDPC codes), the message probabilities
from a variable node to a check node tend to be sparse.
However, because of the convolutions at the check node, the
message probabilities out of the check node are more evenly
distributed. To accommodate this difference, we suggest the
following generic compression techniques at the variable node
and check node.
Variable node messages: For messages from the variable node,
the top two message probabilities, p0 and p1 are retained,
scaled to p0/(p0 + p1) and p1/(p0 + p1) so that they add to
one, and the other probabilities are set to zero. Note that this
results in a single LLR message along with a binary vector to
indicate the positions of the top two probabilities. The binary
vector will be of length at most 2 log2M for LDPC decoding
and length at most 4 log2M for CSS decoding.
Check node messages: For messages from the check node, the
top two message probabilities are retained in proportion, and
all the other message probabilities are assigned a fixed value pc
with the constraint that the sum of all probabilities is equal to
1. This requires a message with two probabilities and a binary
vector to indicate the positions of the top two.

This method could be generalized to consider the top J
variable node and check node messages. Accordingly, we also
need a binary vector to indicate its positions.

VI. SIMULATION RESULTS

In simulations, we use 4-PAM and 16-QAM constellations
for illustration with suitable normalizations for unit energy. For
coding, we use a (3, 18) regular LDPC code of block length
n = 3600 symbols chosen from Z4 and Z4+iZ4, respectively,
for 4-PAM and 16-QAM constellations.

The construction of parity check matrix H is done as
suggested in [19]. First we construct a binary parity check
matrix for a (3, 18) regular code. Then we replace the non-zero
entries of H with multiplicatively invertible elements from
the rings Z4 or Z4 + iZ4 based on the modulation alphabet.
Encoding at nodes A and C using the matrix H is done as
suggested in [24]. Though LDPC codes with optimized degree
distributions are likely to perform better than regular codes,
we find, as described below, that regular codes provide good
performance at SNRs close to capacity outer bounds.

We denote the SNR of link AB as SNR1 = |h1|2/σ2
N and

that of link BC as SNR2 = |h2|2/σ2
N . The rate from A to C is

denoted RAC and the rate from C to A is denoted RCA. We
note that these rates are same as RAC , RCA used in equation
(7). In our coding schemes, we typically set RAC = RCA.
Since the LDPC code is a rate-5/6 code, with 4-PAM constel-
lation we have a target rate RAC = RCA = (5/6)×2/2 = 5/6.
Similarly, for 16-QAM constellation we have a target rate of
10/6.

For obtaining capacity outer bounds on the rates
(RAC , RCA), we follow [25] [26] and use the following

equations:

RAC , RCA ≤ C(SNR1)C(SNR2)

C(SNR1) + C(SNR2)
, (24)

RAC +RCA ≤ C(min(SNR1,SNR2)), (25)

where C(SNR) denotes the maximum capacity of an AWGN
channel over all possible transmit constellations used in either
the MAC or broadcast phase. The capacity outer bound for
decode-and-forward strategy is compued as in [25]. The capac-
ity outer bound with CSS decoding at the relay is computed
as discussed in Section III-B.

A. Singular fading states
To validate our approach, we first consider singular fading

states. In Fig. 6, we show a plot of the final symbol error rate
at node A versus SNR1 with 4-PAM constellation at the input
for the singular fading states h1 = h2 with the network map
as given in Fig. 2(b), and for h1 = 3h2 with the map in Fig.
2(e). Since the network map is linear for h1 = h2, we use an
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Fig. 6. Symbol Error Rate for 4-PAM, Dashed: h1 = h2, Solid: h1 = 3h2.

LDPC decoder over the ring Z4 at the relay. For the h1 = 3h2
case, since the network map is non-linear, we employ the joint
CSS decoder. At a symbol error rate (SER) of 10−4, the CSS
decoder is about 2-2.5 dB from the capacity bound, which is
shown as a vertical line, and is computed as the minimum
SNR1 that achieves the rate pair (RAC , RCA) = (5/6, 5/6)
as per the capacity bounds given by (24) and (25). For the
message-compressed decoder, we chose top-2 messages and
the value pc = 0.08 (see Section V-B). The LLR-compressed
decoder suffers a loss of only about 0.5 dB. The error rates at
node B show similar behavior to that of node A.

We compare the symbol error rate of our scheme employing
CSS decoding at the relay with the following two schemes:
(1) Bit-Interleaved Coded Modulation (BICM) with XOR
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decoding at the relay, (2) Encoding over the field GF(4) with
the relay decoding the best scaled sum of transmitted symbols
over this field [12]. These methods fail at the relay, as seen
from the plot. This is because the XOR and GF(4) network
maps have zero cluster distance for h1 = h2 and h1 = 3h2.

Note that all these simulations have been carried out with
regular LDPC codes and at a moderate block length of
3600. Longer block lengths and codes with optimized degree
distributions have the potential to provide near-capacity per-
formance.

B. Fading channels and outage

We now consider the setting where the links AB and BC
are considered as Rayleigh block fading channels. The chan-
nel gains follow a complex Gaussian distribution, h1, h2 ∼
CN (0, σ2

h). The average Signal-to-Noise ratio is computed
as SNRi = E(|hi|2)

σ2
N

=
σ2
h

σ2
N
, i = 1, 2. Our proposed scheme

employs CSS decoding at the relay with an LDPC code over
the ring of length 3600. For each fading state, the network
map is chosen to be the one among those for all singular
fading states with the best cluster distance. For comparison,
we consider the following schemes:

1) CSS decoding at the relay with the search for network
maps restricted to only those that are linear over the
corresponding ring. (This simplifies the decoder at the
relay.)

2) Coding and network map over the field F16 [12].
3) Decode-and-Forward strategy.
4) CSS decoding at the relay with binary codes.
5) BICM with XOR decoding at the relay.

In Fig. 7, we plot the final frame error rate at node A versus
the average SNR with 16-QAM constellation at the input.
We now compare the performance of the above schemes at
a FER of 10−2. We see that the LDPC CSS scheme over
rings (legend: CSS over ring) is at least 3 dB better than
all other schemes. The clustering scheme that employs only
linear network maps at the relay (legend: CSS ring-linear) is
of interest to us since we can use a LDPC decoder at the relay
instead of a joint decoder. This scheme is around 3 dB poorer
when compared to the joint CSS decoding scheme. This is
because, in many fading states, non-linear network maps offer
higher minimum cluster distance for the received constellation
at the relay. The avoidance of non-linear network maps causes
a reduction in performance in the multiple access phase. We
compare with the scheme [12], where encoding at nodes A and
C are done over the field F16 (legend: GF(16) encoding). Here
the relay attempts to decode all possible linear combinations
of transmitted symbols over the field F16, and the decoding
complexity at the relay is high. However, the performance
is similar to that of the ring-linear network map case with
a code over the ring, which decodes only one network map.
The Decode-and-Foward (DF) scheme attempts to decode both
the transmitted symbols from nodes A and C (legend: Decode-
Forward). While the decoding complexity at the relay is similar
to the proposed CSS decoding scheme, DF is about 5 dB
away. The scheme with CSS decoding at the relay using
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Fig. 7. Comparison of different schemes with 16-QAM, AB,BC being
Rayleigh block fading channels.

binary codes (legend: CSS binary code) is about 5.5 dB away
from the scheme with CSS decoding using code over the ring
Z4 + iZ4. One of the reasons for the degraded performance is
the independence assumption of bits, which is used by the CSS
decoding algorithm on binary codes (used in (17)). BICM with
XOR decoding at the relay (legend: BICM with XOR) has the
least decoding complexity at the relay since a binary LDPC
decoder is used, but is about 9 dB away from the proposed
CSS decoding scheme. In many fading states, the network map
based on bit-wise XOR may lead to a clustering of the received
constellation at the relay that has zero or small minimum
cluster distance. This leads to a poor decoding performance
in the multiple access phase. So, the overall error rate is poor.

Also, the outage bound is plotted for reference. This is
calculated as the probability P((RAC , RCA) /∈ RB), where
RB is the region enclosed by the outer bounds (24), (25).
At each SNR, we generate random values for the channel
gains h1 and h2 following the Complex Gaussian distribution
CN (0, σ2

h), and the corresponding rate region enclosed by the
outer bounds, RB , is computed. Since we use a rate-5/6 code
with 16-QAM constellation, RAC = RCA = 5

6 × 4× 1
2 = 10

6 .
Outage is characterized as the event (RAC , RCA) /∈ RB . The
proposed CSS decoding scheme is around 1 dB away from the
outage lower bound for a wide range of SNRs.

In Fig. 8, we compare the performance with the following
decoders (at relay) of varying levels of complexity.

1) Joint CSS decoder without message compression
2) Joint CSS decoder with top-4 message compression
3) Joint CSS decoder with top-2 message compression
4) Linear network maps and LDPC decoder with top-4

message compression
The frame error rate versus the average SNR is plotted with
16-QAM constellation at the input when links AB and BC are
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Fig. 8. Comparison of decoders with varying levels of complexity with
16-QAM, AB,BC being Rayleigh fading channels.

considered as Rayleigh block fading channels. The error rates
of message-compressed CSS decoder with top-4 messages is
close to that of the optimal CSS decoder at high SNRs. This is
because, at high SNRs, the received values at the relay during
the multiple access phase ((12)) are numerically close to values
of the received constellation points (in MB) corresponding to
the symbol pairs transmitted at nodes A and C. So, in the
optimal CSS decoder, only few message probabilities of the
message matrices S1, S2, · · · assume high values. Choosing
the top 4 messages is usually sufficient at high SNRs. But,
choosing only top-2 messages incurs a loss of about 5dB in
comparison with the full-message CSS decoder. Using only
ring-linear network maps and a LDPC decoder with top-
4 messages at the relay, there is a loss of about 5.5dB in
comparison with the full-message CSS decoder.

C. Rate Region
In Fig. 9, we plot the rate regions for QPSK and 16-QAM

constellations for the singular fading states h2 = ih1 and
h1 = ih2, respectively. The achieved rate pairs (RAC , RCA)
at SER = 10−4 are indicated at SNR1 = 6.3 dB for QPSK
and SNR1 = 12.8 for 16-QAM. For QPSK, we use the
ring Z2[i]. Also shown are outer bounds for Decode-Forward
(DF) [25], the CSS scheme from (7) and an overall outer
bound computed from ((24)- (25)). In the case of 16-QAM,
the singular fading state allows for a ring-linear network map,
and we used a message-compressed LDPC decoder with top-4
messages for the achieved rate. We see that for these specific
fading states, the achieved rate pair is outside the DF outer
bound. Also, notice that the achieved rate point is close to the
CSS scheme outer-bound and the overall outer bound. This
provides further justification to the good outage performance
of the CSS scheme under fading conditions.
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Fig. 9. Rate region for QPSK, h2 = ih1, SNR1 = 6.3 dB and 16-QAM,
h1 = ih2, SNR1 = 12.8 dB.

VII. CONCLUSION

In this work, we proposed and studied the use of a Clustered-
Scaled-Sum (CSS) coding scheme using LDPC codes over
rings for bidirectional relaying with network coding and higher
order modulation. We designed message-passing decoders suit-
able for CSS decoding at the relay. For network coding at the
relay, we suggested a method for completing a Constrained
Partially-filled Latin Square (CPLS) to a latin square with
minimal number of entries. In the coded bidirectional relay
setup, for an arbitrary channel state, we choose the network
coding map as the one corresponding to a singular fading state
that maximizes the minimum cluster distance.

We showed by simulation that the achieved rate points are
close to the boundary of a capacity region outer bound. Further,
the performance of the proposed CSS coding scheme with
LDPC codes over rings is close to an outage probability lower
bound under a block fading model and is significantly better
than other schemes based on codes over fields and binary
codes with BICM. The improvement in performance is mainly
because we allow for the use of non-linear network maps and
joint decoding over rings at the relay. To ameliorate complexity
of joint decoding over rings, we propose LLR compression
methods that reduce message size with marginal reduction in
performance.

APPENDIX: ACHIEVABLE RATE REGION

We use standard notation and denote random vectors as
Xn = [X1 X2 · · ·Xn] with Xi distributed iid according to
a generic random variable X .

Let the vectors Un and V n transmitted from nodes A and C
in the MAC phase be selected from codebooks of rate RU and
RV , respectively. Let f be the network map, and let Wi =
f(h1Ui + h2Vi) be the network-mapped cluster index. The
codebooks for Un and V n induce a codebook for Wn, whose
rate is denoted RW . A precise calculation of RW is difficult, in
general, and involves the structure of the codebooks and the
network map. However, RW clearly satisfies the inequalites
RW ≥ RU , RW ≥ RV . Even though Wn is not directly
transmitted, one can construct an equivalent channel where
W is modulated into the relay constellation h1U + h2V and
transmitted over an AWGN channel as considered in [26]. So,
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the decoding of W is successful if

RW ≤ I(W ;YB), (26)

where Y nB is the random vector received at the relay B. Using
the inequalities RW ≥ RU , RV , the achievable rate region in
the MAC phase is seen to be bounded on the outside by the
region RMAC defined in (5).

To get upper bounds for the broadcast phase, we assume
that the relay knows and transmits Wn. The received symbols
are YA = h1W + ZA and YC = h2W + ZC . We model the
communication from B to A as an equivalent channel with
state known at the receiver. In the equivalent channel, V is the
transmitted symbol, and U is the channel state, which modifies
the transmitted symbol to W = h1U+h2V . The channel state
U is known at A. Using the well-known expression for capacity
of channel with state known at the receiver [27], we get the
outer bound RV ≤ I(V ;YA|U). Now,

I(V ;YA|U) ≤ I(V,W ;YA|U)

≤ I(W ;YA|U) +H(V |U,W )

≤ I(W ;YA|U),

where the last expression follows because H(V |U,W ) = 0 by
the condition on the network map.

Using a similar model for the communicaiton from B to C
as well, we get the upper bound in (6) for the broadcast phase.
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