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Abstract—We consider all-cast and multicast flow problems
where either all of the nodes or only a subset of the nodes may
be in session. Traffic from each node in the session has to be sent
to every other node in the session. If the session does not consist
of all the nodes, the remaining nodes act as relays. The nodes
are connected by undirected links whose capacities are indepen-
dent and identically distributed random variables. We study the
asymptotics of the capacity region (with network coding) in the
limit of a large number of nodes, and show that the normalized
sum rate converges to a constant almost surely. We then provide
a decentralized push–pull algorithm that asymptotically achieves
this normalized sum rate without network coding.

Index Terms—All-cast, broadcast, Erdős–Rényi random graph,
flows, matching, multicast, network coding, random graph, Steiner
tree, tree packing.

I. INTRODUCTION

I N this paper, we investigate the capacity of all-cast andmul-
ticast sessions over random link-capacitated graphs. Two

questions motivated us to study these problems in the context
of random graphs.
1) While it is known that network coding in general provides
a large coding advantage over multicast flows in directed
graphs, Li et al. [1] have shown that the coding advantage
in undirected graphs is upper bounded by 2. In some spe-
cific topologies, a tighter upper bound is known [2]. How-
ever, several simulation experiments have shown nearly
no coding advantage for some class of random undirected
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graphs [3]. Is there a provable statement that there is negli-
gible multicast coding advantage for a rich class of random
undirected networks?

2) If we stick to the domain of flows (with duplication), as we
will soon see, optimal all-casting and multicasting lead to
tree and Steiner tree packing problems, respectively.While
packing of trees is known to be easy (see [4]–[6]), Steiner
tree packing is known to be hard [7]. Due to its application
in multicasting over wired networks and in VLSI layout
optimization, practitioners and theorists have over many
years provided hardness results, heuristics, and approxima-
tion algorithms (see [7]–[11]) Are there “quick-but-dirty”
(terminology from [12]), decentralized, scalable, yet near-
optimal algorithms for all-casting and multicasting over
a rich class of random undirected networks? An answer
to this question is of obvious value in the context of live
streaming of popular events to a large audience.1

In this paper, we provide affirmative answers to both these
questions. We begin by making precise what we mean by all-
cast and multicast.
All-cast: Consider a setting where there are nodes, all of

which are engaged in a conference over a wired network. Each
node has data that need to be made entirely available over the
network to each of the other nodes in a simultaneous
fashion. (To be more precise, this is a multiple all-cast problem.)
The data can be split, or routed, or coded, or transmitted in any
combination thereof, so long as all nodes eventually get the in-
formation. The underlying complete undirected graph on ver-
tices is capacitated: each undirected link has capacity sam-
pled independently and identically from a distribution . An
all-cast information flow assignment is said to be feasible if for
every link, the net (possibly coded) flow over the link (summed
over both directions) respects the link’s capacity constraint. For
each feasible flow assignment, let be the bit rate of traffic sent
by node to each of the other nodes. We address the question
of the set of all achievable rate tuples in the asymp-
totics of a large number of nodes . As we shall soon see, this
problem is closely related to packing of disjoint spanning trees
in a link-capacitated network with integer capacities. Minor ex-
tensions of some previous results readily yield that the achiev-
able rate region is almost surely (a.s.)

(1)

1On 14 October 2012, an Austrian skydiver Felix Baumgartner broke an ex-
isting record for the highest skydive; there were more than eight million con-
current livestreams of this event on the YouTube video distribution service.
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where the expectation is of a random variable having dis-
tribution . The linear programming (LP) formulation of this
problem is given in Section II, and the proof of (1) is given
in Sections III (converse) and IV (achievability). Our proof of
achievability is via a combination of “push” and “pull” that sug-
gests a decentralized implementation. Section V contains some
estimates needed to establish the correctness (with high proba-
bility) of the push–pull algorithm. Section VIII deals with the
case when the link probabilities vanish, but not too quickly.
It is known that network coding does not yield any coding ad-

vantage in all-cast settings [1], and thus, we have an asymptotic
characterization of the all-cast capacity region.
Multicast: We next address a more general setting with

only a subset of nodes in the multicast session, where
and . Data from each of the

nodes have to reach every one of the other nodes.
The remaining nodes serve as relays. This is therefore
a problem of multiple multicast among common session nodes.
Again, in a link-capacitated framework where each link is
independent and identically distributed (i.i.d.) with distribution
, we are interested in the set of all achievable rate tuples

in the asymptotics of a large number of nodes .
We demonstrate that the capacity region is almost surely

(2)

The LP formulation of this problem is in Section II, proof of
the converse is in Section III, and proof of achievability is in
Section VII. Here too, our proof of achievability is via a decen-
tralized push–pull algorithm. Section VI is a digression to study
single-commodity flows over random networks and develops
the ingredients necessary to establish the correctness (with high
probability) of the push–pull algorithm.
Our achievability proofs are based on flows (allowing for

duplications) and thus do not employ network coding. In par-
ticular, they establish that the coding advantage from network
coding in multicast settings, which is the ratio of the maximum
achievable rate with network coding and the maximum achiev-
able rate using flows (with duplication), is as the number
of nodes . As the rate achievable without network
coding is linear in the number of nodes , the maximum gain to
be had from network coding is at best which is sublinear
in the number of nodes. Schemes very similar to our push–pull
algorithm have been proposed and are being used over the in-
ternet for content distribution in peer-to-peer networks. See [13,
Sec. 1–2] for an excellent survey of such techniques. Our work
proves that a version of it is asymptotically optimal for a rich
class of random networks.

II. LP FORMULATION

A. Random Graph Models

We are given a countable collection of i.i.d. random variables
where each element has distribu-

tion on . We then obtain a sequence of graphs, denoted

, where for each , the graph is the complete
graph on the vertex set along with the collection
of all links. Each link with has link ca-
pacity . Suchmodels are appropriate in settings where nodes
are statistically identical in their connections, capacities, and in-
terests. Even in settings where such models are not directly ap-
plicable, their tractability yields solutions that provide insights
to network designers.
Later on, we will have a need to study Erdős–Rényi random

graphs where the link capacity distribution is ,
which is and . If

, then the undirected link has zero capacity and is
effectively absent. We then use the notation to denote
the obtained graph for a fixed .
We will also study Erdős–Rényi random graphs where de-

pends on and vanishes with .We shall denote these .
These may be constructed as follows. We assume that we are
now given a collection of i.i.d. random variables

where each has the uniform distribution on .
The graph is the graph on vertices
where each link with has binary capacity

. The notation stands for the indi-
cator of an event. This construction is of course consistent with
the construction of when is a constant.
Finally, we will also study random bipartite graph sequences

and . These are con-
structed from the collection of i.i.d. random variables

where once again each entry has the uniform distribu-
tion on . In the graph , for example, there are
vertices with vertex set where

and , and the capacity on the link between
node and node is .

B. All-cast

Consider the all-cast problem described in Section I. Li et al.
prove in [1, Corollary 4.a] that a multiple all-cast rate vector

is achievable in an undirected capacitated net-
work if and only if the rate vector is achiev-
able, i.e., the sum rate is achievable for a single all-cast with
node 1 as sender and with the other nodes as receivers.
This is intuitively clear since network coding does not help for
all-cast, and one can make do with multicommodity flows in
multiple all-cast.
We may therefore assume that there is only one sender (say

node 1), and all other nodes are recipients that must receive
all information sent by node 1. The rates in such a setting are
given by , and we characterize .
This maximum rate is obtained by solving the following LP

problem. Consider the graph on vertices with associated
link capacities. Let be the set of all spanning trees on the
complete graph (ignoring capacities). The vertices are labeled,
and so Cayley’s formula tells that the number of such trees is

. Solve the LP ([1], [4]–[6])

(3)
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Denote the maximum value of (3) as . Then, is the max-
imum rate at which node 1 can all cast its information to all the
other nodes. The LP has a simple and intuitive explanation.
1) If one tags an infinitesimal information element originating
at node 1 and follows the path of its spread to each of the

recipients, one gets a directed graph rooted at the
source node 1 and spanning all the nodes.

2) If the undirected version of this directed graph is not a tree,
i.e., there is some cycle, then some node in the cycle is
receiving this information element from two other nodes.
One of these two incoming links can be removed without
affecting the all-cast property. We can thus reduce the di-
rected graph to a spanning arborescence, which is a di-
rected graph with no incoming links at the root node, ex-
actly one incoming link at every other node, and all vertices
are covered.

3) This spanning arborescence is in one-one correspondence
with a tree, because the root is specified as node 1. So we
may simply focus on the spanning tree associated with the
arborescence. Call this tree (which is in ).

4) Collect all information elements that are spread via this
tree. Call its volume .

It is clear that each and constraint (a) in (3) is the
capacity constraint associated with each of the links. Conse-
quently, the value of the optimization problem in (3) is an upper
bound on the optimal net flow from node 1. But it is imme-
diate that any set of satisfying the two constraints provides
a means to achieve a rate , since units of information
may be directed through the spanning arborescence associated
with the tree and root vertex 1. Thus, the maximum rate of
all-cast flow from a single sender is , the solution to the LP
in (3).
When link capacities are random, is a random variable

whose asymptotics we shall soon characterize.

C. Multicast

For the multicast problem, without loss of generality,
let us index the session nodes as . As for
all-cast, in [1, Corollary 4.a], a multiple multicast rate vector

with identical session nodes is achievable
in an undirected capacitated network if and only if the rate
vector is achievable, i.e., the sum rate is
achievable for a single multicast with node 1 as sender and
with the other nodes of the session as receivers.2 We
may therefore assume that there is but one sender, he is node
1, and all other nodes are recipients that must receive
all information sent by node 1. Denote by the set of
all Steiner trees that span the vertices . Obviously

2There is some subtlety involved here since, in general, network coding pro-
vides a coding advantage for multicasting in undirected networks; see [1, Th.
4] for a proof of source independence in the single multicast case which is then
generalized to get [1, Corollary 4.a].

. For multicast, again as for all-cast, the maximum
simultaneously transmissible rate from one sender (node 1)
to the other recipients is the maximum value of the
modified LP ([1], [3], [14]):

(4)

Set , and denote the maximum value of (4) as
. The above LP is the same as that of (3) with re-

placed by the less restrictive .
Again, when link capacities are random, is a random

variable whose asymptotics we shall soon characterize.

III. UPPER BOUND

Consider the following definitions.
1) Let and denote the maximum throughput
achievable in the all-cast and multicast settings with the
added possibility of network coding at each node. (The
dependence of these quantities on the link capacities is
understood and suppressed.)

2) Let denote the strength of the all-cast network defined
as follows. Let denote the set of all partitions of the
vertex set . Consider a partition . Let
denote the set of intercomponent links. Define

(5)

where denotes the number of subsets in the partition.
3) Let denote the strength of the multicast network
with nodes in the session. This is defined as follows.
Let denote the set of all partitions of the vertex
set such that each component of a partition
contains at least one of the session nodes .
Define

(6)

Li et al. [1] have shown the following result.
Theorem 1 (Li et al. [1, Ths. 2 and 3]):
a) For any all-cast session, .
b) For any multicast session, .

We can easily find good upper bounds on and in
random settings, as shown in the following theorem.
Theorem 2: Let denote the undirected link

capacities. We then have the following upper bounds:

(7)
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(8)

As a consequence, with , the inequalities

(9)

(10)

hold almost surely.
Proof: Consider the partition .

There are subsets in the partition, and is the set of all links.
Apply now the definition (5) of and we immediately get (7)
as the upper bound for the all-cast case.
For the multicast case, consider the partition

There are subsets in the partition. The set of links in are

Apply now the definition (6) of and we immediately get
(8) as the upper bound for the multicast case.
Note that for all-cast, and

(11)

for multicast.
Using for all-cast in (7), we obtain

The sum on the right-hand side is composed of i.i.d. random
variables. Consequently, the right-hand side converges almost
surely to by the strong law of large numbers, and we
obtain (9).
For the multicast case, use (11) in (8) to obtain

Again by an application of the strong law of large numbers, the
conclusion (10) follows.
Observe that, by Theorem 1, the upper bounds in Theorem 2

apply for capacity with the possibility of network coding. Let
us now turn to achievability of these rates in their respective
settings.

IV. ALL-CAST: ACHIEVABILITY

In this section, we consider the all-cast setting and argue that
the upper bound in (9) is tight, and moreover, the upper bound

is achievable via flows. After first establishing the existence of
a scheme, we then provide a practical decentralized asymptoti-
cally optimal push–pull algorithm.
Theorem 3: For the all-cast problem, we have

Proof: The fact that we cannot do better than was
already established in (9). So the proof of the aforementioned
theorem would be complete if we can establish that
is achievable. We first argue achievability on the simpler
Erdős–Rényi graphs. We then lift this result to the general case.
Take the random graph where each link capacity is

i.i.d. with Bernoulli( ) distribution. Catlin et al. [15, Sec. 3],
proved the stronger result that, even if vanishes with , so long
as it is larger than , we have for all sufficiently
large the equality

(12)

For any , using , the result in (12), and the strong
law of large numbers, we have

(13)

By excluding all null sets associated with rational , it
follows that

There now remains the step of lifting this result to any generic
distribution , for the i.i.d. capacities , satisfying

(14)
This is readily done. Fix an arbitrary . By (14) and the
fact that the function is Riemann integrable (for it
is Lebesgue integrable, bounded, and has at most a countable
number of discontinuities), we can choose a natural number

and such that

(15)

We now build a family of coupled graphs, each with ver-
tices. For a realization of the i.i.d. link capacities, let be a
new graph on the vertices with link between and if and
only if , for . Clearly, is an
Erdős–Rényi graph on vertices with parameter

On , we interpret each link, if present, as having capacity .
While the graphs are coupled across the parameter , for a fixed
, the links on the graph are i.i.d. random
variables. Let be the maximum number of disjoint trees
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that can be packed in . By the result (13) applied to each fixed
, we have

where the penultimate inequality follows from (15). It follows as
earlier that almost surely. This completes the
proof. (See [16] or [17] for a similar truncation, quantization,
and scaling argument.)
The key to proving Theorem 3 is the result (13) on

Erdős–Rényi graphs. In order to show this, we utilized the
result (12) of Catlin et al. [15]. The main point of the rest of this
section is to demonstrate that (13) can be proved constructively
using a rather simple and decentralized algorithm.

A. : A Decentralized Algorithm for All-cast in a
Random Graph

This section describes a decentralized push–pull algorithm
for all-cast that achieves (13) for an arbitrary . For ease
of exposition, we shall assume a total of nodes with node
0 as the source node. The source node 0 has to push a total of

bits to all nodes. We have ignored integer rounding
and a factor both of which are easily absorbed into
. The algorithm broadly has two push steps and two pull steps,
as described next (see Fig. 1). The analysis that comes later will
argue that with overwhelming probability none of the steps fail.

Algorithm

1) Setting up of directions: All links that do not involve
the source node 0 are assigned one of the two directions
with equal probability, independently of the choices of
directions at other links. All links that involve the source
node 0 have a direction pointing away from the source.

2) Push step 1: Source node 0 pushes different
bits to that many of its neighbors. We number the bits

, call the respective recipient nodes
as owners of these bits, and denote the owners (sometimes)
as instead of saying node 1, node
2, , node . There may be several other
neighbors of node 0, but the corresponding links are left
unused. These and other nodes who are not owners are
called relays, and are denoted
(instead of saying node , node ).

3) Push step 2: Each owner pushes his bit one more
level along links that point outward from , regardless of

Fig. 1. Graph showing the three sets of nodes: source, owners, and relays.
Source pushes bits to owners who then push to relays. All nodes then pull from
owners and any remaining bits from relays.

the status of the recipient as an owner of another bit or a
relay. The receiving node will then have (and similarly
many other bits) for other nodes to pull in the next couple
of steps of the algorithm.

4) Pull step 1: Each node, say node , collects all incoming
bits coming directly from owners via links .
(This is the bit pushed by in push step 2.)

5) Pull step 2: Having collected some bits directly from
owners, node identifies the remaining bits, the relays
to which it is connected with direction pointing toward
, and the bits that these relays have available having
received the bits directly from owners. A representation
of this information is the bit-map matrix of nodes and
bits they have available for pulling (see Table I and its
description). Node then identifies a complete matching
of these desired bits to the helper relays: each desired
yet-to-be-pulled bit is pulled from a suitable relay that has
the bit, with each relay accounting for one bit, and this
constitutes a matching.

The orientation step (the first step of the algorithm), when
operating on a node other than the source, renders roughly one
half of the links outward and the remaining links inward. The
outward links provide service to other nodes. The inward links
bring in the bits to the node. In this sense, the
resource usages for rendering service and reaping benefit are
balanced.
Before we dive into an analysis of this algorithm, we describe

the bit-map of Table I in more detail. The rows and columns are
indexed as

In addition, the first columns will also refer to the
corresponding bits.
1) For , we write to signify
that node has bit .

2) For , since the link itself occurs with proba-
bility , and further, may have either direction with equal
probability, we have



5080 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 8, AUGUST 2013

TABLE I
ALL-CAST BIT-MAP

These are mutually exclusive, with the first setting occur-
ring with probability , the second setting with proba-
bility , and the third setting with probability .

3) If , then node (owner or relay) can obtain bit
from owner (if ) or some bit that
relay has (if ).

4) The set of bits node receives directly from owners corre-
sponds to the set of 1s in the first columns of
the th row, for if , then owner pushes his bit
to node . (For example, in Table I, owner has bits

, but does not have .)
5) The 1s in the th row beyond column point
to relays that can be used by node to pull any remaining
bits in pull step 2. (For example, owner is connected
to relays with directions pointing toward .
These relays will help node get the yet-to-be-pulled bits

.)
6) Clearly, while the random variables and are cou-
pled, the nondiagonal entries of the th row

are i.i.d. random variables, for .
The same holds for nondiagonal entries of any column.

Our main assertion is that the algorithm succeeds
with high probability in distributing the bits to all
nodes.
Theorem 4: For any , the following event occurs al-

most surely: for all but finitely many , the algorithm

succeeds in distributing all bits to each of the
nodes.
Remarks:
1) It follows immediately that, for any , the inequality
(13) holds.

2) The aforementioned theorem also implies that, for all suf-
ficiently large , we can pack disjoint (span-
ning) trees in , with each tree having the property
that it has depth at most 3.

3) is decentralized in the following sense. The di-
rection of each link, when present and if the source node
is not involved, is picked at random by the toss of a fair
coin, and this information is needed only at these two in-
cident nodes. The two levels of pushes, and thus the first
pull stage, are easily seen to be decentralized. At each node,
the actions depend only on the links incident on it and the
agreed upon link directions. Each node then keeps a list of
bits it receives from owners. For the final pull stage, each
node has to get this list associated with each of its poten-
tial helper relays. This is the step that may involve signif-
icant exchange of information, but the cost involved is a
one-time setup cost that can be amortized over multiple
rounds of data communication. Note that all information
exchanges (link directions, pushing of owned bits, lists of
bits available at neighboring helper relays) are of informa-
tion which are of local relevance that are, in addition, lo-
cally available. The matching can be identified in
steps [12].

4) We need three elementary tools to establish the result. The
first is the following well-known concentration result for
the binomial distribution, which we state without proof.
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Lemma 5: ([18, Th. 1.7(i)]): Suppose
, and . Let be the sum of

random variables. Then

(16)

This result holds for every and satisfying
, and as such, can vary with . The second tool is the

Borel–Cantelli lemma that gives us a sufficient condition for
almost sure convergence. The third tool is one of existence of
matchings on random bipartite graphs, which will be the subject
of Section V.

Proof of Theorem 4: By the Borel–Cantelli lemma, it suf-
fices to show that the probability that the algorithm fails for a
particular is summable over . If the algorithm fails, then at
least one of the following is true.
1) The event occurs, which is defined to be the event
that there are fewer than vertices connected to
node 0. By Lemma 5, there is some such that for
all sufficiently large , we have .

2) For some node , the event occurs, which is defined
to be the event that the node is connected to a certain
number of owners outside the range
with links pointing toward . (If node is an owner,

there are other owners, but the 1 can be
absorbed into the factor.) Again by Lemma 5, there
is some such that for all sufficiently large , we
have .

3) For some node , the event occurs, which is the
event that the node is connected to fewer than

relays with links pointing toward . (Again, the case of 1
less relay when node is a relay is easily handled). Once
again by Lemma 5, there is a such that for all
sufficiently large , we have .

4) For some node , if does not occur,
then the event occurs, which is the event that node
is unable to pull the desired bits. We claim that

(17)
for some sequence satisfying

(18)

The event that the algorithm fails is then a subset of

whose probability is upper bounded via the union bound and
(17) by

which, by the summability claim in (18) and the exponentially
decaying nature of the other terms, is summable.
Let us now prove (17) and (18).
Fix a node , where . The event has not

occurred, and so the source has sent out exactly

bits to that many owners. The event has not occurred,
and so node is connected to between
owners with links toward node . The connected owners directly
furnish their bits to node . But node needs at least

additional bits to be pulled in pull
step 2. This set of yet-to-be-pulled bits points to some random
selection of columns from amongst the first columns
and does not include column .
The event has not occurred, and so node is con-

nected to at least relays that could potentially furnish these
missing bits (that is, with links toward node ). Consider the
rows corresponding to these relays. This set of rows is a random
selection of at least rows from amongst the indices

through and does not include .
Observe that conditioned on these selections, the entries

of the submatrix continue to be i.i.d. random
variables. If occurs, there is no coverage of these
yet-to-be-pulled bits (columns) using the helper relays (rows),
with each helper relay furnishing at most one missing bit.
But this in particular implies that there is no coverage of the
yet-to-be-pulled bits (columns) by some subset of exactly
helper relays (rows) with each helper relay furnishing at most
one bit. But this further implies that any superset of columns
that includes the yet-to-be-pulled bits (columns), and continues
to exclude column , cannot be matched to the selected
helper relays (rows). Now, Lemma 9 of Section V shows that
this probability is upper bounded by , which is (17), and
that is summable, which is (18). This concludes the
proof.
The matching step above is the key to complete the deliv-

eries. It ensures that all required bits are available at some helper
relay, and that each link has at most 1 bit load so that capacity
constraints are not violated. We now devote a section to demon-
strating this key step.

V. EXISTENCE OF A BIPARTITE MATCHING

In this section, we establish the crucial step of existence of
bipartite matchings. The following lemma, taken from Bollobás
[18], is key to showing that matchings exist almost surely and
one can pull the bits from relays. We first present the result
for a random bipartite graph with vertices on each side. The
results of this section are well known and are provided only for
completeness and ease of reference.
Lemma 6: ([18, Lemma 7.12, p. 174]): Let be a bipartite

graph with vertex sets such that . Sup-
pose does not have any isolated vertices and it does not have
a complete matching. Then there is a set for either
or 2 such that the following three conditions hold.
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i) , defined as the set of all neighbors of elements in
, has elements.

ii) The subgraph spanned by is connected.
iii) .

The aforementioned conditions are simple consequences of
Hall’s marriage theorem and some elementary observations.
The proof can be found in [18, Lemma 7.12, p. 174] We now
bound the probability of these events on a random bipartite
graph (see Section II-A).
Lemma 7: Let be the event that there is a set of size

with for or 2 satisfying (i)–(iii) of Lemma 6. Let
. Consider . Then,

where summable, and hence, . Furthermore, we also
have .

Proof: Fix . There are two choices for in the condition
, there are ways to choose the subset , and there

are ways to choose the subset . Once chosen, there
must be no links between the vertices of and the
vertices of . By the union bound (for the possibilities
for and ), we get

(19)

Using , by a second application of the union bound,
and by dropping some factors that are smaller than 1, we get

(20)

For an , set . It suffices to show that for large,
. Interchanging the indices of summation, and

changing limits appropriately, we get

(21)

The first term is easily seen to be summable for any finite .
For the second one, observe that for any and any
, there is an large enough so that for all and all

, we have . By taking
, it follows that

Choose small enough so that . Substitute
this in the second term in (21), and we see that it is summable.
Finally, to show that , we modify (21) as

By our choice of and , we also have ,
and so all the steps that followed (21) apply, which establishes
summability of .
We now put these together to argue that a bipartite matching

exists in with high probability.
Theorem 8: The probability that does not have a

complete matching is upper bounded by
, where , defined in (20), has all the properties indicated in

Lemma 7.
Proof: If does not have a complete matching,

then either 1) there is an isolated vertex, or 2) there is no isolated
vertex and by virtue of Lemma 6, must occur, where

as earlier. By Lemma 7, the probability of the
second case event is at most . The probability that there is no
isolated vertex is, by the union bound, at most .
In the previous section, we had a need to study existence of

bipartite matchings over left and right sets of size
where .
Lemma 9: For a fixed , let . The prob-

ability that does not have a complete matching is
upper bounded by where is the upper bounding func-
tion defined in Theorem 8. Furthermore, .

Proof: The upper bound on the probability that a matching
does not exist is immediate.We now show that con-
verges. Note that any particular integer repeats at most
times in the sequence . As a consequence

VI. DIGRESSION OF NOT JUST INTERPRETIVE VALUE:
MAXIMUM SINGLE-COMMODITY FLOW

Let us now take a step back to see how matching arises nat-
urally in the simpler case of a single-commodity flow between
a source node and a sink node . We shall assume that addi-
tional nodes are merely relays. The random graph of
interest is now , where the number comes from
relay nodes and the two source and sink nodes. Our interest

is in the maximum rate of information flow between source and
sink . (To be strictly conforming to our earlier notation,
we must use for there are nodes in the network
and with the first two nodes being in session. The asymptotics
does not change of course.)
Grimmett and Suen [19] showed that grows linearly in
and that , almost surely. It is then clear that

the cut that isolates the source is a tight cut. So is the cut that
isolates the sink. Motivated by this, Karp et al. [12] provided
an algorithm that achieves the minimum cut capacity. We will
show that, for a fixed , the following algorithm transports



SWAMY et al.: ASYMPTOTICALLY OPTIMAL PUSH–PULL METHOD FOR MULTICASTING 5083

Fig. 2. Single-source single-sink setting indicating how matching arises.

bits from the source to the sink with vanishing prob-
ability of failure (see Fig. 2).

Algorithm :

1) The source floods exactly links with one bit
per link.

2) The sink pulls all these bits from links
connected to it in the following two steps.
a) If any node connected to the sink is directly connected
to the source, the sink draws the corresponding bit.
With overwhelming probability, there are at least

such connections.
b) Here is how the sink draws the remaining bits.
There are at most
such yet-to-be-pulled bits, and these reside with
let us say source side relays not in direct contact
with the sink. Among those relays that did not
get a bit directly from the source (and these are

in number), the sink
is connected to at least ,
again with overwhelming probability. Let us call
these the sink-side relays. There is a matching,
again with overwhelming probability, between the
source-side relays and the sink-side relays. This
matching is then used in the obvious way to draw
the yet-to-be-pulled bits.

Obviously, the direct link between and is inconsequential
for the asymptotics. It is further obvious from the analysis of
the previous section that the probability of failure is overwhelm-
ingly small, and moreover, it is summable over (Lemma 9).
This is essentially the argument of Karp et al. [12] to show the
achievability direction of the result of Grimmett and Suen [19].
What if we have not one sink , but two sinks and ?

There is one matching needed for and another needed for .
These matchings depend on the connections at the respective
sinks, but can be found with overwhelmingly small probability
of failure via the union bound for probabilities. Once these are
found, while the relaysmay be overworked, the links are utilized
within their capacity limits. Indeed, if a common sink-side relay
is required to deliver the same bit (from a particular source side
relay) to both sinks, then the relay simply copies the obtained bit
on both links to the sinks. If the relay is required to supply two

TABLE II
BIT-MAP FOR ONE-SOURCE ONE-SINK FLOW

different bits to the two sinks, the matchings are two different
bits, the relay fetches the two bits from the respective source
side relays on two different links (as per matching), and supplies
them to the two sinks via two different links. This matching on
an as-needed basis minimizes link usage. But every time a new
sink is added, new flows should be initiated to make all bits
available to the new sink. Can we prepare the network to be in
a state of readiness so that upon addition of a new sink, it is
merely the new sink that does the necessary work to obtain all
bits?
Our next goal is to modify Algorithm into one that

pushes two steps and then pulls, as in Algorithm ,
yielding a decentralized algorithm that easily extends to the
case of multiple sinks.
Consider the single-source single-sink case again, and the fol-

lowing algorithm.

Algorithm :

1) Push step 1: The source node floods links with
one bit per link. We shall call the bits
and the recipient nodes of these bits as the owners

of the respective bits. All other
nodes are termed relays and indexed .

2) Push step 2: Each owner pushes his bit one more
level, but only to neighbors who are not owners, and to
the sink if there is a link to the sink. Owner–owner links
are unutilized.

3) Pull step 1: The sink collects all bits sent directly by
owners.

4) Pull step 2: The sink identifies the list of additional
bits needed, the list of relays it is connected to, the
list of bits they have in their possession, and does an
appropriate matching of relays with the required bits. It
then pulls the desired bits from these relays via the by
now all-too-familiar matching.

The bit-map for this setting is much simpler (see Table II).
The columns are indexed by the bits. The rows are indexed by
the nodes, with the first representing the owners and
the rest representing the relays. Row , when it corresponds to
owner (which is when ) has a 1 only on
the th column. But when row corresponds to a relay (which is
when ), it has entry if is connected to
. Clearly, the presence or absence of this link is independent

of the status of all other links, and is a random
variable, when .
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We then have the following result.
Theorem 10: For any , the following event occurs

almost surely: for all but finitely many , the Algorithm
succeeds in transporting all bits

from the source to the sink .
Proof: This is almost immediate. If the algorithm fails, one

of the following must happen.
1) The event occurs, which is the event that node is
connected to less than relays. By Lemma 5, there
is a such that for all sufficiently large , we have

.
2) The event occurs, which is the event that the sink

is connected to a number of owners outside the range
. Again by Lemma 5, there is a

such that for all sufficiently large , we have
for some .

3) The event occurs, which is the event that the sink is
connected to fewer than
relays. Again by Lemma 5, there is a such that for
all sufficiently large , we have .

4) If does not occur, the number of bits
that remain to be pulled is at least

which is at most . The number relays that can
help the sink pull these bits is at least . For the algorithm
to fail, the event that there is no coverage of the
yet-to-be-pulled bits by the available relays with each relay
accounting for at most one bit (capacity constraint) must
then occur. This implies that if a particular set of relays
are chosen, there is no coverage of the required bits. This
further implies that any superset of bits that includes the
yet-to-be-pulled bits cannot be covered by the chosen
and available relays.

The matrix rows corresponding to the chosen relays
(rows) and the chosen bits (columns) is a square
submatrix whose entries are conditionally i.i.d.
random variables. Again, we may view this as a bipartite graph
with the chosen relays on the one side and chosen bit indices on
the other side. Thus, if does not occur, but

does, then there is no matching on the random bipartite
graph. Using Theorem 8, the probability that such a matching
does not exist, conditioned on , is upper
bounded by .
Thus, the event that the sink is unable to pull all the bits im-

plies the event

and its probability is upper bounded by

(22)

This is summable by Lemma 9, and the rest follows.
Instead of one sink, suppose we have two sinks and that

are not connected directly to each other or directly to the source.
The source has to transport all its bits to each of the
two sinks using only the relay nodes. We may continue to
use with the following extension. The two
push steps are common. But each sink simply executes its own
pull steps based on the connections it sees at its end and the

Fig. 3. network. Source pushes bits to owners who then push to
relays (solid lines). The sinks pull the bits from either owners or relays (dashed
lines).

information from its helper nodes. Using the union bound, it
immediately follows that Theorem 10 holds for one source and
two sinks when there are no direct connections between the set
of nodes constituted by the source and the sinks.
Indeed, we can say something much stronger. One version

that suffices to address the multicast setting of Section VII is the
following. Consider a scenario where there is one source and a
total of sinks where for
some . The source and the sinks have no links among
themselves, but are connected through a network of relays
(see Fig. 3). The internal links between the relays and the links
between the source/sinks and the relays are i.i.d. Bernoulli( )
random variables. The source wishes to transfer all its bits of
information to each of the sinks. Let us denote this random net-
work as .
Theorem 11: For any , the following event occurs

almost surely: for all but finitely many , the algorithm
, with the pull stages implemented by each

sink, succeeds in transporting all bits from the source
to each of the sinks on the network.
Proof: Observe that the first three terms in the upper

bound for the probability of failure in (22) decay exponentially
fast in . The last term satisfies .
Since there are sinks, by the union bound, the
probability that the algorithm fails for some sinks is at most

. This upper bound is
summable, and the rest follows.
A related model was considered by Ramamoorthy et al. [20].

In their random network model, between each pair of nodes,
there are two links, one in each direction, with equal but random
capacity. The random variables were again i.i.d. They identified
how the minimum cut capacity, which is also the multicast ca-
pacity in directed settings, scales with the number of relays. Our
achievability result is, in contrast to that of [20], constructive.
Further, thanks to the undirected nature of links in our model,
our ability to choose directions flexibly enables us to reach the
network upper bound, asymptotically, with flows.
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VII. MULTICAST: ACHIEVABILITY

We now return to the setting of nodes of which are
in a multicast session. Node 1 is the source node and nodes

are the sinks. Our goal in this section is to show that
the upper bound (10) is achievable. While one could in principle
proceed as in Catlin et al. [15] to prove achievability, we shall
directly jump to a constructive proof.
Theorem 12: For the multicast problem with nodes in the

session, let . We then have

Proof: As in the proof of Theorem 3, converse was already
shown in (10). So showing achievability suffices, and further
showing it on Erdős–Rényi random graphs with parameter
suffices. Moreover, as earlier, it is enough to show that for any

, the following event occurs almost surely: for all but
finitely many , there is an algorithm that succeeds in trans-
porting bits from the source
to each of the sinks. We claim that this holds.
We first dispose two easy cases.
When , this follows from Theorem 11, by simply

ignoring the links between the session nodes and by using
and relays, and with pulls imple-

mented at each of the sink nodes.
When , pretend that all nodes are in session and imple-

ment . The result follows from Theorem 4.
Only the case when remains, for which we will

use a combination of the above.
Observe that the subset of session nodes alone form a com-

plete graph with vertices for which Theorem 4 is applicable.
Using and without using any of the relay nodes, we
have that the source can distribute

(23)

bits to the other nodes in the session, for all but finitely
many , almost surely. (Summability of the probability upper
bound sequence holds since .)
Removing these direct links between the session nodes, we

end up with the graph in Fig. 3, where the session nodes are now
only connected to the relay nodes. The link to each
relay node from each session node has capacity.
Further, the relay nodes have inter-relay link capacities that are
independent random variables. By Theorem 11,
using , the source can distribute

(24)

bits to the sinks (solely with the help of the relay nodes),
for all but finitely many , almost surely. (Summability of the
probability upper bound sequence holds since .)
The result immediately follows from (23) and (24) since

and
for all sufficiently large .

VIII. VANISHING LINK PROBABILITIES

Our results extend to the case when is a function of , de-
noted , and vanishes but sufficiently slowly. We shall focus
only on the all-cast problem. The results for multicast can be
obtained in an analogous fashion.

Theorem 13: Let where but
. For any , the following event occurs almost surely: for
all but finitely many , the algorithm succeeds in dis-
tributing bits to each of the nodes. Furthermore,

almost surely.
Proof: The proof of the first part is similar to the proof of

Theorem 4, with some additional effort to get better probability
upper bound estimates. Again, we argue that the probability that
algorithm fails is summable over . If the algorithm
fails for a particular , at least one of the following events must
have occurred.
1) The event occurs, which is defined to be the event
that there are fewer than vertices connected
to node 0. By Lemma 5, applied with , there is
some such that for all sufficiently large , we have

2) For some node , the event occurs, which is defined
to be the event that node is connected to a certain number
of owners outside the range with
links pointing toward . (The case when node is an owner
leads to one fewer number of owners which as earlier is
absorbed into factor.) Again, by Lemma 5, there is
some such that for all sufficiently large , we have

(25)

Note that can be arbitrarily small because of the
factor. Since we need times to go to zero,
see (29) which comes later, it is here where we utilize the
assumption that .

3) Let not occur. Then, there are exactly

owners. For some node , the event occurs, which
is the event that the node is connected to fewer than

(26)

relays with links pointing toward . (As earlier, the case
of 1 less relay when node is a relay is easily handled.)
Once again by Lemma 5, there is a such that for all
sufficiently large , we have
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4) For some node , if does not occur,
then the event occurs, which is the event that node
is unable to pull the desired bits. We claim that

(27)

where

(28)

The event that the algorithm fails is thus a subset of

whose probability is upper bounded via the union bound and
(27) by

(29)
By (28) and the assumption that , we see that this bound
is summable.
What remains is to prove (27) and (28).
As earlier, the probability on the left-hand side of (27) is

upper bounded by the probability that there is no matching in
a bipartite graph with vertices and link probability .
We first sharpen Lemma 7. The bound in (19), after noting

that we now have vertices on one side, can be sharpened
(see [18, p. 174]) to

where the extra term within parentheses in the second line can
be included because it is an upper bound (via the union bound)
on the probability that some links, among the possible

links from to , are active. Recall that is an
integer satisfying . Using the bounds

and , we get

for some finite constant , where in the last inequality we have
used , the bound when

, and the obvious upper and lower bounds
on from (26). Now, using , we get

Since the term inside the second parentheses converges to zero
as , it follows that for all sufficiently large and some
finite constants and , we have

The probability that there is no matching is then upper bounded
by . The second term is upper
bounded, using the bounds on , as

From these two bounds, using , it is clear that not only
, but in addition, . This establishes (27)

and (28) and proves validity of algorithm .
The above achievability result also establishes that

The upper bound

follows from (7) and Lemma 5. This concludes the proof of the
second statement.
The extension to multicasting can be done similarly.

IX. DISCUSSION

We began with the problem of all-cast and multicast capacity
region for multiple all-cast and multiple multicast. Yet, we
largely focused on single all-cast or single multicast with
just one sender and with remaining nodes of the session as
receivers. But study of single multicast suffices, thanks to the
result [1, Corollary 4.a] of Li et al. on transferability of rates
across sources (even with network coding). It is therefore clear
how the established results imply the validity of (1) and (2).
The requirement that the session nodes be identical for each of
the multiple multicasts is crucial for this transferability.
Moreover, we largely studied multicasting techniques that do

not use network coding. Onemessage coming out of this study is
that though network coding provides a coding advantage in spe-
cific undirected scenarios, and one such example can be found
in Li et al. [14], in large dense random undirected networks of
the variety studied in our paper, the coding advantage is at most
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in the number of nodes. While our results applied to
graphs with , we did require that vanishes
sufficiently slowly. In particular, so that
a typical node has degree . These are well
connected, but by no means sparse graphs. This naturally raises
two questions. 1) Can one extend these results to some useful
classes of sparse random graphs? (2) Can one find the rate at
which the expected rates for the proposed strategies converge
to their asymptotic limits, and show concentration around the
expectations?
The result of asymptotically negligible network coding ad-

vantage in single or multiple multicast settings (with identical
session nodes) may evoke the question of a possible connection
with a conjecture of Li and Li [21] for multiple unicasts. Li and
Li [21] conjectured that for multiple unicast, network coding
provides no coding advantage in undirected graphs. While their
conjecture holds true for some specific classes of undirected
graphs [22], [23], the general conjecture remains unresolved.
The negligible gain for multicasting in random graphs studied
here arises from the dense interconnectivity between relays. The
bottlenecks are primarily at the periphery.3 So there does not
seem to be much insight that one can glean from our study to
prove or disprove the Li and Li conjecture for multiple unicasts
in undirected networks.
While we studied multiple multicasts, our communication ap-

plication naturally restricted us to a single set of session nodes.
We thus had to study Steiner tree packings for a single subset
of nodes. VLSI applications require efficient packing of Steiner
trees across a multiplicity of such subsets (or nets; see [8]). One
could apply our random network framework to such problems
and attempt to devise similar quick-but-dirty algorithms. This is
an interesting topic that is beyond the scope of this paper.
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