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Abstract— In this paper, the Gaussian many-to-one
X channel (XC), which is a special case of general multiuser XC,
is studied. In the Gaussian many-to-one XC, communication
links exist between all transmitters and one of the receivers, along
with a communication link between each transmitter and its
corresponding receiver. As per the XC assumption, transmission
of messages is allowed on all the links of the channel. This
communication model is different from the corresponding many-
to-one interference channel (IC). Transmission strategies, which
involve using Gaussian codebooks and treating interference
from a subset of transmitters as noise, are formulated for the
above channel. Sum-rate is used as the criterion of optimality
for evaluating the strategies. Initially, a 3 × 3 many-to-one XC
is considered and three transmission strategies are analyzed.
The first two strategies are shown to achieve sum-rate capacity
under certain channel conditions. For the third strategy, a
sum-rate outer bound is derived and the gap between the outer
bound and the achieved rate is characterized. These results
are later extended to the K × K case. Next, a region in which
the many-to-one XC can be operated as a many-to-one IC
without the loss of sum-rate is identified. Furthermore, in the
above region, it is shown that using Gaussian codebooks and
treating interference as noise achieve a rate point that is within
K/2 − 1 bits from the sum-rate capacity. Subsequently, some
implications of the above results to the Gaussian many-to-one
IC are discussed. Transmission strategies for the many-to-one
IC are formulated, and channel conditions under which the
strategies achieve sum-rate capacity are obtained. A region
where the sum-rate capacity can be characterized to within
K/2 − 1 bits is also identified. Finally, the regions where the
derived channel conditions are satisfied for each strategy are
illustrated for a 3 × 3 many-to-one XC and the corresponding
many-to-one IC.

Index Terms— Interference channel, many-to-one interference
channel, sum capacity, X channel.

I. INTRODUCTION

THE INTERFERENCE network is a multi-terminal com-
munication network introduced by Carleial [1], consisting

of M transmitters and N receivers, where each transmitter
has an independent message for each of the 2N − 1 possi-
ble non-empty subsets of the receivers. The multiple access
channel (MAC), broadcast channel, interference channel (IC),
and X channel (XC) are all special cases of the interference
network.
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In the two-user interference channel, each transmitter
communicates an independent message to its corresponding
receiver, while the cross channels constitute interference at the
receivers. The interference channel has been studied exten-
sively in literature. Although the capacity region of the IC
is unknown, several inner and outer bounds for the capacity
region and sum-rate capacity have been derived in [2]–[4].
In [5]–[7], sum-rate capacity of the IC is characterized in the
low-interference regime: a regime where using Gaussian inputs
and treating interference as noise is optimal.

By allowing messages on all the links of the IC, we obtain
the X channel, i.e., both transmitters have an independent
message for each receiver, for a total of four messages in
the system. In this sense, the X channel is a generalization
of the IC. The best known achievable region is due to
Koyluoglu et al. [8]. This rate region when specialized to the
IC was shown to reduce to the Han–Kobayashi rate region [2],
which is the best known achievable region for the IC. The
sum-rate capacity result for the Gaussian interference channel
in the low-interference regime was extended to the Gaussian
X channel in [9].

The many-to-one X channel is a special case of a
K × K XC, i.e., an XC with K transmitters and K receivers,
and can be described as a X channel with “many-to-one”
connectivity. In the many-to-one channel model, communi-
cation links exist between all transmitters and one of the
receivers, say receiver k, k ∈ {1, . . . K }, along with a direct
communication link between transmitter i and receiver i ,
i = 1, . . . , K , i �= k. As per the X channel model assumption,
transmission of messages is assumed on all the links of the
channel. The system model for the K × K many-to-one XC
is shown in Fig. 1, where we have assumed communica-
tion links between all transmitters and receiver 1. Thus, for
i = 2, . . . , K , each transmitter i has two independent
messages, one for receiver i , and the other to receiver 1 for a
total of 2K − 1 messages in the channel.

The many-to-one interference channel is a special case
of the many-to-one XC, where transmitter i is only inter-
ested in communicating with receiver i , i.e., each transmit-
ter has only one message. The many-to-one IC is studied
in [7] and [10]–[12]. In [7] and [10], sum-rate capacity of
the many-to-one IC is characterized in the low-interference
regime. In [11], the capacity region is characterized to within
a constant number of bits. The generalized degrees of freedom
of the channel is obtained in [11] and [12].

We study the more general many-to-one X channel with
messages on all the links. Such a channel could prove useful
in the analysis of half-duplex relay networks. See [13] for
examples of such networks used in optimization of unicast
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Fig. 1. K × K many-to-one X channel system model.

Fig. 2. Applicability of many-to-one X channel in cellular downlink.

information flow in multistage decode-and-forward relay
networks.

The many-to-one XC can also occur as a communication
model in cellular downlink. Consider the illustration in Fig. 2,
where user 1 is at the cell edge and receives transmissions from
the nearby base stations (BS) along with BS 1, while BS 2
and BS 3 simultaneously communicate with users 2 and 3,
respectively. In order to improve the system throughput, all
three BSs can communicate independent messages to user 1,
provided the channel conditions are conducive. The reverse
links of this model for uplink transmission form the one-to-
many X channel studied in [14].

Allowing messages on the cross links leads to some inter-
esting scenarios. Each transmitter excluding the first, can
now make a choice, either transmit to its own corresponding
receiver, or transmit to receiver 1, or both. Instead of finding
outer and inner bounds to the capacity region of the many-to-
one XC, we focus on practical transmission scenarios [15].
We define the transmission strategies for this channel as
follows.

TABLE I

TRANSMISSION STRATEGIES FOR A 3 × 3 MANY-TO-ONE XC

Fig. 3. Modeling of uplink transmissions in a heterogeneous network
(HetNet) with macro-BS and femto-BSs as a many-to-one X channel.

Definition 1: In strategy Mk, transmitter 1 along with k−1
other transmitters form a MAC at receiver 1, while interference
caused by the rest of the transmitters is treated as noise,
k = 1, 2, . . . , K . All transmitters use Gaussian codebooks.

In Table I, we list all possible strategies as per the above
definition for K = 3. Thus, in strategy M1, interference
caused by transmitters 2 and 3 at receiver 1 is treated as
noise, while in strategy M3, receiver 1 does not experience
any interference.

The analysis of specific transmission strategies is also
motivated by applications to small cell networks. Small cells
encompassing femtocells, picocells, and microcells, are used
by mobile service providers to increase network capacity
and/or extend the service coverage area. Consider the illus-
tration in Fig. 3, where some femto-BSs along with their
corresponding users within a small coverage area co-exist in a
macro cell consisting of macro users served by the macro BS.
To increase the service reliability and throughput, the users can
either communicate with the femto-BS or with the macro-BS.
This communication model also results in the many-to-one
X channel.

Small cells are seen as an effective means to achieve 3G data
off-loading, and many mobile service providers consider small
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cells as a vital element for managing LTE Advanced spectrum
more efficiently compared to using just macrocells. It is in
this context that the knowledge of the optimality of different
transmission strategies that the users can employ becomes
valuable. Femto, pico and micro cells are also used to motivate
a slightly similar channel model studied in [16], where a MAC
generates interference for a single user uplink transmission.
We note that the many-to-one IC was also motivated by
considering a similar scenario where multiple short-range peer-
to-peer communications create interference for a long-range
receiver [11], [12].

We use a 3 × 3 many-to-one XC to evaluate the different
strategies. The sum-rate at all the receivers is used as the
criterion for optimality. In general, we use genie-aided bound-
ing techniques to derive the sum-rate capacity results in this
paper. Specifically, for certain strategies we make use of the
concepts of useful genie and smart genie introduced in [7].
A genie is said to be useful if it results in a genie-aided
channel whose sum-rate capacity is achieved by Gaussian
inputs, while a smart genie is one which does not increase
the sum-rate when Gaussian inputs are used [7]. In [7], the
genie-aided bounding technique is used to identify the regime
under which all the interference can be treated as noise. In our
work, we use this technique for scenarios where interference
from a subset of transmitters is treated as noise. We show
that strategies M1 and M2 achieve sum-rate capacity under
certain channel conditions. For strategy M3, we characterize
the gap between the achievable sum-rate of the strategy and
a sum-rate outer bound. Later, we extend these results to the
K × K case.

Next, we identify a region in which the many-to-one XC can
be operated as a many-to-one IC without loss of sum-rate and
show that using Gaussian codebooks and treating interference
as noise achieves a rate point that is within K/2 − 1 bits from
the sum-rate capacity. In the last part of the paper, we observe
some implications of the above results for the many-to-one IC.
Firstly, we note that strategies similar to the ones defined
above can be considered for the many-to-one IC as well. These
involve a combination of partial interference cancellation and
treating the rest of the interference as noise. We derive the
sum-rate optimality of these strategies under certain channel
conditions. Secondly, we identify a region for the many-to-
one IC where the sum-rate capacity can be characterized
to K/2 − 1 bits.

In this paper, we restrict ourselves to the many-to-one
topology. In general, for the fully connected K × K XC,
obtaining regions where conventional transmission strategies
are sum-rate capacity optimal is difficult. However, some gap-
to-capacity results have recently been obtained in [17]–[19].
In [17], channel conditions under which treating interference
as noise at the receivers (strategy M1) achieves the entire
channel capacity region of the K -user Gaussian interference
channel to within a constant gap are obtained. This result is
extended to the K ×K XC in [18] to show that under the same
channel conditions, treating interference as noise is optimal
in terms of sum-rate capacity up to a constant gap. In [19],
a constant gap capacity approximation for the 2×2 XC subject
to an outage set has been obtained.

Fig. 4. Many-to-one X channel with K transmitters in standard form.

The rest of this paper is organized as follows. The system
model is presented in Section II. In Section III, we consider
the 3 × 3 many-to-one XC and analyze the different strategies
defined earlier. These results are extended to the K × K
case in Section IV. Some implications of the above results
for the Gaussian many-to-one IC are discussed in Section V.
Numerical results and illustrations regarding the optimality of
the strategies are presented in Section VI. Conclusions are
presented in Section VII.

II. SYSTEM MODEL

As shown in Fig. 1, the many-to-one XC with K transmitters
and K receivers is described by the following input-output
equations

y1 = h11 x̃1 +
K∑

j=2

h1 j x̃ j + n1 (1)

yi = hii x̃i + ni , i = 2, 3, . . . , K , (2)

where x̃t is1 the transmitted symbol by transmitter t ,
hrt denotes the channel coefficient from transmitter t to
receiver r , and nr is the additive Gaussian noise at receiver r .
hii , i = 2, . . . , K , are the direct channels, while h1i are the
cross channels. The additive noise nr is a zero mean Gaussian
random variable with unit variance, i.e., nr ∼ N (0, 1),
r = 1, 2, . . . , K .

A. K × K Many-to-One X Channel in Standard Form

The K × K many-to-one XC can be written in standard
form (see Fig. 4), i.e.,

y1 = x1 +
K∑

j=2

h j x j + n1 (3)

yi = xi + ni , i = 2, 3, . . . , K , (4)

1We use the following notation: lowercase letters for scalars, boldface
lowercase letters for vectors, and calligraphic letters for sets. [·]T denotes
the transpose operation, trace(·) denotes the trace operation, and E{·} denotes
the expectation operation.

∥∥x
∥∥

2 denotes the l2 norm of the row or column
vector x.



PRASAD et al.: ON THE GAUSSIAN MANY-TO-ONE XC 247

where we have used h j = hi j /h j j , xi = hii x̃i , and
Pi = |hii |2 P̃i are the new power constraints [1]. As before,
the additive noise nr is a zero mean Gaussian random variable
with unit variance, r = 1, 2, . . . , K .

As shown in Fig. 4, the K × K many-to-one XC has 2K −1
independent messages, i.e., {W11, W12, W22, W13, W33, …,
W1K , WK K }, where Wij is the message transmitted from
transmitter j to receiver i .

We assume that the transmitter communicates the intended
messages in n channel uses. For a given block length n, we
define a

(
n, R11

)
codebook at transmitter 1, and

(
n, Rii , R1i

)

codebook at transmitter i , i = 2, . . . , K , as follows:

1) Transmitter 1 communicates message W11 ∈ W11 =
{1, . . . , 2nR11}, while Transmitter i communicates mes-
sages Wii ∈ Wii = {1, . . . , 2nRii } and W1i ∈ W1i =
{1, . . . , 2nR1i }, i = 2, . . . , K .

2) An encoding function f1(·) at transmitter 1 maps
the message W11 to the transmitted codeword xn

1 =
(x11, x12, . . . , x1n), f1 : (W11) → xn

1 for each
W11 ∈ W11. Similarly, for transmitter i , an encoding
function fi (·) maps the messages to the transmitted
codewords, fi : (Wii , W1i ) → xn

i for each (Wii , W1i ) ∈
Wii × W1i , for i = 2, . . . , K .

3) The codewords in each codebook must satisfy the
average power constraint 1

n

∥∥xn
i

∥∥2
2 ≤ Pi at transmitter

i = 1, . . . , K .
4) Receiver i observes the channel outputs yn

i =
(yi1, yi2, . . . , yin) and uses a decoding function φk(·) at
receiver k which maps the received symbols to an esti-
mate of the message: φ1(y1) = (Ŵ11, Ŵ12, . . . , Ŵ1K )
and φk(yk) = Ŵkk for k = 2, . . . , K .

5) The average probability of error at receiver k, P(n)
e,k is

given by

P(n)
e,1 = E

[
Pr

((
Ŵ11, Ŵ12, . . . , Ŵ1K

)

�= (W11, W12, . . . , W1K
))]

P(n)
e,k = E

[
Pr

(
Ŵkk �= Wkk

)]
, k = 2, . . . , K ,

where the expectation is taken with respect to the
random choice of the transmitted messages.

We say that the rate vector (R11, R12, . . . ,
R1K , R22, . . . RK K ) is achievable for the K × K many-
to-one XC if there exists a

(
n, R11

)
codebook at transmitter 1

satisfying the power constraint P1, and
(
n, Rii , R1i

)

codebook at transmitter i satisfying the power constraint Pi ,
i = 2, . . . , K , and decoding functions (φ1(·), . . . , φK (·)), such
that the average decoding error probabilities (P(n)

e,1 , . . . , P(n)
e,K )

go to zero as block length n goes to infinity. The capacity
region is defined as the closure of the set of all achievable rate
vectors (R11, R12, . . . , R1K , R22, . . . RK K ) and is denoted
by C. Then the sum-rate capacity S of the K × K many-to-one
XC is defined as

S = max
(R11,R12,...,R1K ,R22,...RK K )∈C

(
R11 +

K∑

i=2

(Rii + R1i )
)
.

By Fano’s inequality, we have

H (Wii |yn
i ) ≤ nεn, i = 1, . . . , K ,

H (W1 j |yn
1) ≤ nεn, j = 2, . . . , K , (5)

where εn → 0 as n → ∞.
Next, in Lemma 1 below, we show that the K × K many-

to-one XC is degraded under specific channel conditions. This
lemma will later be used to prove the decodability of message
sets at the receivers. In order for the result to be applicable
to a more general case, we assume that the noise variance at
each receiver is σ 2

i , i = 1, . . . , K .
Lemma 1: For the K × K many-to-one XC in standard

form shown in Fig. 4 with noise variance σ 2
i at receiver i ,

if h2
i σ

2
i ≤ σ 2

1 , i = 2, . . . , K , then y1 is a degraded version of
yi with respect to message W1i and hence H (W1i |yn

i ) ≤ nεn ,
where εn → 0 as n → ∞. This implies that message W1i is
decodable at receiver i . Furthermore, H (W1i, Wii |yn

i ) ≤ 2nεn .
Proof: At receiver 1, we have y1 = x1 +∑K

j=2 h j x j +n1,

and at receiver i , we have yi = xi +ni . Define ỹ1 = hi xi +n1
and y ′

1 = ỹ1/hi = xi + n′
1, where n′

1 = n1/hi . If σ 2
i ≤

σ 2
1 /h2

i , we note that the noise variance of n′
1 is higher than

that of ni . Hence y ′
1 is a stochastically degraded version of the

signal yi received at receiver i . Thus, from the data processing
inequality, we have I (W1i ; yn

i ) ≥ I (W1i ; y′n
1 ). Since scaling

the output of a channel does not affect its capacity, we have
I (W1i ; yn

i ) ≥ I (W1i ; ỹn
1). Therefore,

H (W1i |yn
i ) ≤ H (W1i |ỹn

1)

(a)= H (W1i |ỹn
1, xn

1, . . . , xn
i−1, xn

i+1, . . . , xn
K ).

= H (W1i |yn
1, xn

1, . . . , xn
i−1, xn

i+1, . . . , xn
K ).

(b)≤ H (W1i |yn
1)

(c)≤ nεn, (6)

where (a) follows since
(
xn

1, . . . , xn
i−1, xn

i+1, . . . , xn
K

)
are inde-

pendent of W1i and ỹn
1, (b) follows from the fact that removing

conditioning does not reduce the conditional entropy, and
(c) follows from (5). Thus, we conclude that W1i is decodable
at receiver i when h2

i σ
2
i ≤ σ 2

1 . Note that in this case

H (W1i, Wii |yn
i ) = H (W1i |yn

i ) + H (Wii |yn
i , W1i )

≤ H (W1i |yn
i ) + H (Wii |yn

i )

≤ 2nεn, (7)

where (7) follows from (5) and (6). As n → ∞, εn → 0. This
shows that (Wii , W1i ) are decodable at receiver i .

B. 3 × 3 Many-to-One X Channel

In order to analyze the strategies, we first consider the
3 × 3 many-to-one XC since the 2 × 2 case results in the
Z channel. The Z channel is obtained from the many-to-one
XC by retaining only the first two transmitters and removing
the rest. In this way, the many-to-one XC can be considered as
one possible generalization of the Z channel. The Z channel
has been studied in [19] and [20].
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Fig. 5. Many-to-one X channel with 3 transmitters in standard form.

The 3 × 3 many-to-one XC channel can be written in
standard form (See Fig. 5), i.e.,

y1 = x1 + ax2 + bx3 + n1 (8)

y2 = x2 + n2 (9)

y3 = x3 + n3, (10)

where we have used h2 = a and h3 = b.
As shown in Fig. 5, the 3 × 3 many-to-one XC has five

independent messages, W11, W12, W13, W22 and W33, where
Wij is the message transmitted from transmitter j to receiver i .

Our motivation for considering the 3 × 3 many-to-one XC
first, instead of directly analyzing K × K case stems from
three perspectives: (i) ease of presentation, (ii) understanding
the proof techniques without cumbersome notational details,
(iii) better visualization of the regions where the strategies
are optimal (as seen in the numerical results presented
in Section VI).

III. ANALYSIS OF DIFFERENT STRATEGIES

FOR THE 3 × 3 MANY-TO-ONE XC

We introduce some terminology useful in deriving the
results in this section. Let yn

i denote the vector of received
symbols of length n at receiver i . Let xn

i denote the n length
vector of transmitted symbols at transmitter i . By Fano’s
inequality, we have

H (Wii |yn
i ) ≤ nεn, i = 1, 2, 3

H (W1 j |yn
1) ≤ nεn, j = 2, 3, (11)

where εn → 0 as n → ∞.
Before we proceed to analyze the various strategies, we

provide a restatement of [7, Lemma 5], in a form that is easier
to apply to the many-to-one X channel. We make use of the
following lemma to bound the sum-rate of the many-to-one
XC in some cases.

Lemma 2: Let wn
i be a sequence with average power

constraint trace(E(wn
i wnT

i )) ≤ n Pi . Let nn
i be a random

vector with components that are distributed as independent
N (0, 1) random variables. Let nn

a denote a random vector
with components that are distributed as independent N (0, σ 2)
random variables. Assume that wn

i are independent of each

TABLE II

TRANSMITTED AND DECODED MESSAGES FOR STRATEGY M1

other and also independent of nn
i and nn

a . Let wiG ∼ N (0, Pi ).
For some constants ci , we have

K∑

i=1

h(wn
i + nn

i ) − h
( K∑

i=1

ci wn
i + nn

a

)

≤ n
K∑

i=1

h(wiG + ni ) − nh
( K∑

i=1

ciwiG + na

)
, (12)

when
∑K

i=1 c2
i ≤ σ 2 and equality is achieved if wn

i = wn
iG ,

where wn
iG denotes a random vector with components that are

i.i.d N (0, Pi ).
Proof: Let tn

i = ci (wn
i + nn

i ). The left-hand side of (12)
can now be written as

K∑

i=1

h(tn
i ) − h

( K∑

i=1

tn
i + ñn

a

)
− n

K∑

i=1

log |ci |,

where ñn
a is a random vector with components that are i.i.d

N (
0, σ 2 − ∑K

i=1 c2
i

)
. The final result follows by applying

[7, Lemma 5], i.e.,

K∑

i=1

h(tn
i ) − h

( K∑

i=1

tn
i + ñn

a

)

≤ n
K∑

i=1

h(tiG ) − nh
( K∑

i=1

tiG + ña

)
,

where tiG = ci (wiG + ni ) and equality is achieved
if wn

i = wn
iG . Since the variance of ña cannot be negative,

we have the condition
∑K

i=1 c2
i ≤ σ 2.

A. Optimality of Strategy M1

The transmitted and decoded messages in strategy M1 are
illustrated in Table II. In strategy M1, we are interested
in a region where sum-rate capacity is achieved by using
Gaussian codebooks and treating interference as noise. This
is usually referred to as the low-interference or the noisy-
interference regime in the interference channel literature.
In strategy M1, cross messages in the channel are not utilized,
i.e., W12 = W13 = φ. We characterize the noisy-interference
sum-rate capacity in the following theorem.

Theorem 1: For the 3 × 3 Gaussian many-to-one XC,
strategy M1 achieves sum-rate capacity if

a2 + b2 ≤ 1, (13)
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TABLE III

TRANSMITTED AND DECODED MESSAGES FOR STRATEGY M2

and the sum-rate capacity is given by

S = 0.5 log

(
1 + P1

1 + a2 P2 + b2 P3

)
+ 0.5

3∑

i=2

log(1 + Pi ).

(14)

Proof: The above result is a direct corollary of
Theorem 5 in this paper, which provides the condition under
which operating the K × K many-to-one XC as the K -user
many-to-one IC does not lose sum-rate, and [7, Th. 4], which
says that using Gaussian signaling and treating interference
as noise achieves the sum-rate capacity of the K -user
many-to-one IC. To avoid repeating the details, we omit the
proof.

Remark 1: The low-interference regime for the discrete
memoryless many-to-one interference channels is proved
in [10]. We also note that the result in [7] is a special case of a
more general result in [22, Th. 3], where the sum-rate capacity
of a K -user Gaussian interference channel is characterized in
the noisy-interference regime.

B. Optimality of Strategy M2

The transmitted and decoded messages in strategy M2 are
illustrated in Table III. Here, we ask the following question:
are there channel conditions such that the sum-rate capacity
is achieved by a two-user MAC at receiver 1 formed by
transmitter 1 and either transmitter 2 (case I) or transmitter 3
(case II), while the interference from the other transmitter is
treated as noise? Observe that the other transmitter forms a
point-to-point channel and is a source of interference for the
two-user MAC. We characterize the sum-rate capacity in the
following theorem.

Theorem 2: For the 3 × 3 Gaussian many-to-one XC, the
sum-rate capacity is achieved by strategy M2, where a
two-user MAC is formed by transmitter 1 and either transmit-
ter 2 or transmitter 3 at receiver 1, for the following channel
conditions, respectively

(i) a2 ≥ (1 + b2 P3)
2

1 − b2 , b2 < 1

(ii) b2 ≥ (1 + a2 P2)
2

1 − a2 , a2 < 1.

Proof: We prove statement (i) below. This represents
case I in Table III, where transmitters 1 and 2 form a MAC at
receiver 1 while interference from transmitter 3 is treated as
noise. The proof for the second statement which corresponds
to case II in Table III follows along similar lines.

We use genie-aided bounding techniques to derive the
optimality of strategy M2. Specifically, we use the concept

of useful genie and smart genie introduced in [7] to obtain the
sum-rate capacity for strategy M2. Let a genie provide the
following side information to receiver 1:

s1 = x1 + ax2 + ηz1, (15)

where z1 ∼ N (0, 1) and η is a positive real number. We
allow z1 to be correlated to n1 with correlation coefficient ρ.

A genie is said to be useful if it results in a genie-aided
channel whose sum-rate capacity is achieved by Gaussian
inputs, i.e., the sum-rate capacity of the genie-aided channel
equals I (x1G , x2G; y1G, s1G) + I (x3G; y3G), where xiG ∼
N (0, Pi ), yiG , s1G are yi and s1 with x j = x j G , ∀i, j .

Lemma 3 (Useful Genie): The sum-rate capacity of the
genie-aided channel with side information (15) given to
receiver 1 is achieved by using Gaussian inputs and by treating
interference from transmitter 3 as noise at receiver 1, if the
following conditions hold:

η2 ≤ a2, b2 ≤ 1 − ρ2, (16)

and the sum-rate of the genie-aided channel is bounded as

S ≤ I (x1G , x2G; y1G, s1G) + I (x3G; y3G). (17)

Proof: The sum-rate of the genie-aided channel can be
bounded as

nS ≤ H (W11, W12, W22) + H (W13, W33)

= I (W11, W12, W22; yn
1, sn

1) + H (W11|yn
1, sn

1)

+ H (W12|yn
1, sn

1 , xn
1) + H (W22|yn

1, sn
1, xn

1 , W12)

+ I (W13, W33; yn
3) + H (W13|yn

3) + H (W33|yn
3, W13)

(a)≤ I (xn
1 , xn

2; yn
1, sn

1) + H (W11|yn
1) + H (W12|yn

1)

+ H (W22|sn
1, xn

1) + I (xn
3; yn

3) + H (W13|yn
3)

+ H (W33|yn
3), (18)

where (a) follows from the fact that removing conditioning
cannot reduce the conditional entropy.

We bound the term H (W22|sn
1, xn

1). If η2 ≤ a2, then we
have I (W22; sn

1 |xn
1) ≥ I (W22; yn

2). Thus,

H (W22|sn
1, xn

1) ≤ H (W22|yn
2)

≤ nεn . (19)

From Lemma 1, we have H (W13|yn
3) ≤ nεn when b2 ≤ 1.

Using (11) and (19) in (18), we have

nS ≤ I (xn
1 , xn

2; yn
1, sn

1) + I (xn
3; yn

3) + 5nεn

= I (xn
1 , xn

2; sn
1)+ I (xn

1 , xn
2; yn

1 |sn
1)+ I (xn

3; yn
3) + 5nεn

= h(sn
1) − h(sn

1 |xn
1, xn

2) + h(yn
1 |sn

1)

− h(yn
1 |sn

1, xn
1, xn

2) + h(yn
3) − h(yn

3 |xn
3) + 5nεn

= h(sn
1) − h(ηzn

1) + h(yn
1 |sn

1) − h(bxn
3 + nn

1 |zn
1)

+ h(yn
3) − h(nn

3) + 5nεn

(b)≤ nh(s1G) − nh(ηz1) + nh(y1G |s1G)

− h(bxn
3 + ñn

1) + h(xn
3 + nn

3) − nh(n3) + 5nεn

(c)≤ nh(s1G) − nh(ηz1) + nh(y1G |s1G)

+ nh(x3G + n3) − nh(bx3G + ñ1) − nh(n3) + 5nεn

= nI (x1G , x2G; y1G, s1G ) + nI (x3G; y3G) + 5nεn,
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where ñ1 ∼ N (0, 1 − ρ2), (b) follows since Gaussian inputs
maximize differential entropy for a given covariance constraint
and from the application of [7, Lemmas 1 and 6], (c) fol-
lows from applying [6, Lemma 1] (which is a special case
of the extremal inequality considered in [23]) to the term
h(xn

3 + nn
3) − h(bxn

3 + ñn
1), and using the condition

b2 ≤ 1 − ρ2.
Next, we show that the genie is smart. A smart genie is one

which does not improve the sum-rate when Gaussian inputs
are used, i.e., I (x1G, x2G; y1G, s1G) = I (x1G, x2G; y1G).

Lemma 4 (Smart Genie): If Gaussian inputs are used, and
interference is treated as noise, then, under the condition

ηρ = 1 + b2 P3, (20)

the genie does not increase the sum rate, i.e.,

I (x1G , x2G; y1G, s1G) = I (x1G , x2G; y1G). (21)

Proof: Note that

I (x1G , x2G; y1G, s1G) = I (x1G , x2G; y1G)

+ I (x1G, x2G; s1G |y1G).

The second term on the right hand side can be expanded as

I (x1G; s1G |y1G) + I (x2G; s1G |y1G, x1G).

Consider

I (x1G; s1G |y1G)

= I (x1G; x1G + ax2G + ηz1|x1G + ax2G + bx3G + n1).

From [7, Lemma 8], if x , n, z are Gaussian with x being
independent of the two zero-mean random variables n, z,
then I (x; x + z|x + n) = 0, iff E(zn) = E(n2). Thus,
I (x1G; s1G |y1G) becomes zero if a2 P2+ηρ = 1+a2 P2+b2 P3
which reduces to (20). Now, consider

I (x2G; s1G |y1G, x1G) = I (x2G ; ax2G +ηz1|ax2G +bx3G+n1)
(d)= 0.

where (d) follows from [7, Lemma 8] and (20).
Combining conditions (16) and (20), we have

a2 ≥ (1 + b2 P3)
2

ρ2 ; b2 ≤ 1 − ρ2. (22)

For a fixed value of b, we have the constraint ρ2 ≤ 1 − b2.
Note that choosing ρ2 = 1 − b2 results in the best bound
for a2. From (20), we infer that ρ > 0, and using (16),
this implies that b2 < 1. Thus, (22) can be rewritten as
statement (i) in Theorem 2.

C. Gap From Optimality of Strategy M3

The transmitted and decoded messages in strategy M3 are
illustrated in Table IV. In strategy M3, all transmitters form
a MAC at receiver 1. We derive a sum-rate outer bound to the
many-to-one XC and characterize the gap between the outer
bound and the achievable sum-rate of strategy M3.

TABLE IV

TRANSMITTED AND DECODED MESSAGES FOR STRATEGY M3

Theorem 3: For the 3×3 Gaussian many-to-one XC, when
strategy M3 is employed, if

a2 ≥ (1 + b2 P3)
2

ρ2 and b2 ≥ 1, (23)

then the gap between the sum-rate outer bound and the sum-
rate of strategy M3 is given by

0.5 log

(
1 − (1 + b2 P3)

−1ρ2

1 − ρ2

)
, (24)

where ρ denotes a constant with ρ ∈ [−1, 1].
Proof: We use genie-aided techniques to derive the sum-

rate outer bound. Let a genie provide the side information
given in (15) to receiver 1. We prove below that the genie is
useful.

Lemma 5 (Useful Genie): The sum-rate capacity of the
genie-aided channel with side information (15) given to
receiver 1 is achieved by using Gaussian inputs when all
transmitters transmit to receiver 1, if the following conditions
hold:

η2 ≤ a2, b2 ≥ 1, (25)

and the sum-rate of the genie-aided channel is bounded as

S ≤ I (x1G , x2G , x3G; y1G, s1G). (26)

Proof: The sum-rate S of the genie-aided channel is
bounded as

nS ≤ H (W11, W12, W13, W22, W33)

= I (W11, W12, W13, W22, W33; yn
1, sn

1)

+ H (W11, W12, W13, W22, W33|yn
1, sn

1)

= I (W11, W12, W13, W22, W33; yn
1, sn

1)

+ H (W11|yn
1, sn

1) + H (W12|yn
1, sn

1, xn
1)

+H (W22|yn
1, sn

1 , xn
1, W12) + H (W13|yn

1, sn
1, xn

1 , xn
2)

+ H (W33|yn
1, sn

1, xn
1 , xn

2, W13)

≤ I (xn
1 , xn

2, xn
3; yn

1, sn
1) + H (W11|yn

1) + H (W12|yn
1)

+ H (W22|sn
1, xn

1) + H (W13|yn
1)

+ H (W33|yn
1, xn

1, xn
2). (27)

We bound the term H (W33|yn
1, xn

1 , xn
2). If b2 ≥ 1, then

I (W33; yn
1 |xn

1, xn
2) ≥ I (W33; yn

3). Therefore,

H (W33|yn
1, xn

1, xn
2) ≤ H (W33|yn

3)

≤ nεn . (28)

Note that the term H (W22|sn
1, xn

1) is again bounded as
in (19) if η2 ≤ a2. Using (11), (19), and (28) in (27),
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we have

nS ≤ I (xn
1 , xn

2 , xn
3; yn

1, sn
1) + 5nεn

= I (xn
1 , xn

2 , xn
3; yn

1) + I (xn
1 , xn

2 , xn
3; sn

1 |yn
1) + 5nεn

(a)≤ nI (x1G , x2G , x3G; y1G) + h(sn
1 |yn

1)

− h(sn
1 |yn

1, xn
1, xn

2 , xn
3) + 5εn

(b)≤ nI (x1G , x2G , x3G; y1G) + nh(s1G |y1G)

− nh(ηz1|n1) + 5εn

= nI (x1G , x2G , x3G; y1G, s1G) + 5εn,

where (a) follows from the optimality of Gaussian inputs
for Gaussian MAC, (b) follows from [7, Lemma 1].
Here, y1G denotes y1 with xi being Gaussian distributed,
i.e., y1G = x1G + ax2G + bx3G + n1. As n → ∞, εn → 0 and
we get the desired bound.

Unlike in the case of strategy M2, here the genie does in
fact increase the sum-rate and hence is not smart. However,
we can choose the parameters ρ and η to get a good sum-rate
outer bound as follows. Consider

I (x1G , x2G, x3G; y1G, s1G) = I (x1G , x2G, x3G; y1G)

+ I (x1G, x2G , x3G; s1G |y1G).

The second term on the right hand side can be expanded as

I (x1G, x2G; s1G |y1G) + I (x3G; s1G |y1G, x1G, x2G). (29)

In the proof of Lemma 4, we showed that by choosing
ηρ = 1+b2 P3, we can make I (x1G , x2G; s1G |y1G) = 0. Now,
consider

I (x3G; s1G |y1G, x1G, x2G) = I (x3G; ηz1|bx3G + n1)

= h(ηz1|bx3G + n1) − h(ηz1|n1)
(c)= h(ηz1|bx3G + n1) − h(ηz̃1)

= 0.5 log

(
η2(1 + b2 P3)−η2ρ2

(1 + b2 P3)η2(1−ρ2)

)

= 0.5 log

(
1 − (1 + b2 P3)

−1ρ2

1 −ρ2

)
,

(30)

where z̃1 ∼ N (0, 1−ρ2) and (c) follows from [7, Lemma 6].
Note that (30) represents the gap between the sum-rate
outer bound and the sum-rate of strategy M3. Combining
condition (25) with ηρ = 1 + b2 P3, we get (23).

Due to the underlying symmetry in the MAC at receiver 1,
a result corresponding to Theorem 3 with the channel coeffi-
cients a, b and power levels P2, P3 interchanged is also true
and further can be proved along similar lines. The results of
this section are succinctly summarized in Table V.

D. Recovering Known Results for the Z Channel

We specialize the results in this section to the Z channel.
The Z channel is obtained from the many-to-one X channel
by retaining only the first two transmitters and removing the
rest [20], [21]. In the 3 × 3 many-to-one XC shown in Fig. 5,
this is equivalent to setting b = 0, and considering the outputs
at the first two receivers alone. In this case, Theorem 1 reduces
to the channel condition a2 ≤ 1, which is identical to that

TABLE V

SUMMARY OF RESULTS FOR MANY-TO-ONE X CHANNEL

obtained in [20] for the low-interference regime. Theorem 2
reduces to the condition a2 ≥ 1, which is same as that obtained
in [21] for the MAC sum-rate at receiver 1 to be the sum-rate
capacity of the Z channel.

IV. EXTENSION TO THE K × K
MANY-TO-ONE X CHANNEL

Since the results for the K × K many-to-one XC follow
more or less along similar lines as the 3 × 3 case, we state
the results along with a brief outline of the proof for each
strategy, with additional details provided in places where the
proofs differ.

A. Conditions for the Sum-Rate Optimality
of Strategies M1, M2 and M3

The optimality of strategy M1 follows using similar argu-
ments as in Theorem 1, under the condition

∑K
i=2 h2

i ≤ 1.
Next, we consider the optimality of strategy M2. Here,

we are interested in a region where the sum-rate capacity
is achieved by a two-user MAC at receiver 1 formed by
transmitter 1 and transmitter k, k = 2, . . . , K , while the
interference from the other transmitters is treated as noise.
In strategy M2, the transmitted messages are Wii at trans-
mitter i , i �= k, and W1k at transmitter k. The decoded
messages are (Ŵ11, Ŵ1k) at receiver 1, and Ŵ j j at receiver j ,
j �= (1, k). We characterize the sum-rate capacity in the
following theorem.

Theorem 4: For the K × K Gaussian many-to-one XC, the
sum-rate capacity is achieved by the two-user MAC formed by
transmitter 1 and transmitter k to receiver 1, for the following
channel conditions

h2
k ≥

(
1 + ∑K

j=2, j �=k h2
j Pj

)2

1 − ∑K
j=2, j �=k h2

j

,

K∑

j=2, j �=k

h2
j < 1. (31)
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Proof: Let a genie provide the following side information
to receiver 1:

sk = x1 + hk xk + ηkzk, (32)

where zk ∼ N (0, 1) and ηk is a positive real number. We
allow zk to be correlated to n1 with correlation coefficient ρk .

Lemma 6 (Useful Genie): The sum-rate capacity of the
genie-aided channel with side information (32) given to
receiver 1 is achieved by using Gaussian inputs and by treating
interference as noise at receiver 1, if the following conditions
hold:

η2
k ≤ h2

k ,

K∑

j=2, j �=k

h2
j ≤ 1 − ρ2

k . (33)

Proof: The sum-rate of the genie-aided channel can be
bounded as

nS ≤ H (W11, W1k , Wkk) +
K∑

j=2, j �=k

H (W1 j , W j j )

= I (W11, W1k, Wkk ; yn
1, sn

k ) + H (W11|yn
1, sn

k )

+ H (W1k|yn
1, sn

k , xn
1) + H (Wkk |yn

1, sn
k , xn

1, W1k)

+
K∑

j=2, j �=k

[
H (W1 j |yn

j ) + H (W j j |yn
j , W1 j )

]

+
K∑

j=2, j �=k

I (W1 j , W j j ; yn
j )

(a)≤ I (xn
1 , xn

k ; yn
1, sn

k ) + H (W11|yn
1) + H (W1k|yn

1)

+ H (Wkk |sn
k , xn

1) +
K∑

j=2, j �=k

I (xn
j ; yn

j )

+
K∑

j=2, j �=k

[
H (W1 j |yn

j ) + H (W j j |yn
j )

]
, (34)

where (a) follows from the fact that removing conditioning
cannot reduce the conditional entropy.

As in Lemma 3, if η2 ≤ a2, we have

H (Wkk |sn
k , xn

1) ≤ H (Wkk|yn
k ) ≤ nεn . (35)

From Lemma 1, if h2
j ≤ 1, we have H (W1 j |yn

j ) ≤ nεn . Using
this along with (11) and (35) in (34), we have

nS ≤ I (xn
1, xn

k ; yn
1, sn

k ) +
K∑

j=2, j �=k

I (xn
j ; yn

j ) + (2K − 1)nεn

= I (xn
1, xn

k ; sn
k ) + I (xn

1 , xn
k ; yn

1|sn
k )

+
K∑

j=2, j �=k

I (xn
j ; yn

j ) + (2K − 1)nεn

= h(sn
k ) − h(sn

k |xn
1, xn

k ) + h(yn
1 |sn

k ) − h(yn
1 |sn

k , xn
1 , xn

k )

+
K∑

j=2, j �=k

[
h(yn

j ) − h(yn
j |xn

j )
] + (2K − 1)nεn

= h(sn
k ) − h(ηkzn

k ) + h(yn
1 |sn

k ) − h
( K∑

j=2,
j �=k

h j xn
j + nn

1 |zn
k

)

+
K∑

j=2, j �=k

[
h(yn

j ) − h(nn
j )

] + (2K − 1)nεn

(b)≤ nh(skG ) − nh(ηkzk) + nh(y1G |skG )

− h
( K∑

j=2,
j �=k

h j xn
j + ñn

1

)
+

K∑

j=2,
j �=k

[
h(xn

j + nn
j ) − nh(n j )

]

+ (2K − 1)εn
(c)≤ nh(skG ) − nh(ηkzk) + nh(y1G |skG )

+
K∑

j=2
j �=k

nh(x j G + n j ) − nh
( K∑

j=2,
j �=k

h j x j G + ñ1

)

−
K∑

j=2, j �=k

nh(n j ) + (2K − 1)εn

= nI (x1G , xkG ; y1G, skG ) +
K∑

j=2, j �=k

n I (x j G; y j G)

+(2K − 1)εn, (36)

where ñ1 ∼ N (0, 1 − ρ2
k ), (b) follows since Gaussian

inputs maximize differential entropy for a given covariance
constraint and from the application of [7, Lemmas 1 and
Lemma 6], (c) follows from applying Lemma 2 to the term
∑K

j=2, j �=k h(xn
j + nn

j ) − h
( ∑K

j=2, j �=k h j xn
j + ñn

1

)
, and using

the condition
∑K

j=2, j �=k h2
j ≤ 1 − ρ2

k .
Using similar arguments as in Lemma 4, the genie is

smart if

ηkρk = 1 +
K∑

j=2, j �=k

h2
j Pj , (37)

which ensures that the genie does not increase the sum rate,
i.e., I (x1G , xkG; y1G, skG ) = I (x1G , xkG ; y1G). As before, the
conditions (33) and (37) can be combined to get (31).

The characterization of the optimality of strategies where
more than two transmitters form a MAC at receiver 1 can the-
oretically be obtained using similar techniques as in Theorem 3
and Theorem 4. However, we note that as in Theorem 3, the
genie is no longer smart and results in a sum-rate outer bound
for the K × K many-to-one XC. As before, the gap between
this outer bound and achievable sum-rate of the strategy can be
characterized. However, we defer this to a future work as the
characterization of the gap from the outer bound is decidedly
more complicated.

B. A Region in Which the Many-to-One XC Can
Be Operated as a Many-to-One IC

We identify a region in which the many-to-one XC can
be operated as a many-to-one IC without loss of sum-rate.
To accomplish this, we need to show that the absence of cross
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messages does not lead to a decrease in the sum-rate. We have
the following result.

Theorem 5: The K × K many-to-one XC can be operated
as a K -user many-to-one IC without loss of sum-rate in the
following sub-region

h2
i ≤ 1, i = 2, . . . , K . (38)

Proof: Let h2
i ≤ 1, i = 2, . . . , K . The sum-rate can be

bounded as follows:

nS = H (W11) +
K∑

k=2

H (W1k, Wkk)

= I (W11; yn
1) +

K∑

k=2

I (W1k , Wkk ; yn
k )

+ H (W11|yn
1) +

K∑

k=2

H (W1k, Wkk |yn
k )

≤
K∑

k=1

I (xn
k ; yn

k ) + (2K − 1)nεn, (39)

where (39) follows from (5) and the application of Lemma 1
when h2

i ≤ 1, i = 2, . . . , K . We note that (39) is in fact
the sum-rate of the corresponding K × K many-to-one IC.
From (39), it is clear that we can set W1k = φ, k = 2, . . . , K
(without loss of sum-rate). Thus, we have shown that the
absence of cross messages does not diminish the sum-rate
when h2

i ≤ 1, i = 2, . . . , K .

C. Conditions for Sum-Rate of Strategy of M1 to Be
Within K/2−1 Bits From Sum-Rate Capacity

In the following theorem, we show that in sub-region (38),
strategy M1, i.e., using Gaussian codebooks and treating
interference as noise, can achieve a sum-rate to within
K/2 − 1 bits from the sum-rate capacity of the Gaussian
many-to-one XC.

Theorem 6: For the K × K Gaussian many-to-one XC, in
sub-region (38), the rate point achieved by strategy M1, i.e.,
using Gaussian codebooks and treating interference as noise
is within K/2−1 bits from the sum-rate capacity of Gaussian
many-to-one XC.

Proof: Assume h2
i ≤ 1, i = 2, . . . , K , i.e., sub-region (38)

is true. Let a genie provide the following side-information to
receiver i , i = 2, . . . , K − 1

si =
K∑

j=i

h j x j + n1. (40)

Using Theorem 5, receiver i is able to decode (Wii , W1i ) in
sub-region (38), with or without the genie signals. Hence, the
sum-rate of the genie-aided channel is bounded as follows:

nS ≤ I (xn
1; yn

1) +
K−1∑

i=2

I (xn
i ; yn

i , sn
i ) + I (xn

K ; yn
K )

+ (2K − 1)nεn (41)

= h(yn
1) − h(yn

1 |xn
1) +

K−1∑

i=2

[
I (xn

i ; sn
i ) + I (xn

i ; yn
i |sn

i )
]

+ h(yn
K ) − h(yn

K |xn
K ) + (2K − 1)nεn

= h(yn
1) − h(yn

1 |xn
1) +

K−1∑

i=2

[
h(sn

i ) − h(sn
i |xn

i )

+ h(yn
i |sn

i ) − h(yn
i |sn

i , xn
i )

] + h(yn
K )

− h(yn
K |xn

K ) + (2K − 1)nεn . (42)

Using the definition of the genie signals in (40), we note that
the following are true

h(yn
1 |xn

1) = h(sn
2)

h(sn
k |xn

k ) = h(sn
k+1), k = 2, . . . , K − 2. (43)

Using (43) in (42), we have

nS ≤ h(yn
1) − h(sn

K−1|xn
K−1)

+
K−1∑

i=2

[
h(yn

i |sn
i ) − h(nn

i |sn
i , xn

i )
]

+ h(xn
K + nn

K ) − h(nn
K ) + (2K − 1)nεn

(a)≤ nh(y1G) − h(hK xn
K + nn

1)

+
K−1∑

i=2

n
[
h(yiG |siG ) − h(ni )

]

+ h(xn
K + nn

K ) − nh(nK ) + (2K − 1)nεn

(b)≤ nh(y1G) +
K−1∑

i=2

n
[
h(yiG |siG ) − h(ni )

]

+ nh(xK G + nK ) − h(hK xK G + n1)

− nh(nK ) + (2K − 1)nεn, (44)

where xiG ∼ N (0, Pi ), yiG denotes yi with x j = x j G ,
∀i, j , (a) follows from [7, Lemma 1] and the fact that Gaussian
inputs maximize the differential entropy for a given covariance
constraint, (b) follows from applying [6, Lemma 1] to the term
h(xn

K +nn
K )−h(hK xn

K +nn
1), and using the condition h2

K ≤ 1.
Let ti denote the following quantity

ti = 1 +
K∑

j=i

h2
j Pj . (45)

Using (45), we rewrite (44) as

nS ≤ n

2
log πe(t2 + P1) + n

2

K−1∑

i=2

log

[
(1 + Pi )ti − h2

i P2
i

ti

]

+ n

2
log πe(1 + PK ) − n

2
log πe(tK ) − n

2
log πe

+ (2K − 1)nεn

= 0.5 log

(
1 + P1

t2

)

+ 0.5n
K−1∑

i=2

log

[
(1 + Pi )ti − h2

i P2
i

ti+1

]

+ 0.5n log(1 + PK ) + (2K − 1)nεn. (46)
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The achievable sum-rate of a scheme that employs
Gaussian codebooks and treats interference as noise is
given by

Sach = 0.5 log

(
1 + P1

1 + ∑K
j=2 h2

j Pj

)
+ 0.5

K∑

i=2

log(1 + Pi )

= 0.5 log

(
1 + P1

t2

)
+ 0.5

K∑

i=2

log(1 + Pi ). (47)

Subtracting (47) from (46), the gap δ between the
genie-aided outer bound and the achievable sum-rate is
given by

δ =
K−1∑

i=2

0.5 log

[
(1 + Pi )ti − h2

i P2
i

ti+1(1 + Pi )

]
+ (2K − 1)εn

=
K−1∑

i=2

0.5 log

[
(1 + Pi )(h2

i Pi + ti+1) − h2
i P2

i

ti+1(1 + Pi )

]

+ (2K − 1)εn

=
K−1∑

i=2

0.5 log

[
1 + h2

i Pi

ti+1(1 + Pi )

]
+ (2K − 1)εn (48)

(c)≤ K/2 − 1 + (2K − 1)εn, (49)

where we have used h2
i Pi ≤ (1 + Pi ) and ti+1 ≥ 1 to

write (c). As n → ∞, εn → 0 and therefore δ ≤ K/2 − 1.
We note that if K = 3, δ ≤ 0.5, which implies that the total
gap is within half a bit.

Remark 2: A similar result is proved for the fully connected
K ×K XC in [18], where they show that under certain channel
conditions, strategy M1, i.e., treating interference as noise at
the receivers is sum generalized degrees-of-freedom (GDoF)
optimal and also achieves a constant gap to the sum-rate
capacity. This result can be specialized to the many-to-
one XC, and after some manipulations, the channel conditions
in [18, Th. 2] essentially boil down to sub-region (38), where
it is shown that the gap from the sum-rate capacity is within
K
2 log2

[
K (K + 1)

]
bits. Note that the gap from the sum-rate

capacity is larger than that in Theorem 6, owing to the fact
that the bounding techniques as well as the results in [18] are
applicable to the general fully connected K × K XC.

V. K -USER GAUSSIAN MANY-TO-ONE

INTERFERENCE CHANNEL

In this section, we observe some implications of the above
results f or the K -user Gaussian many-to-one IC. The system
model for the K -user Gaussian many-to-one IC written in
standard form is same as that of the many-to-one XC shown
in Fig. 4, with the exception that the cross messages are now
absent, i.e., W1 j = φ, j = 2, . . . , K . From Fano’s inequality,
we have

H (Wii |yn
i ) ≤ nεn . (50)

Note that in the Gaussian many-to-one IC, all transmitters
excluding the first cause interference for the reception of
the intended signal at receiver 1. Transmission strategies can

similarly be defined for the Gaussian many-to-one IC and lead
to characterization of sum-rate capacity in some sub-regions.
The strategies naturally involve a combination of decoding a
part of the interference and treating the rest of the interference
as noise. This leads to the following definition.

Definition 2: In Strategy MIk, interference resulting from
transmissions from k −1 transmitters is decoded and canceled
at receiver 1, while the rest of the interference from other
transmitters is treated as noise, k ∈ {1, . . . , K }.

Thus, strategy MI1 refers to the case where interference
from all transmitters is treated as noise at receiver 1. Strategy
MIK refers to the case where interference from all transmit-
ters is decoded and canceled at receiver 1.

A. Conditions for the Sum-Rate
Optimality of Strategy MIk

We use sum-rate as the criterion of optimality for evaluating
the strategies. In the K ×K Gaussian many-to-one XC studied
in Section IV-A, we characterized the sum-rate optimality
of strategies M1, M2 and also characterized the gap from
the optimality of strategy M3. However, in the Gaussian
many-to-one IC, we characterize the sum-rate optimality of
all strategies, MI1 to MIK . Without loss of generality, we
assume that strategy MIk refers to decoding interference from
transmitters 2 through k, while interference from transmitters
k + 1 through K is treated as noise. The result for the general
case where interference from any subset of transmitters of
cardinality k −1 is decoded can be obtained from a reordering
of the transmitters without any loss in sum-rate.

Let Q denote the set of integers {2, 3, . . . , k}. Let πQ
denote any permutation of the set Q with πQ(i) denoting the
i th element of the permutation. We have the following result
on the sum-rate optimality of strategy MIk, k ∈ {1, . . . , K }.

Theorem 7: For a K -user Gaussian many-to-one IC satis-
fying the following channel conditions

h2
πQ(i) ≥ 1 + P1 +

∑

j∈πQ
j>i

h2
πQ( j )PπQ( j ) +

K∑

j=k+1

h2
j Pj ,

i = 1, . . . , k − 1,
K∑

j=k+1

h2
j ≤ 1, (51)

for some permutation πQ, decoding interference from trans-
mitters 2 to k and treating interference from the rest of the
transmitters as noise achieves the sum-rate capacity, and is
given by

S ≤ 0.5 log

(
1 + P1

1 + ∑K
j=k+1 h2

j Pj

)
+

K∑

i=2

0.5 log(1 + Pi ).

Proof: First, we prove the converse. Let a genie provide
the following genie signals to receiver 1

s1 = (x2, x3, x4, . . . , xk).
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The sum-rate of the genie-aided channel is given by

nS =
K∑

i=1

H (Wii )

= I (W11; yn
1, sn

1) +
K∑

i=2

I (Wii ; yn
i )

+ H (W11|yn
1, sn

1) +
K∑

i=2

H (Wii |yn
i )

(a)≤ I (xn
1; yn

1, sn
1) +

K∑

i=2

I (xn
i ; yn

i ) +
K∑

i=1

H (Wii |yn
i )

(b)≤ I (xn
1; sn

1) + I (xn
1; yn

1|sn
1) +

K∑

i=2

I (xn
i ; yn

i ) + nK εn

(c)= I (xn
1; yn

1|sn
1) +

K∑

i=2

I (xn
i ; yn

i ) + nK εn

= h(yn
1 |sn

1) − h(yn
1 |sn

1, xn
1)

+
K∑

i=2

[
h(yn

i ) − h(yn
i |xn

i )
] + nK εn

= h

(
xn

1 +
K∑

j=k+1

h j xn
j + nn

1

)
− h

( K∑

j=k+1

h j xn
j + nn

1

)

+
k∑

i=2

h(yn
i ) +

K∑

i=k+1

h(yn
i ) −

K∑

i=2

h(nn
i ) + nK εn

(d)≤ nh

(
x1G +

K∑

j=k+1

h j x j G + n1

)
− h

( K∑

j=k+1

h j xn
j + nn

1

)

+
k∑

i=2

nh(yiG ) +
K∑

i=k+1

h(xn
i + nn

i ) −
K∑

i=2

nh(ni ) + nK εn

(e)≤ nh

(
x1G +

K∑

j=k+1

h j x j G + n1

)
+

K∑

i=2

nh(yiG )

−nh

( K∑

j=k+1

h j x j G + n1

)
−

K∑

i=2

nh(ni ) + nK εn

= nI (x1G; y1G, s1G) +
K∑

i=2

nI (xiG ; yiG) + nK εn

= n

2
log

(
1 + P1

1 + ∑K
j=k+1 h2

j Pj

)

+
K∑

i=2

n

2
log(1 + Pi ) + nK εn, (52)

where (a) follows from the fact that removing conditioning
cannot reduce the conditional entropy, (b) follows from (50),
(c) follows from the independence of sn

1 and xn
1, (d) follows

since Gaussian inputs maximize differential entropy for given
covariance constraints, and (e) follows from the applica-
tion of Lemma 2 to bound the term

∑K
i=k+1 h(xn

i + nn
i ) −

h

( ∑K
j=k+1 h j xn

j +nn
1

)
, under the condition

∑K
j=k+1 h2

j ≤ 1.

For achievability, note that the sum-rate outer bound
in (52) can be achieved by using Gaussian inputs, decoding
and canceling interference from transmitters 2 to k and treating
interference from transmitters k + 1 to K as noise. Assume
Gaussian inputs are used at each transmitter, i.e., xi = xiG ,
i = 1, . . . , K . The order in which the signals from transmit-
ters 2 to k are decoded at receiver 1 determines the channel
conditions that must be satisfied for achievability. Here, we
use πQ to denote the decoding order at receiver 1, with πQ(i)
decoded and canceled out before decoding πQ( j) for i < j .

For ease of presentation, we use πQ = {2, 3, . . . , k} with
no permutation, i.e., x2G is decoded and cancelled out before
decoding x3G and so on.

Notice that,

I (x2G; y1G) = I

(
x2G; x2G + x1 + ∑K

j=3 h j x j G + n1

h2

)

≥ I (x2G; y2G),

if h2
2 ≥ 1 + P1 + ∑K

j=3 h2
j Pj . Similarly, for some 2 < l ≤ k,

we have

I (xlG ; y1G|x2G , . . . , x(l−1)G)

= I

(
xlG; xlG + x1 + ∑K

j=l+1 h j x j G + n1

hl

)

≥ I (xlG ; ylG),

if h2
l ≥ 1 + P1 +∑K

j=l+1 h2
j Pj . Combining the above channel

conditions, we have

h2
i ≥ 1 + P1 +

K∑

j=i+1

h2
j Pj , i = 2, . . . , k. (53)

Thus, (51) represents the above condition for a random per-
mutation of Q and (51) is needed to prove the sum-rate outer
bound in (52). This completes the proof of the theorem.

B. Conditions for Sum-Rate of Strategy of MI1 to Be
Within K/2−1 Bits From Sum-Rate Capacity

Here, we obtain a region for the Gaussian many-to-one
IC, where the sum-rate capacity can be characterized to
within K/2 − 1 bits. In Theorem 5, we showed that in
sub-region (38), the Gaussian many-to-one XC can be operated
as a Gaussian many-to-one IC without loss of sum-rate.
Further, in Theorem 6, we showed that in the above sub-
region, the sum-rate of strategy M1 is within K/2 − 1 bits
from the sum-rate capacity. Notice that strategy M1 for the
Gaussian many-to-one XC, which involves using Gaussian
codebooks and treating interference as noise, corresponds to
strategy MI1 in many-to-one IC. Since the sum-rate capacity
of the Gaussian many-to-one XC forms an outer bound on the
sum-rate capacity of Gaussian many-to-one IC, we conclude
that strategy MI1 is within K/2 − 1 bits from the sum-rate
capacity of Gaussian many-to-one IC in sub-region (38).

In the following theorem, we show that strategy MI1
achieves a rate point that is within K/2 − 1 bits from the
sum-rate capacity of Gaussian many-to-one IC in a region that
is much larger than sub-region (38). Let S denote the set of
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integers S = {2, 3, . . . , K }. Let π S denote any permutation of
the elements of the set S, with π S(k) denoting the kth element
of the permutation.

Theorem 8: For the K -user Gaussian many-to-one IC, the
rate point achieved by using Gaussian codebooks and treating
interference as noise is within K/2 − 1 bits from the sum-rate
capacity of Gaussian many-to-one IC in the following
sub-regions

h2
π S(i) ≤

(
1 + 1

Pπ S(i)

)(
1 +

π S(K−1)∑

j=π S(i+1)

h2
j Pj

)
,

i = 1, . . . , K − 2,

h2
π S (K−1)

≤ 1. (54)

Proof: Without loss of generality, we assume π S = S,
i.e., no permutation of the elements of the set S is assumed.
Thus, π S(1) = 2, π S(2) = 3 and so on till π S(K − 1) = K .

Let a genie provide the side-information given in (40) to
receiver i , i = 2, . . . , K − 1. The sum-rate of the genie-aided
channel is bounded as

nS =
K∑

i=1

H (Wii )

= I (W11; yn
1) +

K−1∑

i=2

I (Wii ; yn
i , sn

i ) + I (WK K ; yn
K )

+ H (W11|yn
1) +

K−1∑

i=2

H (Wii |yn
i , sn

i ) + H (WK K |yn
K )

(a)≤ I (xn
1; yn

1) +
K−1∑

i=2

I (xn
i ; yn

i , sn
i ) + I (xn

K ; yn
K )

+
K∑

i=1

H (Wii |yn
i )

(b)≤ I (xn
1; yn

1) +
K−1∑

i=2

I (xn
i ; yn

i , sn
i ) + I (xn

K ; yn
K )

+ nK εn, (55)

where (a) follows from the fact that removing conditioning
cannot reduce the conditional entropy, and (b) follows
from (50). We recognize that (55) is similar to (41). Notice
that the constraint h2

i ≤ 1, needed to write (41) for the many-
to-one XC is not required in the case of many-to-one IC.

By following essentially the same set of steps as in the
Theorem 6, and letting δ′ denote the gap between the genie-
aided outer bound and the achievable sum-rate for the many-
to-one IC, it follows that δ′ is bounded by (48) if h2

K ≤ 1.
Note that the condition h2

K ≤ 1 is required to write the
inequality (44) in Theorem 6.

Using (48), we conclude that for a gap of K/2 − 1 bits, if
h2

i Pi ≤ ti+1(1 + Pi ), i = 2, . . . , K − 1, along with h2
K ≤ 1,

then δ′ ≤ (K/2 − 1) + K εn ⇒ δ′ ≤ K/2 − 1. We again note
that for K = 3, δ′ ≤ 0.5, implying that a total gap of within
half a bit is obtained from the sum-rate capacity. The above

Fig. 6. Variation of ρ2 as a function of the gap 	 in bits. b = 1.5.

conditions can be rewritten as

h2
i ≤

(
1 + 1

Pi

)(
1 +

K∑

j=i+1

h2
j Pj

)
, i = 2, . . . , K − 1,

h2
K ≤ 1.

Note that the above region is much larger than sub-region (38),
i.e., h2

i ≤ 1, i = 2, . . . , K , obtained for the many-to-one XC
in Theorem 6. We illustrate the above region for K = 3
in Fig. 9.

The general case for any permutation π S of S can be
proved by giving the following genie signal to receiver π S(i),
i = 1, . . . , K − 2

sπ S(i) =
K∑

j=π S(i)

h j x j + n1,

and following the steps given above.
Remark 3: In [11], inner and outer bounds to the capacity

region of the Gaussian many-to-one IC are presented. The
inner bound is based on an achievable scheme which uses
lattice codes for alignment of interfering signals at receiver 1.
The outer bound is proved by giving an appropriately
chosen side information to receiver 1. It is shown that the
gap between the inner and outer bounds is approximately
5K log K bits per user with K + 1 users in the system.
In Theorem 8, we have strengthened the above result for the
sub-region in (54), by showing that using Gaussian codebooks
and treating interference as noise is within K/2 − 1 bits from
the sum-rate capacity of the many-to-one IC.

VI. NUMERICAL RESULTS

In this section, we illustrate the regions where the derived
channel conditions are satisfied for each strategy. For ease
of presentation, we consider the 3 × 3 many-to-one XC for
evaluating the strategies.

First, we numerically analyze the sum-rate outer bound for
the optimality of strategy M3, given in Theorem 3. Let the
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Fig. 7. A plot of the channel conditions in Table V for a 3 × 3 many-to-one
XC for the three strategies. P1 = P2 = P3 = 0 dB.

Fig. 8. A plot of the channel conditions in Table V for a 3 × 3 many-to-one
XC for the three strategies. P1 = P2 = P3 = 10 dB.

gap between the sum-rate outer bound and the achievable
sum-rate of strategy M3 given in (30) be denoted by 	.
Using (30) and solving for ρ in terms of 	, we get

ρ2 ≤ 22	 − 1

22	 − 1/(1 + b2 P3)
. (56)

In Fig. 6, we plot ρ2 as a function of 	 for different values
of P3 for fixed value of b = 1.5. It can be observed that ρ2

is a monotonically increasing function of 	. Thus, to obtain
a lower gap from the outer bound, a lower value of ρ2 must
be chosen. This in turn makes the sub-region in (23) smaller.
This relationship is explored further is the next two plots.

In Fig. 7 and Fig. 8, we plot the sub region in (23) for
the sum-rate optimality of strategy M3 as a graph in the
|a| − |b| plane for various values of 	, along with the

Fig. 9. A plot of the channel conditions in Theorem 7 (summarized
in Table VI) and Theorem 8 for a 3 × 3 many-to-one IC. P1 = P2 =
P3 = 3 dB.

TABLE VI

SUM-RATE CAPACITY RESULTS FOR A 3 × 3 MANY-TO-ONE
IC IN THEOREM 7

sub-regions in Table V for strategies M1 and M2. We assume
P1 = P2 = P3 = 0 dB. As mentioned above, the sub-region
in (23) shrinks for increasing values of 	.

In Fig. 9, we plot the characterization of sum-rate capacity
for the Gaussian many-to-one IC obtained in Theorem 8 for a
3×3 many-to-one IC. Also plotted are the channel conditions
determined in Theorem 7 for strategies MI1, MI2, and
MI3 to achieve sum-rate capacity. For K = 3, and using
same notation as in many-to-one XC with a = h2, b = h3,
sub-region (54) becomes

(i) a2 ≤ (1 + b2 P3)

(
1 + 1

P2

)
; b2 ≤ 1

(ii) b2 ≤ (1 + a2 P2)

(
1 + 1

P3

)
; a2 ≤ 1.

The above region is illustrated in the figure for P1 = P2 =
P3 = 3 dB. As mentioned earlier, for K = 3, the total
gap between the sum-rate of strategy MI1 and the sum-rate
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capacity of the 3×3 many-to-one IC is less than one bit. Thus,
as long as the channel coefficients lie within this region, the
sum-rate capacity can be characterized to within one bit. The
channel conditions in (51) and (51) in Theorem 7 for K = 3
are summarized in Table VI. The sum-rate capacity in the low-
interference regime, i.e., strategy MI1 was proved in [7].

VII. CONCLUSIONS

We considered the Gaussian many-to-one X channel
with messages on all the links. We formulated different
transmission strategies and obtained sufficient channel
conditions under which the strategies were either optimal or
within a gap from an outer bound. In the process, sum-rate
capacity was characterized in some sub-regions of the
many-to-one X channel. Subsequently, we identified a region
in which the many-to-one X channel can be operated as a
many-to-one interference channel without loss of sum-rate
and further showed that in this region, the sum-rate capacity
can be characterized to within a constant number of bits.
We next formulated transmission strategies for the Gaussian
many-to-one interference channel and obtained channel
conditions under which the strategies achieved sum-rate
capacity. We also identified a region where sum-rate capacity
can be characterized to within a constant number of bits. This
region is larger than the region implied by the corresponding
result for the Gaussian many-to-one X channel.

We have restricted ourselves to the Gaussian many-to-
one XC, since it is much harder to obtain exact sum-rate
capacity results for the general fully connected K × K XC.
The main difficulty lies in proving the decodability of intended
message sets at the receivers for the various transmission
strategies. For example, in case of the K ×K many-to-one XC
in standard form, we made use of Lemma 1 to show that under
certain channel conditions, y1 is a degraded version of yi with
respect to message W1i and hence H (W1i , Wii |yn

i ) ≤ 2nεn .
We subsequently made use of this result in Theorem 1 to
prove the sum-rate optimality of strategy M1, which involves
using Gaussian codebooks and treating interference as noise.
However, extending this result to the general K × K XC
is not easy. It is not clear if identification of a smart genie
is possible for this setting. In [18], it has been shown that
treating interference as noise (strategy M1 in this paper) is
optimal for the K × K XC for the sum-rate capacity up to a
constant gap. It would be interesting to study the applicability
of techniques used in [18] to analyze strategy M2.
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